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INTRODUCTION 

Slicing with a multiwire saw is one of the best methods for precision slicing of hard and brittle materials like 

semiconductors and optical components. Slicing methods using a multiwire saw can be broadly classified into loose 

abrasive machining using slurry as the cutting tool and fixed-abrasive machining using fixed abrasive wire tools as the 

cutting tool [1, 2]. In general, loose abrasive machining is superior in terms of machining accuracy, while fixed-abrasive 

machining is superior in terms of machining efficiency; however, in recent years, fixed-abrasive machining’s machining 

accuracy has also improved. In fixed-abrasive machining, diamond abrasives are often electrodeposited on wire tools, but 

there are also those in which diamond abrasives are fixed with resin [3]. 

Electroplated diamond wire tools have recently become popular as precision cutting tools for hard and brittle materials. 

It has become a popular tool for slicing hard materials, especially SiC. Hardin et al. [4] demonstrated the damage to SiC 

caused by slicing with electroplated diamond wire tools. Gao and Chen have developed a finite element model of wire 

saw cutting of SiC single crystals containing spherical void defects, and have shown the effect of the relative position and 

size of the defects on the stress concentration during slicing with electroplated diamond wire tools [5]. Studies on the 

machining characteristics of electroplated diamond wire tools have also been actively pursued, with Suzuki et al. 

demonstrating the effects of high-speed machining with electroplated diamond wire tools on work materials [6]. 

Furthermore, research is being conducted to extend the tool life of electroplated diamond wire tools to deal with 

technological issues such as thinner and larger diameter wafers, which require lower costs, and the processing of difficult-

to-cut materials such as SiC and sapphire. Among those who have contributed to this work are Suzuki et al. proposed a 

new coating method to improve the adhesion strength of diamond abrasive grains and electrolytic nickel bonding in 

electroplated diamond wire tools [7]. Muraoka and Suzuki also demonstrated the machining properties of single-

crystalline silicon using electroplated wire tools with a new coating [8]. Several studies on the tool wear of electroplated 

diamond wire tools have been published [9]. However, the influence of machining conditions and work materials on the 

wear of electroplated diamond wire tools have not been reported, and there are currently no standards for determining 

tool life. Furthermore, many aspects of the relationship between machining characteristics and wear characteristics of 

electroplated diamond wire tools remain unclear. 

We have studied in detail the machining characteristics of electroplated diamond wire tools not only on hard and 

brittle materials but also on wood materials [10] and composite materials [11, 12]. Tool wear of electroplated diamond 

wire tools during ceramic machining was also studied [13]. They also observed the wear state of electroplated diamond 

wire tools after slicing hard and brittle materials like borosilicate glass, monocrystalline silicon, polycrystalline silicon, 

and sapphire [14]. Moreover, the wear characteristics of the electroplated diamond wire tools were compared using 

metallic and hard, and brittle materials as work materials [15]. However, many aspects of the effects of machining 
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conditions and workpiece material on the machining and wear characteristics of electroplated diamond wire tools remain 

unknown. 

Grooving experiments were carried out in this study with two different types of ceramic materials as workpieces to 

investigate the effects of machining conditions and workpiece characteristics on the machining and wear characteristics 

of electroplated diamond wire tools.  

 

EXPERIMENTAL METHOD 

Experimental Setup 

Grooving experiments were performed on a modified tabletop CNC milling machine. Figure 1 depicts a simplified 

schematic diagram of the experimental setup, while Figure 2 depicts a schematic diagram of the machining process as 

seen from the Z-axis. The workpiece is fixed to the spindle (Z-axis) via a work holder, and rotational motion is applied. 

This rotation of the workpiece generates a relative velocity between the wire tool and the workpiece. Grooving 

experiments were conducted in this study using the relative velocity of the wire tool and the workpiece. Furthermore, the 

wire tool is fixed to the X–Y table with constant tension and reciprocates in the X-axis direction at an extremely slow 

speed, extending the length of the wire tool that contributes to the grooving. The workpiece is pressed against the wire 

tool beforehand (pressing distance is 5 mm) and is not fed in the Y-axis direction during grooving.  

 

 
Figure 1. Schematic diagram of the experimental setup, which is a modified tabletop CNC milling machine  

 

 

 
Figure 2. Schematic diagram of the machining process viewed from the Z-axis direction  

 

Experimental Conditions 

The materials used in the experiments and the main experimental conditions are summarized in Table 1. To prevent 

wire breakage and excessive tool wear, the tension on the electroplated diamond wire tool was set to a low value. The 

wire tool tension was set to 8.5 N in this study. Workpieces were 11 mm diameter alumina round bars and zirconia round 

bars. A solution-type water-soluble working fluid was used as the coolant, and it was intensively supplied to the grooving 

area at a rate of 10 mL/min. The rotational speed of the workpiece was 462–847 m/min. The travel distance of the 

electroplated diamond wire tool in the X-axis direction was set at 80 mm, and the travel speed was set at 1000 mm/min. 

The maximum machining time was set at 20 minutes, and various measurements were taken at 5-minute intervals. 
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An electroplated diamond wire tool is shown in Figure 3. In this figure, the electroplated diamond wire tool is unused. 

The core wire has a diameter of 200 m and is electroplated with diamond abrasive grains with an average diameter of 

30–40 m. The electroplated diamond wire tool had a diameter of 265 m at its widest point. Table 2 summarizes the 

simple composition and strength of the workpiece. The values were provided by the manufacturer. The zirconia used in 

the experiments is stabilized zirconia containing yttrium oxide. When compared to alumina, zirconia has higher bending 

strength and density values, indicating that it is a tougher material. Alumina and zirconia have comparable hardness in 

general, but alumina is more brittle [16, 17].  

 

Table 1. The material used and main experimental conditions 

Electroplated 

diamond wire tool 

Material of abrasive grains Synthetic diamond 

Diameter of abrasive grains 

(Diameter of the material itself) 

30–40 [m] 

Material of core wire  SWRS82A (JIS G 3502) 

Plating Nickel plating 

Diameter of core wire 

(Diameter of the material itself) 

200 [m] 

Outermost diameter of the wire 

tool 

265 [m] 

Applied tension 8.5 [N] 

Workpiece 

Material Alumina, Zirconia 

Shape Round bar 

Diameter 11.0 [mm] 

Rotational speed 462, 616, 847 [m/min] 

Working fluid 
Type of coolant Solution type 

Supply amount 10 [mL/min] 

X–Y table 

X-axis travel distance 80 [mm] 

Moving speed 1000 [mm/min] 

Machining time 5, 10, 15, 20 [min] 

 

 

 
Figure 3. Appearance of an unused electroplated diamond wire tool 

 

Table 2. Properties of the ceramic materials used 

 Alumina Zirconia 

Chemical composition Al2O3 (99.9%) ZrO2 (3 mol%Y2O3) 

Bending strength 380 [MPa] 1200 [MPa] 

Bulk density 3900 [kg/m3] 6000 [kg/m3] 

 

Definition of Wear Amount in this Study 

Figure 4 shows the definition of the amount of wear of the electroplated diamond wire tool in this study. The amount 

of wear on the electroplated diamond wire tool was defined as the difference in grain height between the unused and used 
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electroplated diamond wire tools. It would be ideal to continuously monitor the wear of the same abrasive grain, but this 

is difficult in practice due to the need for specialized equipment and software. Therefore, the measurement range 

(distance) of the electroplated diamond wire tool was set to 1.2 mm, about 32 abrasive grains were observed, and the 

average value of the abrasive grains that contributed to the grooving was used in this study. The average abrasive grain 

height of the unused electroplated diamond wire tools in this study was 32 m.  

 

 
Figure 4. Definition of the amount of wear of the electroplated diamond wire tool in this study 

 

EXPERIMENTAL RESULTS AND DISCUSSION 

Influence of Machining Time 

In this section, grooving experiments were carried out by varying the machining time up to 20 minutes to investigate 

the effect of machining time. Every 5 minutes, different measurements were taken. The data for alumina is shown in the 

filled circle (blue circles), while the data for zirconia is shown in the white circles. The rotational speed of the workpiece 

was set to 462 m/min.  

The effect of machining time on groove depth is shown in Figure 5. The groove depth increased with the machining 

time for both alumina and zirconia groovings. The groove depth increased significantly with machining time, indicating 

good machinability, particularly in the grooving of alumina. On the other hand, the groove depth of zirconia also increased 

with machining time, but the groove depth was shallower than that of alumina. In other words, zirconia has lower 

machinability than alumina. In both cases, the groove depth increased almost linearly with machining time, indicating 

that the machining performance of the electroplated diamond wire tool could be maintained until the end of machining in 

this experiment. The difference in groove depth between alumina and zirconia, which have almost the same hardness, is 

due to the characteristics of the materials. In other words, when grooving alumina, which has more brittle properties, 

diamond abrasive caused a microscopic fracture of the work material, causing the groove depth to increase. On the other 

hand, the grooving of zirconia, which has high toughness, does not cause workpiece microfracture. Therefore, the groove 

depth was not very deep in the grooving of zirconia. 

 

 
Figure 5. Relationship between machining time and groove depth 

 

Figure 6 shows the influence of machining time on the wear of the wire tool. It is clear from this figure that the tool 

wear is progressing as the machining time passes. The amount of wear during the first 5 minutes (initial wear) is 

significant, and after that, wear progress at a nearly constant rate. The surface of the electroplated diamond wire tool is 

nickel-plated. This nickel coating wears off during the grooving process. One of the reasons for increased wear in the 

early stages of grooving is this. There was a significant difference in machining efficiency between alumina and zirconia 

grooving, but no significant difference in wear was observed. When alumina and zirconia are compared, alumina has 
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slightly higher hardness but lower toughness [16, 17]. Machining efficiency depended on the toughness of the work 

material, and alumina with low toughness was superior, but there was no significant difference in the wear of the 

electroplated diamond wire tools. The hardness of the workpiece determined the wear of the electroplated diamond wire 

tool, and no significant difference was found between alumina and zirconia with similar hardness. 

Figure 7 shows the influence of machining time on the groove width. The dashed line (red line) in this figure shows 

the outermost diameter of the electroplated diamond wire tool. This figure shows that the groove width is independent of 

the machining time. The groove width is slightly narrower for zirconia, which has higher toughness, but no discernible 

difference exists depending on the workpiece material. The width of the groove is approximately 118% of the outermost 

diameter of the electroplated diamond wire tool used. The increase in groove width is attributed to the vibration of the 

electroplated diamond wire tool associated with grooving. The accuracy and rigidity of the grooving equipment also have 

an effect.  

 
Figure 6. Relationship between machining time and the wear of the electroplated diamond wire tool 

 

 

 

Figure 7. Relationship between machining time and the groove width 

 

Influence of Relative Speed 

The relative speed between the workpiece and the electroplated diamond wire tool is varied in this section by varying 

the workpiece’s rotational speed. The workpiece’s rotational speeds were set at 462, 616, and 847 m/min, respectively. 

The filled circle (blue circles) show the data for alumina and the white circles show the data for zirconia. The machining 

time (grooving time) is 15 minutes. 

Figure 8 depicts the effect of the workpiece’s rotational speed on the groove depth. The groove depth increases linearly 

in both alumina and zirconia grooving. Alumina grooving, in particular, significantly increases groove depth when 

compared to zirconia grooving. This is because alumina is a more brittle material than zirconia. In other words, as the 

rotational speed of the workpiece increases, the relative speed between the workpiece and the electroplated diamond wire 

tool increases. The diamond abrasive grains impact the workpiece at high speed as the relative speed increases, and in the 

grooving of alumina, which has brittle properties, the groove depth increases due to microbrittle fracture. Grooving on 

zirconia, on the other hand, does not increase groove depth as much as grooving on alumina. 

Figure 9 shows the influence of the rotational speed of the workpiece on the amount of wear of the electroplated 

diamond wire tool. The amount of wear of the electroplated diamond wire tool decreased slightly with increasing the 

rotational speed of the workpiece, but no significant trend was observed. In short, the amount of wear on the electroplated 
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diamond wire tool is nearly independent of the rotational speed of the workpiece. The slight decrease in the amount of 

wear of the electroplated diamond wire tool with increasing rotational speed of the workpiece can be attributed to an 

increase in the relative speed between the workpiece and the electroplated diamond wire tool, which slightly improved 

machinability. The amount of wear on the electroplated diamond wire tool was slightly higher for the alumina, but there 

was no significant difference between the workpieces. For the workpiece used in this study, alumina has a slightly higher 

hardness. As a result, the wear of the electroplated diamond wire tool was slightly higher for alumina. In other words, the 

amount of wear on the electroplated wire tool is thought to be independent of the workpiece’s rotational speed but 

dependent on its hardness. 

 

 
Figure 8. Relationship between the rotational speed of the workpiece and the groove depth 

 

 

Figure 9. Relationship between the rotational speed of the workpiece and the wear of the wire tool 

 

Figure 10 shows the influence of the rotational speed of the workpiece on the groove width. The dashed line (red line) 

in this figure shows the outermost diameter of the electroplated diamond wire tool used. From this figure, it is clear that 

the groove width does not depend on the rotational speed or the type of workpiece. The groove width is greater than the 

diameter of the electroplated diamond wire tool used, which is approximately 119% of the tool’s outermost diameter. The 

groove width is affected by the vibration of the electroplated diamond wire tool during grooving and the accuracy and 

rigidity of the grooving machine. To put it another way, the groove width can be reduced by using a high-precision, high-

rigidity grooving machine and increasing the tension applied to the electroplated diamond wire tool. 
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Figure 10. Relationship between the rotational speed of the workpiece and the groove width 

 

CONCLUSION 

The main purpose of this study was to clarify the influences of machining conditions and characteristics of workpieces 

on the grooving characteristics, including the wear of electroplated diamond wire tools. Grooving experiments were 

carried out on two different types of ceramic materials, alumina, and zirconia, as workpieces, by varying the machining 

time and the relative speed between the workpiece and the electroplated diamond wire tool. Although the hardness of 

alumina and zirconia used as workpieces is nearly identical, their toughness is vastly different. The main results obtained 

by the grooving experiments and wire tool observations are as follows:  

1. As the machining time and rotational speed of the workpiece increased, so did the groove depth. A microbrittle 

fracture occurs during the grooving process, especially when alumina, which has brittle properties, is used. 

Therefore, the machinability of alumina is higher than that of zirconia, which has higher toughness. 

2. The abrasive wear of the electroplated diamond wire tool is large in the initial stage of grooving. Thereafter, the 

wear rate decreases, but the amount of wear of the wire tool increases as the machining time passes. The amount 

of wear on the wire tool is almost independent of the rotational speed of the workpiece (relative speed between 

the workpiece and the electroplated diamond wire tool), but it decreases slightly as the relative speed increases. 

Furthermore, the amount of wear on wire tools is unrelated to the toughness of the workpiece. The amount of wear 

of the electroplated diamond wire tools seems to be slightly dependent on the hardness of the workpiece. 

3. The groove width was greater than the outermost diameter of the electroplated diamond wire tool used and was 

independent of machining time or workpiece rotational speed. Additionally, there was no significant difference 

depending on the material of the workpiece.  
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