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INTRODUCTION 

Laminated composite cylindrical shells are widely used in many engineering industries due to their attractive structural 

properties such as high strength-to-weight and stiffness-to-weight ratios. Among equivalent single layer theories, 

layerwise theories and zig-zag theories; equivalent single layer theories are more popularly used for the analysis of 

laminated composite shells due to simplicity of mathematics. The classical shell theory (CST) of Kirchhoff [1] and first 

order shear deformation theory (FST) of Mindlin [2] have been widely used theories for the analysis of laminated 

composite thin shells. However, both the theories have certain drawbacks and not capable enough to predict accurate 

static and dynamic behaviour of thick laminated shells. This forces researchers to formulate refined models which 

accurately predict the global response of the laminated shells. In these higher order shell theories, the displacements are 

expanded using polynomial or non-polynomial type strain functions. In the open literature, Bhimaraddi [3] and Reddy 

[4] have presented polynomial type shear deformation theories whereas Levy [5], Soldatos [6] and Karama et al. [7] have 

developed nonpolynomial type shear deformation theories such as trigonometric, hyperbolic and exponential shear 

deformation theories, respectively. Aydogdu [8] has developed a new shear deformation theory for the bending, buckling 

and free vibration analysis of laminated composite plates which is considered as an improvement over exponential shear 

deformation theory. Akavci [9] has developed two hyperbolic models for the analysis laminated composite plates. Mantari 

et al. [10] have developed higher order shear deformation theory considering trigonometric and exponentail functions for 

the analysis of laminated composite plates and shells. Neves et al. [11, 12], have developed sinusoidal and hyperbolic 

shear deformation theories considering the effects of transverse normal strain for the analysis of laminated composite 

plates.  Ghugal and Sayyad [13], and Sayyad and Ghugal [14] have developed a trigonometric shear deformation theory 

for the bending, buckling and free vibration analysis of laminated composite and sandwich plates. Recently, Sayyad and 

Naik [15] have developed a fifth order shear deformation theory considering the effects of transverse shear and normal 

deformation for the interlaminar stress analysis of laminated plates. Detailed discussions on these theories have been 

presented by Sayyad and Ghugal [16], Liew et al. [17] and Qatu et al. [18].  

A literature on static and free vibration analysis of cylindrical shells using various classical and higher order shell 

theories is published by many researchers. Reddy [19] have applied the third order shear deformation theory for the 

analysis of laminated composite shells. Soldatos and Timarci [20] and; Timarci and Soldatos [21] have presented an 

unified formulation of higher order shell theories for the free vibration analysis of laminated omposite cylindrical shells. 

Zenkour and Fares [22] have developed a refined first order theory for the thermal bending analysis of laminated 

composite cylindrical shells. Khdeir [23] have presented static and vibration analysis of cross-ply shells using thick shell 

theory Asadi et al. [24] have presented three-dimensional solutions along with application of various shear deformation 

theories for the static and vibration analyses of laminated composite cylindrical shells. Khalili et al. [25]] have presented 

free vibration analysis of homogeneous isotropic circular cylindrical shells based on a three-dimensional refined higher-

order theory. Carrera and Brischetto [26] and Carrera et al. [26, 27] have presented analysis of laminated shells using 

ABSTRACT – In the present study, a generalized shell theory is presented and applied for the 
analysis of laminated composite cylindrical shells. A theoretical unification of the several refined 
shell theories is presented. The principle of work done is employed to derive five differential 
equations corresponding to five unknowns involved in the present generalized shell theory. Five 
differential equations are solved by an analytical procedure suggested by the Navier. The 
numerical results for simply supported laminated composite cylindrical shells are presented and 
compared with 3D elasticity solutions. Displacements, stresses and fundamental frequencies are 
obtained for isotropic, orthotropic, 00/900 and 00/900/00 laminated cylindrical shells. The numerical 
results are obtained for h/a=0.1, a/b=1 and different values of R/a ratio. Displacements and 
stresses of laminated cylindrical shells are estimated under sinusoidal transverse load. In the case 
of free vibration analysis, first five natural frequencies are presented. It is observed that refined 
theories predicts displacements and stresses in close agreement with 3D elasticity solutions 
whereas the FST and the CST underpredict the displacements and stresses. It is also observed 
that the CST overestimates the natural frequencies due to neglect of shear deformation effect. 
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various shell theories recovered from the Carrera’s unified formulation. Mantari et al. [28] have developed a new higher 

order shear deformation theory for the static and free vibration analysis of laminated composite shells. However, from 

the aforementioned literature it is found that most of the researchers have presented only transverse deflection quantities 

during the static analysis of laminated shells. Values of in-plane normal stresses and transverse shear stresses for 

laminated composite shells under mechanical/thermal loads are not reported by many researchers in their papers. It is 

well known that equivalent single layer shell theories fail to satisfy the continuity at the layer interface in case of laminated 

shells. Therefore, transverse shear stresses are recovered by using equilibrium equations of theory of elasticity to ascertain 

continuity at the layer interface. Detail procedure of this method is given by Tornabene et al. [29–35] and; Sayyad and 

Ghugal [36].  

In this work, a generalized displacement model is presented to recover several equivalent single layer higher order 

and classical shell theories such as the classical shell theory (CST) of Kirchhoff [1], first order shell theory (FST) of 

Mindlin [2], parabolic shell theory (PST) of Reddy [4], trigonometric shell theory (TST) of Levy [5], hyperbolic shell 

theory (HST) of Soldatos [6] and exponential shell theory (EST) of Karama et al. [7]. Further, these theories are applied 

for the static and free vibration analysis of laminated composite cylindrical shells. Five differential equations of the 

present generalized displacement model are derived using the principle of virtual work. Solutions for static and free 

vibration problems of simply supported cylindrical shells are obtained using the Navier’s technique. A computer code is 

developed in Fortran 77 to determine displacements, stresses and frequencies. Numerical results are compared with three-

dimensional elasticity solutions given by Bhimaraddi and Chandrashekhara [37] for static analysis. Bhimaraddi [38] has 

also provided three-dimensional elasticity solutions for doubly curved laminated shells. Since, 3D elasticity solution for 

the free vibration analysis is not available in the literature; the present results are compared with other works available in 

the literature. In this work, transverse shear stresses are recovered from 3D stress equilibrium equations of elasticity to 

ascertain continuity at layer interface/s of the laminated cylindrical shells.  

 

MATHEMATICAL FORMULATION  

A laminated composite cylindrical shell of rectangular planform (a×b) and thickness h shown in Figure 1 is considered 

for the mathematical formulation. R denotes the principal radius of curvature of the middle surface. Cylindrical shell is 

composed of a N number of orthotropic layers perfectly bonded together.  

 

 
Figure 1. Laminated cylindrical shell under consideration 

 

In the present generalized displacement model, in-plane displacements are presented in three components (extension, 

bending and shear) whereas the transverse displacement is assumed to be function of x and y coordinates. In the Eq. (1) 

u, v and w represent the displacements of any point of the shell domain whereas 
0 0 0, ,u v w  represent the displacements 

of any point on the middle surface of the shell in the x-, y- and z-directions, respectively; ( )z represent the shape 

functions used to recover various refined higher order and classical shell theories from the present generalized 

displacement model.   

( ) ( ) ( ) ( )0

0, , , 1 , , , ,
wz

u x y z t u x y t z z x y t
R x

 
 
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Following are the strain components obtained using Eqs. (1a)-(1c) and the strain–displacement relations from the 

theory of elasticity [39]. 

( )0 1 2

x x x xz z    = + +  (2a) 

  

( )0 1 2

y y y yz z    = + +  (2b) 

  

( )0 1 2

xy xy xy xyz z    = + +  (2c) 

  

( ) 0'xz xzz  =  (2d) 

  

( ) 0'yz yzz  =  (2e) 

Where 
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 (3b) 

 

In the Eqs. (2a)-(2e), prime indicates derivative with respect to z. The stresses in the kth layer of the laminated 

cylindrical shells are obtained using the following constitutive relationship [39]. 
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 (4) 

 

where ijQ  are the stiffness coefficients; x, y, z represent laminate axes and 1, 2, 3 represent material axes. Stiffness 

coefficients are expressed in-terms of engineering constants as follows [39]. 
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The principle of virtual work is employed to formulate five differential equations associated with the present 

generalized displacement model. Following is the analytical form of the principle of virtual work where  denotes the 

virtual operator. 
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By putting Eqs. (2a)-(2e) into the Eq. (6), one can get, 
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The force and moment resultants can be introduced after performing integrations with respect to z coordinate where 

superscript b is used for the resultants due to bending whereas superscript s is used for the resultants due to shear [39]. 
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Force and moment resultants of Eqs. (8a)-(8d) can be expressed in terms of unknown variables as follows. 
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Using Eqs. (8a)-(8d), one can modify Eq. (7) as follows 
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After performing integration of the Eq. (11) by parts, collecting the terms of 
0 0 0 andu , v , w ,      and setting 

them equal to zero; one can write the following differential equations associated with the present generalized displacement 

model.  
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The boundary conditions along the four edges of the shell are presented in Table 1. 

 

Table 1. The boundary conditions along the four edges of the shell 
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where   
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Above mentioned five differential equations can be also written as follows in terms of unknown variables in the 

generalized displacement model 
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As As As I I I

x y R R Ry R t x t t




  

      
+ + + + − − + +

       

        
+ + + − + + + + − + =     

          

 (15) 
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( ) ( )

( )

2 2 2 3 3

0 0 0 0 0 012

0 12 66 22 66 22 12 662 2 3 2

2 32 2 2 2

0 0

12 66 22 66 1 2 42 2 2 2 2

: 2

0

u v v w w wA
v A A A A B B B

x y R yy x y x y

v w
As As As As I I I

x y y x t y t t



   

     
+ + + − − + +

      

    
+ + + + − + − =

       

 (16) 

 

( ) ( )

( )

( )
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0 0 0 012 11
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3
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2
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2
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2

u u u v v v wA A B
w B B B B B B

R x R y Rx x y y x y x

w w w wB A
D D D D w Bs

Rx x y y y R x

As
Bs Bs Bs

R xx y





 

      
+ + − + + + − +

       

    
− − + − + − +

     

 
+ + − +

 
( )

3 3

12

22 12 663 2

3 4 3 4 23 3

3 0 0 0 0 0

2 3 5 2 3 5 12 2 2 2 2 2 2 2 2

2

0

As
Bs Bs q

R yy x y

I u w v w w
I I I I I I I

R x t x t x t y t y t y t t

  

 

  
+ + − −

  

      
− + + − − + − − = 

             

 (17) 

 

( ) ( )

( )

2 2 2 3 3
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5 0 0
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x y R xx y x x y

I u w
Ass Ass Acc Ass Ass I I I

x y Rx y t x t t



   


     
+ + + − − + +

      

     
+ + − + + − + + − = 

       

 (18) 

 

( ) ( )
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12 66 66 22 22 12 662 2 3 2

2 32 2 2 2

0 0

12 66 22 66 55 4 5 62 2 2 2 2
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0

u v v w w wAs
As As As As Bs Bs Bs

x y R yx y y x y

v w
Ass Ass Ass Ass Acc I I I

x y y x t y t t



   


     
+ + + − − + +

      

    
+ + + + − − + − =

       

 (19) 

 

SOLUTIONS FOR SIMPLY-SUPPORTED SHELLS  

In this section, solution procedure of the five differential equations is explained when those are applied for the simply 

supported laminated cylindrical shells. Navier’s technique is the most widely adopted technique for the analysis of simply 

supported shells [39]. In this technique, unknowns are presented in the trigonometric form to satisfy the following 

boundary conditions of the simply supported edges.  

0at edges 0 and : 0
b s

x x xx x a N v w M M= = = = = = = =  (20a) 

 

0at edges 0 and : 0
b s

y y yy y b N u w M M= = = = = = = =  (20b) 

 

The unknowns and transverse load are presented in the following trigonometric form. 

For static problem 

    ( ) ( )0 1 2

1,3,5 1,3,5

cos sinmn mn
m n

u u x y   
 

= =

=    (21a) 

 

    ( ) ( )0 1 2

1,3,5 1,3,5

sin cosmn mn
m n

v v x y   
 

= =

=    (21b) 

 

    ( ) ( )0 1 2

1,3,5 1,3,5

sin sinmn mn
m n

w q w q x y 
 

= =

=    (21c) 

 

For free vibration problem (q=0) 

 

    ( ) ( )0 1 2

1,3,5 1,3,5

cos sin i t

mn mn
m n

u u x y e    
 

= =

=    (22a) 
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    ( ) ( )0 1 2

1,3,5 1,3,5

sin cos i t

mn mn
m n

v v x y e    
 

= =

=    (22b) 

 

    ( ) ( )0 1 2

1,3,5 1,3,5

sin sin i t

mn
m n

w w x y e  
 

= =

=    (22c) 

 

where, 
1 m / a = , 

2 n / b = ; 
mnq represents the Fourier coefficient of the transverse load, (m, n) are odd integers 

i.e. m=n=1,3,5…∞; in the case of sinusoidal transverse load, 𝑞𝑚𝑛 = 1;   represents the natural frequency, t represents 

time, 1i = −  and 
mn mn mn mn mnu ,v , w , ,   are the unknown coefficients to be determine. Substitution of Eqs. (21a)-

(21c) and Eqs. (22a)-(22c) into the differential Eqs. (15)-(19) leads to the following systems of equations for static and 

free vibration problems respectively.  

 

    K F =  (23) 

 

        2 0K M−  =  (24) 

 

Displacements and stresses in homogenous and laminated cylindrical shells can be determined using solution of Eq. (23) 

whereas natural frequencies can be determined using solution of Eq. (24). The elements of stiffness matrix [K], force 

vector {F}, mass matrix [M] and vector of unknowns{ }are given below. 

Elements of stiffness matrix [K] 

 

( ) ( )

( )

( ) ( )

2 2 3 211

11 11 1 66 2 12 12 66 1 2 13 1 11 1 12 66 1 2

2 2 2 2

14 11 1 66 2 15 12 66 1 2 22 66 1 22 2

3 2 212

23 2 22 2 12 66 1 2 24 12 66 1 2 25 66 1

, , 2 ,

, , ,

2 , ,

A
K A A K A A K B B B

R

K As As K As As K A A

A
K B B B K As As K As As

R

       

     

      

 
= + = + = − + − + 

 

= + = + = +

 
= − + − + = + = + 

 

( )

( ) ( )

( )

2

22 2

4 2 2 4 2 211 12 11

33 11 1 12 66 1 2 22 2 1 2 2

3 2 3 211 12

34 11 1 12 66 1 2 1 35 22 2 12 66 1 2 2

2 2

44 11 1 66 2 55 45 12 66 1 2 5

,

2 2
2 2 ,

2 , 2 ,

, ,

B B A
K D D D D

R R R

As As
K Bs Bs Bs K Bs Bs Bs

R R

K Ass Ass Acc K Ass Ass K



     

       

   

= + + + + + +

   
= − + + + = − + + +   

   

= + + = + 2 2

5 22 2 66 1 55Ass Ass Acc = + +

 (25) 

  

Elements of mass matrix [M] 

 

3 3 52

11 1 12 13 2 14 4 152

2 23

22 1 23 2 24 25 4 33 3 3 1

34 5 35 5 44 6 45 55 6

2 , 0, , , 0,

, , 0, , ,

, , , 0, ,

I I II
M I M M I M I M

R R RR

I
M I M I M M I M I I I

R

M I M I M I M M I



  

 

     
= + + = = − + = + =     
     

 
= = − + = = = + + 

 

= − = − = = =

 
(26) 

 

Elements of force vector {F} 

   0 0 0 0
T

mnF q=  (27) 

 

Elements of vector of unknowns { } 

 

   
T

mn mn mn mn mnu v w   =  (28) 

 

Since the stiffness matrix [K] and mass matrix [M] are symmetric matrices, Kij=Kji and Mij=Mji   
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RESULTS AND DISCUSSION 

    In this paper, the present generalized displacement model is applied for the static and free vibration analysis of 

simply supported isotropic, laminated composite cylindrical shells. Numerical results for displacements, stresses and 

natural frequencies are obtained and compared with 3D elasticity solutions and other studies available in the literature. 

The following higher order and classical shell theories are recovered using the present generalized displacement model.  

 

PST [4]: ( ) ( )( )
2

1 4 3z z / z , z z / h  = − =
 

 

TST [5]: ( ) ( ) ( )sinz h / z  =  

HST [6]: ( ) ( ) ( )cosh 1 2 sinhz z / h z = −  

EST [7]: ( ) ( )
2

2 z
z z e

−
=  

FST [2]: ( )z z =  

CST [1]: ( ) 0z =   

 

Recovery of Transverse Shear Stresses 

In multilayered shells, transverse shear stresses leads to the discontinuity at the layer interface when obtained using 

the constitutive relations. Therefore, in the present study, the transverse shear stresses are recovered by direct integration 

of stress equilibrium equations of theory of elasticity neglecting the body forces. The transverse shear stresses are 

recovered by layerwise integration of Eq. (29). The integration constants are determined by imposing the shear stress 

boundary conditions. 

 

( )
( ) ( )

( )
( ) ( )1 1

1 2

1 1

and
k k

k k

k k kz zkN N
xy y xyk kx

xz yz

k kz z

dz C dz C
x y y x

  
 

+ +

= =

     
   = − + + = − + +
      
   

    (29) 

 

Numerical Results 

The non-dimensional numerical results are presented in Tables 3 through 8 and graphically in Figures 2 through 4. 

The material properties and non-dimensional parameters considered in the numerical examples are presented in Table 2. 

 

Table 2. Material properties considered in numerical examples from Bhimaraddi and Chandrashekhara [37] 

Examples Material properties Non-dimensional parameters 

1 210 0 3E GPa, .= =  

0 0 0

, ,x zx
x zx

w E
w

q a q q

 
 = = =  

2, 3 
1 2 12

31 23 12 13 23

36 0885 26 2818 4 9033

4 4130 4 0208 0 105

E . , E . , G . ,

G . , G . , .  

= = =

= = = = =
 1

0 0 0

, ,x zx
x zx

w E
w

q a q q

 
 = = =  

4 
1 2 2 23 2

12 2 31 2 12 13 23

25 26 2818 0 2

0 5 0 25

E / E , E . , G / E . ,

G / E G / E . , .  

= = =

= = = = =
 ( )2

2/ /a h E  =  

 

Table 3. Displacements and stresses in isotropic cylindrical shells with different R/a values (h/a=0.1, a/b=1) 

R/a Model Theory w  x  
xz  

5 Present PST 28.756 20.808 2.3132 

 Present TST 28.753 20.820 2.3125 

 Present HST 28.756 20.807 2.3133 

 Present EST 28.760 20.860 2.3162 

 Present FST 28.508 20.620 2.3193 

 Bhimaraddi and Chandrashekhara [37] 3D Elasticity 29.003 21.138 2.3455 

 

 

 

 

 



A. S. Sayyad et al. │ Journal of Mechanical Engineering and Sciences │ Vol. 16, Issue 2 (2022) 

8856   journal.ump.edu.my/jmes ◄ 

Table 3. Displacements and stresses in isotropic cylindrical shells with different R/a values (h/a=0.1, a/b=1) (cont.) 

R/a Model Theory w  x  
xz  

10 Present PST 29.390 20.532 2.3642 

 Present TST 29.386 20.544 2.3635 

 Present HST 29.390 20.532 2.3642 

 Present EST 29.394 20.585 2.3672 

 Present FST 29.130 20.342 2.3699 

 Bhimaraddi and Chandrashekhara [37] 3D Elasticity 29.379 20.719 2.3787 

20 Present PST 29.552 20.277 2.3773 

 Present TST 29.549 20.288 2.3766 

 Present HST 29.552 20.277 2.3773 

 Present EST 29.557 20.330 2.3803 

 Present FST 29.290 20.088 2.3830 

 Bhimaraddi and Chandrashekhara [37] 3D Elasticity 29.445 20.413 2.3847 

 

Example 1: Static Analysis of Homogenous Isotropic Cylindrical Shells 

Table 3 shows comparison of transverse displacements and stresses of homogenous isotropic cylindrical shell 

subjected to sinusoidal transverse load. The non-dimensional results are presented for various R/a (=5, 10, 20) values. 

Table 2 shows material properties and non-dimensional parameters for this example. The numerical results are presented 

by using higher order shell theories recovered from the present generalized displacement model and compared with three-

dimensional (3D) elasticity solutions presented by Bhimaraddi and Chandrashekhara [37]. From Table 3, it is observed 

that the trigonometric shell theory (TST) shows transverse displacements in close agreement with 3D elasticity solution 

for R/a=10 and 20, whereas, exponential shell theory (EST) shows transverse displacements slightly on higher side. The 

parabolic shell theory (PST) and hyperbolic shell theory (HST) show identical results of displacements and stresses. The 

first order shell theory underestimates the transverse displacements and stresses for all R/a values. 

 

Table 4. Displacements and stresses in orthotropic cylindrical shells with different R/a values (h/a=0.1, a/b=1) 

R/a Model Theory w  x  
xz  

5 Present PST 54.434 27.914 2.5736 

 Present TST 54.425 27.944 2.5721 

 Present HST 54.480 27.831 2.5656 

 Present EST 54.446 28.052 2.5798 

 Present FST 53.609 27.449 2.5876 

 Present CST 49.442 27.515 --- 

 Bhimaraddi and Chandrashekhara [37] 3D Elasticity 53.298 28.466 2.6283 

10 Present PST 55.384 27.820 2.6185 

 Present TST 55.374 27.850 2.6170 

 Present HST 55.432 27.735 2.6104 

 Present EST 55.396 27.960 2.6249 

 Present FST 54.530 27.348 2.6320 

 Present CST 50.224 27.423 --- 

 Bhimaraddi and Chandrashekhara [37] 3D Elasticity 54.958 28.154 2.5473 

20 Present PST 55.627 27.649 2.6300 

 Present TST 55.617 27.680 2.6285 

 Present HST 55.675 27.564 2.6218 

 Present EST 55.639 27.790 2.6364 

 Present FST 54.765 27.179 2.6434 

 Present CST 50.424 27.267 --- 

 Bhimaraddi and Chandrashekhara [37] 3D Elasticity 55.023 27.908 2.6554 
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Example 2: Static Analysis of Homogenous Orthotropic Cylindrical Shells 

Non-dimensional displacements and stresses of homogenous orthotropic cylindrical shells subjected to sinusoidal load 

are presented in Table 4 and compared with 3D elasticity solution of Bhimaraddi and Chandrashekhara [37]. The 

numerical results are presented for different R/a values. Material properties and non-dimensional parameter used to obtain 

numerical results for this example are presented in Table 2. Examination of Table 4 reveals that the transverse 

displacements predicted by FST are in good agreement with those presented by Bhimaraddi and Chandrashekhara [37] 

in 3D elasticity solution whereas EST predicts stresses in excellent agreement with those presented in 3D elasticity 

solution. Non-dimensional value of transverse displacements increases with respect to increase in R/a values whereas 

stresses are decreases with increase in R/a values. 

 

Table 5. Displacements and stresses in laminated cylindrical shells (R/a =1, h/a=0.1, a/b=1) 

  00/900 00/900/00 

Model Theory w  x  
xz  w  x  

xz  

Present PST 35.358 17.198 1.4140 35.097 21.246 1.6189 

Present TST 35.362 17.213 1.4134 35.094 21.264 1.6179 

Present HST 35.343 17.761 1.4139 35.079 21.300 1.6190 

Present EST 35.223 17.229 1.4128 35.103 21.333 1.6176 

Present FST 35.020 17.030 1.4284 34.743 21.031 1.6382 

Present CST 33.247 17.030 --- 32.938 21.031 --- 

Bhimaraddi and Chandrashekhara [37] 3D Elasticity 41.340 23.700 1.7763 40.823 23.987 1.8290 

 

Example 3: Static Analysis of Laminated Cylindrical Shells 

In this example, all the higher order shell theories recovered from the present generalized displacement model are 

applied for the static analysis of laminated composite cylindrical shells on rectangular planform. Material properties and 

non-dimensional parameters are presented in Table 2. In case of laminated shells, it is assumed that all layers are of equal 

thickness i.e. for two-ply (00/900) laminated shells thickness of each layer is h/2 whereas for three-ply (00/900/00) 

laminated shells thickness of each layer is h/3. The present results are compared with 3D elasticity solution presented by 

Bhimaraddi and Chandrashekhara [37]. The numerical results are presented in Table 5 for two-ply (00/900) and three-ply 

(00/900/00) laminated shells for R/a =1, h/a=0.1 and a/b=1. For both the lamination schemes, TST predicts transverse 

displacement in close agreement with 3D elasticity solution. The FST and CST underpredict the displacements and 

stresses for both the types of laminated shells. Through-the-thickness distributions of in-plane normal and transverse 

shear stresses are plotted in Figures 2 and 3 for two-ply (00/900) and three-ply (00/900/00) laminated shells respectively. 

Both the stresses are observed to be maximum in 0 degree layers and minimum in 90 degree layer. The maximum in-

plane normal stresses are observed at the bottom of shell i.e. (z=h/2) whereas maximum transverse shear stresses are 

observed at the middle surface of the shell.  

 

  
Figure 2. Through-the-thickness profiles of stresses for two-ply (00/900) laminated shells 
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Figure 3. Through-the-thickness profiles of stresses for three-ply (00/900/00) laminated shells 

 

Table 6. Natural frequencies in cylindrical shells with different R/a values (h/a=0.1, a/b=1) 

R/a Model Theory Isotropic Orthotropic 00/900 00/900/00 

0.5 Present PST 10.0200 14.0875 14.2221 15.2534 

 Present TST 10.0199 14.0847 14.2240 15.2282 

 Present HST 10.0205 14.0975 14.2275 15.2557 

 Present EST 10.0211 14.1178 14.2400 15.2417 

 Present FST 10.0302 14.2902 14.2538 15.6721 

 Asadi et al. [24] FSDTQ 9.59610 -- 13.7710 15.2500 

 Asadi et al. [24] 3D-FEM 7.55300 -- 13.7720 14.8400 

1 Present PST 7.34706 13.0226 10.9307 12.9914 

 Present TST 7.34689 13.0188 10.9345 12.9541 

 Present HST 7.34782 13.0368 10.9390 12.9948 

 Present EST 7.34898 13.0655 10.9585 12.9742 

 Present FST 7.36499 13.3080 10.9594 13.6064 

 Asadi et al. [24] FSDTQ 7.09000 -- 10.6660 13.1870 

 Asadi et al. [24] 3D-FEM 7.08100 -- 10.6860 12.5900 

2 Present PST 6.22746 12.6228 9.57321 12.1277 

 Present TST 6.22725 12.6185 9.57804 12.0849 

 Present HST 6.22841 12.6386 9.58313 12.1316 

 Present EST 6.22990 12.6707 9.60642 12.1080 

 Present FST 6.25008 12.9410 9.60041 12.8294 

 Asadi et al. [24] FSDTQ 6.09130 -- 9.45770 12.4430 

 Asadi et al. [24] 3D-FEM 6.09210 -- 9.48550 11.7690 

 

Table 7. First five natural frequencies in two-ply (00/900) laminated cylindrical shells with different R/a values 

(h/a=0.1, a/b=1) 

R/a Model Theory 1  
2  

3  
4  

5  

0.5 Present PST 14.2221 22.6425 29.8696 32.5766 40.3561 

 Present TST 14.2240 22.6697 29.8837 32.6103 40.4125 

 Present HST 14.2275 22.7138 29.9156 32.6829 40.6236 

 Present EST 14.2400 22.9038 30.0395 32.9716 41.4293 

 Present FST 14.2538 22.7374 29.9785 32.7823 40.4045 

 Asadi et al. [24] FSDTQ 13.7710 21.0370 29.5710 31.2000 38.0730 

 Asadi et al. [24] 3D-FEM 13.7720 21.0400 29.6390 31.4110 38.2660 
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Table 7. First five natural frequencies in two-ply (00/900) laminated cylindrical shells with different R/a values 

(h/a=0.1, a/b=1) (cont.) 

R/a Model Theory 1  
2  

3  
4  

5  

1 Present PST 10.9307 22.3397 24.5762 31.1716 40.3531 

 Present TST 10.9345 22.3691 24.5999 31.2102 40.4138 

 Present HST 10.9390 22.4141 24.6417 31.2855 40.6210 

 Present EST 10.9585 22.6127 24.8177 31.5948 41.2947 

 Present FST 10.9594 22.4171 24.6705 31.3472 40.3429 

 Asadi et al. [24] FSDTQ 10.6660 21.7050 24.0900 30.3680 38.7220 

 Asadi et al. [24] 3D-FEM 10.6860 21.7670 24.1910 30.6140 38.8960 

2 Present PST 9.57321 22.1518 22.6620 30.6846 40.2263 

 Present TST 9.57804 22.1818 22.6901 30.7248 40.2888 

 Present HST 9.58313 22.2267 22.7350 30.8001 40.4933 

 Present EST 9.60642 22.4266 22.9309 31.1130 41.2947 

 Present FST 9.60041 22.2207 22.7412 30.8446 40.1893 

 Asadi et al. [24] FSDTQ 9.45770 21.6760 22.1500 29.9590 38.6080 

 Asadi et al. [24] 3D-FEM 9.48550 21.7430 22.2460 30.1930 38.7450 

 

Example 4: Free Vibration Analysis of Homogenous and Laminated Cylindrical Shells 

    In this example, the present theories are applied for the free vibration analysis of homogenous and laminated cylindrical 

shells. Natural frequencies are presented in Tables 6 through 8. Material properties and non-dimensional form are 

presented in Table 2. Isotropic material properties are similar to example 1. Table 6 shows first natural frequencies in 

isotropic, orthotropic and laminated composite cylindrical shells whereas Tables 7 and 8 represents first five natural 

frequencies of two-ply (00/900) and three-ply (00/900/00) laminated cylindrical shells. Since 3D elasticity solution for 

frequency analysis is not available in the literature, the present results are compared with those presented by Asadi et al. 

[24]. Tables 6 through 8 show that the natural frequencies predicted by the present models are in good agreement with 

those presented by Asadi et al. [24] for all cases. Examination of these Tables reveals that the natural frequencies are 

decreases with increase in R/a values. 

 

Table 8. First five natural frequencies in three-ply (00/900/00) laminated cylindrical shells with different R/a values 

(h/a=0.1, a/b=1) 

R/a Model Theory 1  
2  

3  
4  

5  

0.5 Present PST 15.2534 27.8837 28.6315 34.0363 42.8207 

 Present TST 15.2282 27.8650 28.4831 33.9086 42.7973 

 Present HST 15.2557 27.8850 28.6434 34.0458 42.8216 

 Present EST 15.2417 27.8754 28.7184 34.1171 42.8107 

 Present FST 15.6721 28.2423 31.9990 37.0829 43.4225 

 Asadi et al. [24] FSDTQ 15.2500 17.7890 29.4910 34.7950 34.9130 

 Asadi et al. [24] 3D-FEM 14.8400 17.4680 29.0940 32.4640 33.0460 

1 Present PST 12.9914 21.8328 29.1613 33.2639 34.8957 

 Present TST 12.9541 21.8041 29.0050 33.1243 34.8644 

 Present HST 12.9948 21.8352 29.1734 33.2742 34.8980 

 Present EST 12.9742 21.8213 29.2523 33.3525 34.8878 

 Present FST 13.6064 22.3960 32.7008 35.7787 36.5792 

 Asadi et al. [24] FSDTQ 13.1870 18.5240 30.5640 32.2320 34.5230 

 Asadi et al. [24] 3D-FEM 12.5900 18.0050 29.7320 30.1890 32.0370 

2 Present PST 12.1277 19.4390 29.3036 29.3036 33.0494 

 Present TST 12.0849 19.4049 29.1453 29.1453 32.9065 

 Present HST 12.1316 19.4419 29.3160 29.3160 33.0598 

 Present EST 12.1080 19.4260 29.3960 29.3960 33.1402 

 Present FST 12.8294 20.1085 32.8892 32.8892 36.4397 

 Asadi et al. [24] FSDTQ 12.4430 18.6770 30.8390 31.3230 34.4560 

 Asadi et al. [24] 3D-FEM 11.7690 18.1590 28.6000 30.4710 31.9280 
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CONCLUSION 

In this study, several higher order and classical shell theories are recovered using a generalized displacement model 

for the static and free vibration analysis of laminated composite cylindrical shells on rectangular planform. The 

differential equations of the present generalized displacement model are derived by using the principle of virtual work 

and further solved analytically using the Navier’s solution technique. Transverse shear stresses are recovered from 3D 

equilibrium equations of theory of elasticity. Numerical results obtained using all the present models are compared with 

3D elasticity solution and available literature and are found in good agreement. The numerical results and their 

comparison proved the validity and accuracy of the present generalized displacement model. 
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