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INTRODUCTION 

Heat exchangers have a diverse range of applications in industries such as power plants [1, 2], air conditioning [3], 

chemical engineering [4, 5], aerospace engineering [6, 7], and other scientific applications. In recent times, heat 

exchangers are enforced to become more and more efficient because of the increasing cost of materials and energy [8]. 

Several methods can be adopted to enhance the effectiveness of a heat exchanger. These methods are widely categorized 

into two groups: (i) active methods, and (ii) passive methods [9, 10]. The active methods require external power to create 

vibration, electric or acoustic field, and fluid injection or suction to augment the heat transfer performance. In contrast, 

the passive methods use different types of devices like helical coils, circular discs, fins, twisted tapes, etc. to generate 

swirl flow, increase the fluid flow time in the conduit, increase the surface area, thus enhance the heat transfer rate of a 

heat exchanger in a relatively economic way. These passive methods have become the key attention for many researchers 

over the past decades. Researchers used helical wire coils [11–13], circular discs [14–16], and fins [17–20] as heat transfer 

enhancement tools inside heat exchangers. In a numerical study, Omidi et al. [21] used lobed cross-section helical coils 

to adopt passive heat transfer enhancement. It was observed that the helical coil with the maximum number of lobes 

results in the highest Nusselt number and lowest friction factor, and thus enhances the heat transfer rate. Yadav and Sahu 

[22] investigated the heat transfer from water to air in a double tube heat exchanger where helical surface discs are used 

as turbulators with different pipe diameter to disc diameter ratios. From the experiments, it was observed that the smallest 

diameter ratio gives a higher thermal performance for the heat exchanger. Researchers also investigated the use of 

nanofluids to augment the performance of heat exchangers [23–25]. Using the Al2O3/water nanofluid, Han et al. [26] 

experimentally found that the heat transfer performance increases with an increase in the nanoparticle concentration in 

the nanofluid. Ravi et al. [27] used the Fe3O4/water nanofluid along with twisted tape inserts as a heat transfer 

enhancement device, and found an improved thermal performance from the developed heat exchanger than a basic heat 

exchanger without the twisted tapes.   

Extensive studies have been reported, both experimental and numerical, to assess the effectiveness of using twist tapes 

in a heat exchanger by evaluating the heat transfer augmentation and pressure drop in heat exchangers [28–41]. An 

inserted twisted tape stimulates the fluid flow between the wall and nucleus of the tube, which improves the mixing of 

fluid across the cross-section of the tube [28] and makes the thickness of the boundary layer thinner [34, 35]. These 

phenomena have made the modified heat exchanger advantageous over the basic heat exchanger with enhanced heat 

transfer rate and thermal efficiency as reported in the mentioned research papers. A numerical investigation was 

conducted by Eiamsa-ard et al. [36] using twisted tape inserts with clearance ratios of 0.0 to 0.3 in a circular tube, where 

twisted tape inserts with a lower clearance ratio resulted in a higher heat transfer rate. In this context, Bas and Ozceyhan 

[38] studied the pressure drop and heat transfer rate in a heat exchanger with twisted tapes with low clearance ratios of 

0.0 to 0.03. From this study, it was reported that not only the heat transfer rate is enhanced by the lower clearance ratio 
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of twisted tapes, but the pressure drop also increases consequently, which eventually affects the performance of the heat 

exchanger. Mashoofi et al. [39] used axially perforated twisted tapes and found a higher thermal performance than simple 

twisted tape, for the turbulent fluid flow of Reynolds number ranging from 5000 to 15000. Similarly, Saysroy and Eiamsa-

ard [40] have introduced a multi-channel twisted tape insert as a heat transfer augmentation device in a numerical study. 

The twisted tapes were varied on the number of channels (2 to 8) and twist ratios (2 to 4) for both laminar and turbulent 

flow fields. For the laminar case, twisted tape with two channels and 2.5 twist ratio exhibited better thermal performance, 

and for the turbulent flow case, twisted tape with two channels and the twist ratio of 3 resulted in the most enhanced heat 

transfer rate. Abolarin et al. [41] have experimentally explored the heat transfer and pressure drop characteristics using 

clockwise and counterclockwise twisted tapes in the transition flow region for constant heat flux conditions. Recently, 

Sivakumar et al. [42] have numerically compared the heat transfer for plain, triangular, and circular twisted tape inserts, 

where the circular twisted tape is found to perform best than the other two heat transfer enhancement devices. So far in 

the above-discussed studies, most of the researchers have investigated the heat transfer augmentation due to twisted tape 

inserts in the turbulent flow regime with the maximum Reynolds number limited to near about 20,000. Therefore, more 

analysis with twisted tape inserts is required to understand and manipulate the heat transfer and fluid flow phenomena in 

heat exchangers for higher turbulent flow cases.   

In the light of the above circumstances, the present study emphasizes the experimental and numerical investigation of 

the thermal performance enhancement, the pressure-drop phenomena, and the fluid flow behavior in a double tube heat 

exchanger with twisted tape inserts for turbulent flow ranging from 15,000 to 50,000, which is a bit higher than the 

previously discussed analyses. Moreover, the current study prioritizes to design and fabricate a low-cost double tube heat 

exchanger with optimized heat transfer enhancement. Swirl flow generators such as twisted tapes with lower twist ratios 

are more complex to manufacture as well as costly. In this regard, twisted tapes with twist ratios of 7.5, 6 and 4.5 have 

been considered for assessing their effect on the thermal performance enhancement of the double tube heat exchanger. 

For this, first of all, the experimental study has been conducted with the basic double tube heat exchanger (BHE), and 

with the modified heat exchangers (MHEs) after inserting twisted copper tape inserts with three different twist ratios (7.5, 

6 and 4.5). Subsequently, the experimental conditions of the BHE and MHEs have been simulated numerically. Finally, 

the numerical results are compared with the experimental findings to check the reliability of the developed numerical 

model in predicting the heat transfer augmentation due to twisted tape insertion.    

 

EXPERIMENTAL SETUP  

Shown in Figure 1, is the schematic diagram of the experimental setup that includes a double tube heat exchanger 

with twisted tape inserts. In this setup, both hot and cold stream is water and it is supplied by two 1.5 hp power pumps 

respectively. The flow rate of both hot and cold fluids is controlled by the ball valve, and the flow rate is measured by 

employing volumetric flowmeters. A copper pipe with 1inch external diameter and 11.5 ft (~350 cm) long, is used as the 

tube and a PVC pipe of 2-inch internal diameter is used as the shell whilst the length of the shell is kept as same as the 

tube. There is a total number of eight pen-type thermocouples are mounted on the apparatus to determine the temperatures 

of the hot fluid, cold fluid, and tube wall at different positions along the length of the heat exchanger. The hot fluid is 

heated by a 1 kW portable water heater in a chamber. Twisted tapes made of copper material was used as a turbulator to 

evaluate the thermal performance enhancement in the heat exchanger. Three different twist ratios of 7.5, 6, and 4.5 are 

employed to analyze the thermal effect from the heat exchanger shown in Figure 2. A total number of 13 twisted tapes 

are inserted in the copper tube for each twist ratio. The length, width, and thickness of each tape are 25 cm, 2 cm, and 0.3 

cm, respectively. Two pressure gauges are used to find the pressure drop across the tube, due to the insertion of twisted 

tapes in the tube which interrupts the normal flow of fluid.  

Reynolds numbers ranging from 15000 to 50000 are maintained in terms of fluid flow rate during the experiments. 

First, hot water and cold water are brought to the desired temperature. The temperature of the cold water is generally 

maintained at room temperature. The hot water temperature is about 30˚C more than cold water. The heater connection 

is turned off before starting the procedure. Ball valves are regulated as per the desired flowrate. The flowrate for the cold-

water circuit has always been maintained at a fixed flowrate. Two pumps are started at the same time. Data is taken from 

all eight (8) thermocouples. Two of them for the cold-water inlet and outlet temperature, two of them for the hot-water 

inlet and outlet temperature, and the other four thermocouples for the wall temperature of the inner copper tube at various 

positions as shown in Figure 1. In addition, the pressure drop in the tube has been obtained from the two pressure gauges. 

The setup has been in operation for 30 minutes for every data collection session, and data are collected at every single 

minute interval. The experimental procedures are all the same for the basic and modified HEs. Besides, uncertainty 

analysis is conducted with 95% confidence in data acquisition using the measuring instruments. The maximum errors in 

obtained data of the measure parameters using the instruments are shown in Table 1.  
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Table 1. Uncertainties in obtained data 

Measured parameter Instrument  Maximum error (%) 

Temperature (°C) Thermocouple  ± 1  

Pressure (Pa ) Pressure gage  ± 0.25  

Flow rate (m3/hr) Volumetric flow meter  ± 0.5  

Length (mm) Meter Scale ± 0. 5  

 

 

 
Figure 1. Schematic diagram of the experimental setup 

 

 

 

Figure 2. Different twist ratios in copper tapes [y/w = 4.5, 6, and 7.5 (from top to bottom)]. (All the twisted tapes are 

not presented to their actual scales) 

 

DATA ANALYSIS 
 

In this present study, all calculations have been done for the basic heat exchanger and the modified heat exchanger 

with different twisted ratios. For the steady-state condition, the convection heat transfer rate (𝑄𝑐𝑜𝑛𝑣) is considered as the 

heat loss from the hot fluid (𝑄𝐻) in a tube and can be expressed as follows:   

 

𝑄𝐻 = 𝑄𝑐𝑜𝑛𝑣 (1) 

  

where, 𝑄𝐻 = 𝑚𝐶𝑝,𝐻(𝑇𝑜 − 𝑇𝑖) (2) 
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with 𝑚 as the mass flow rate of the hot fluid, 𝐶𝑝,𝐻 as the heat capacity of water, and 𝑇𝑖  and 𝑇𝑜, respectively, as the inlet 

and outlet temperature of the hot fluid. 

𝑄𝑐𝑜𝑛𝑣 from the copper tube can be determined as:  

 

𝑄𝑐𝑜𝑛𝑣 = ℎ𝐴(𝑇𝑤 − 𝑇𝑏) (3) 

 

with 𝐴 as the surface area of the inner copper tube. The bulk fluid temperature (𝑇𝑏) is obtained by:  

 

𝑇𝑏 =
𝑇𝑜 + 𝑇𝑖

2
 (4) 

 

and, the average wall temperature (𝑇𝑤),  

𝑇𝑤 =
∑ 𝑡𝑤
4

 (5) 

 

with tw as the local wall temperature on the hot tube. Tw is calculated from the four tw values obtained from the 

thermocouples. 

The heat transfer coefficient (h) is calculated as:  

 

ℎ =
𝑚𝐶𝑝,𝐻(𝑇𝑜 − 𝑇𝑖) 

𝐴(𝑇𝑤 − 𝑇𝑏)
 (6) 

 

The heat transfer can be estimated in terms of Nusselt Number (𝑁𝑢) as [43]:  

 

𝑁𝑢 =
ℎ𝐷

𝑘
 (7) 

 

The friction factor (f) is determined by [43]:  

 

𝑓 =
∆𝑃

{(
𝐿
𝐷
) (

𝜌𝑉2

2
)}

 
(8) 

 

where ∆𝑃 denotes the pressure drop across the hot tube. A summary of the obtained experimental data is shown in Table 

2.  

 

Table 2. Experimental data summary 
 

Reynolds 

Number, 

Re 

 Nusselt Number, Nu  Friction Factor,  f 

 BHE 
MHE y/w 

= 7.5 

MHE y/w 

= 6.0 

MHE 

y/w = 4.5 
 BHE 

MHE y/w 

= 7.5 

MHE y/w 

= 6 

MHE y/w 

= 4.5 

50000  56.23 60.14 64.76 80.11  0.022 0.042 0.059 0.070 

42988  50.50 54.35 59.57 75.20  0.027 0.049 0.066 0.080 

26512  44.09 49.18 52.59 62.40  0.039 0.073 0.092 0.117 

16963  39.63 42.07 45.19 51.93  0.047 0.091 0.137 0.168 

 

COMPUTATIONAL MODEL  

Physical Model  

The 3D numerical model of the test section (see Figure 3.) was developed by using ANSYS Fluent (Version 18.1 

Academic) to predict the flow behavior, pressure drop, and heat transfer performance of the heat exchanger, and to 

compare the computational findings with the experimental results. Two circular fluid domains, a circular fluid domain 

for the hot fluid and an annular fluid domain for the cold fluid, were created along the tube, and the twisted tape in this 

model. After that, tetrahedron meshing was applied with the default mesh tool for the hot fluid domain. The cold fluid 

domain, the tube, and the twisted tapes were firmly meshed using the mesh control tool that includes the edge sizing, and 

the mapped face meshing (shown in Figure 4). The outer tube was not created as the wall of the cold fluid domain was 

retained adiabatic.   
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Boundary Condition  

The mass flow inlet boundary condition was implemented at the inlet of both hot and cold fluids. Additionally, the 

turbulent intensity at the inlet was considered 5% for both hot and cold fluid, and the hydraulic diameter for the hot and 

cold fluid was 0.0254 mm and 0.0338 mm, respectively. Besides, the temperature difference between the inlets of the hot 

and cold fluid was kept identical to the experimental conditions. At the outlet, the pressure outlet condition was applied 

with zero-gauge pressure for both fluids. Afterwards, the stationary inner tube wall was coupled with both fluids via 

system coupling, and the outer tube wall was considered as an adiabatic wall. Subsequently, the wall between the twisted 

tape inserts and the hot fluid domain was also assumed adiabatic.  

 

 
 

 

Mathematical Model  
 

To predict the flow characteristic and the heat transfer phenomena in the double tube heat exchanger with twisted tape 

inserts in its inner tube, some reasonable assumptions were made to simplify the following governing equations: the 

continuity equation, the momentum equation, and the equation of energy conservation. The assumptions are as follows: 

(1) steady, incompressible, and turbulent flow, (2) negligible thermal radiation, natural convection, and body forces, and 

(3) temperature-independent thermo-physical fluid properties. Based on these assumptions, the continuity, the 

momentum, and the energy equations can be expressed as follows:  

 

Continuity equation:  

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0 (9) 

 

Momentum equations 

x-momentum:  

 

(𝑢
𝜕𝑢̅

𝜕𝑥
+ 𝑣

𝜕𝑢̅

𝜕𝑦
+ 𝑤

𝜕𝑢̅

𝜕𝑧
) + (

𝜕

𝜕𝑥
(𝑢′2) +

𝜕

𝜕𝑦
(𝑢′𝑣′) +

𝜕

𝜕𝑧
(𝑢′𝑤′)) = −

1

𝜌
 
𝜕𝑝

𝜕𝑥
+ 𝜗∇2𝑢 (10.1) 

  

  

  

 

 

Figure 3. 3D model of the test section: (a) isometric view and (b) cross-sectional view 

 

 

Figure 4. Illustration of the developed grid system: (a) cross-section, (b) global 3-D model and (c) side view 
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y-momentum:  

 

(𝑢
𝜕𝑣̅

𝜕𝑥
+ 𝑣

𝜕𝑣̅

𝜕𝑦
+ 𝑤

𝜕𝑣̅

𝜕𝑧
) + (

𝜕

𝜕𝑥
(𝑣′2) +

𝜕

𝜕𝑦
(𝑢′𝑣′) +

𝜕

𝜕𝑧
(𝑣′𝑤′)) = −

1

𝜌
 
𝜕𝑝

𝜕𝑦
+ 𝜗∇2𝑣  (10.2) 

 

z-momentum:  

 

(𝑢
𝜕𝑤̅

𝜕𝑥
+ 𝑣

𝜕𝑤̅

𝜕𝑦
+ 𝑤

𝜕𝑤̅

𝜕𝑧
) + (

𝜕

𝜕𝑥
(𝑤′2) +

𝜕

𝜕𝑦
(𝑢′𝑤′) +

𝜕

𝜕𝑧
(𝑣′𝑤′)) = −

1

𝜌
 
𝜕𝑝

𝜕𝑧
+ 𝜗∇2𝑤𝜌

𝑑𝑣⃗ 

𝑑𝑡
= 𝛻𝜎                                                                                                                                                                     (10.3) 

 

Energy equation:  

 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
+ 𝑤

𝜕𝑇

𝜕𝑧
= 𝛼∇2𝑇 − (

𝜕

𝜕𝑥
(𝑢′𝑇′) +

𝜕

𝜕𝑦
(𝑣′𝑇′) +

𝜕

𝜕𝑧
(𝑤′𝑇′)) (11) 

 

The Renormalization group (RNG) k-ε turbulence model was implemented for the turbulent flow model, which has 

shown a quite good agreement with experimental results [34, 36, 40, 44]. The k and ε equations are:  

 

𝜕

𝜕𝑥𝑖
(𝜌𝑘𝑢𝑖) =

𝜕

𝜕𝑥𝑗
(𝛼𝑘𝜇𝑒𝑓𝑓

𝜕𝑘

𝜕𝑥𝑗
) + 𝐺𝑘 − 𝜌𝜀 + 𝑆𝑘  (12) 

  

𝜕

𝜕𝑥𝑖

(𝜌𝜀𝑢𝑖) =
𝜕

𝜕𝑥𝑗

(𝛼𝜀𝜇𝑒𝑓𝑓

𝜕𝜀

𝜕𝑥𝑗

) + 𝐶1𝜀𝐺𝑘 − 𝐶2𝜀𝜌
𝜀2

𝑘
− 𝑅𝜀 + 𝑆𝜀 (13) 

 

where, 𝜌𝜀 is the destruction rate, and 𝐺𝑘 is the rate of turbulent kinetic energy generation which is determined as:  

 

𝐺𝑘 = −𝜌 𝑢′𝑖𝑢′𝑗
𝜕𝑢𝑗

𝜕𝑥𝑖

 (14) 

 

Near a tube wall, the boundary values were defined with the enhanced wall treatment method for the turbulent 

quantities. The constants 𝐶1𝜀 = 1.42 and 𝐶2𝜀 = 1.68 were employed in the present turbulent transport model.  

The semi-implicit pressure linked equation method (SIMPLE) was adopted as the pressure-velocity coupling method 

for this numerical study. The first order discretization criteria for turbulence kinetic energy and dissipation and the second-

order discretization were defined for the continuity, momentum, and energy. For all the residuals, a convergence criterion 

was set to 10-6.  

 

VALIDATION OF THE STUDY  

In this study, the experimentally and numerically obtained Nusselt number friction factor values for the basic heat 

exchanger (BHE) are compared with the Dittus-Boelter correlation [43] and Blasius Equation [43] respectively,  

 
 

Nu = 0.023 Re 0.8 Pr 0.3 (15) 

  

f = 0.316 Re -0.25 (16) 
 

 

Shown in Figure 5 is the variation of Nusselt number as a function of Reynolds number for the present study 

(experimental and numerical), and that is for the Dittus-Boelter empirical correlation. For each case, with the increase of 

fluid flow velocity (characterized by Reynolds number), the heat transfer (characterized by Nusselt number) also 

increases. In addition, the experimental and numerical results display a good agreement with the Dittus-Boelter 

correlation. For all cases, the results from the numerical analysis are higher than the experimental findings because there 

were always some inevitable minor heat losses through insulations during experiments, while the numerical solutions 

assumed perfect adiabatic boundary conditions for insulated walls. Figure 6 shows the variation of friction factor with 

respect to Reynolds number for the conducted experimental and numerical investigations along with Blasius equation for 

friction factor. The maximum deviation of the friction factor for the experimental and numerical study is about 4% and 

9%, respectively, from that for the Blasius equation.  
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Grid Sensitivity Test 

To verify the grid independence of the numerical model a grid sensitivity test is conducted in the present investigation. 

The grid dependency test result for the basic heat exchanger (BHE) is shown in Figure 7; where for the 223500 elements, 

Nusselt number has been found about 40. Considering, the converging time and the precession of the solution, the number 

of the element for BHE is kept at 223500. Furthermore, in the case of the modified heat exchangers (MHEs), 241000, 

260000 and 288000 elements are selected for twist ratios 7.5, 6 and 4.5, respectively.      

Re

10000 20000 30000 40000 50000 60000

N
u

30

40

50

60

70

Experimental - BHE

Numerical- BHE

Dittus - Boelter corelation

 
Figure 5. Variation of Nusselt number (Nu) with Reynolds number (Re) for the basic heat exchanger (BHE) 
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10000 20000 30000 40000 50000 60000

f

0.01

0.02

0.03

0.04

0.05

Experimental - BHE 

Numerical - BHE  

Blasius Equation 

 
Figure 6. Variation of friction factor (f) with Reynolds number (Re) for the basic heat exchanger (BHE)  
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Figure 7. Grid dependency test for basic heat exchanger (BHE)  

 

RESULTS AND DISCUSSION  

Flow Characteristics 

The insertion of twisted tapes inside the inner copper tube causes a smaller annular flow area for the hot fluid than in 

the basic heat exchanger. With the decrease of flow area, the flow velocity increases. Twisted tape generates secondary 

flow inside the copper tube along with the interruption of normal fluid flow. Turbulence is caused by higher flow velocity 

and twisted tapes, accompanying secondary fluid flow causes an increase in the heat transfer. Figure 8. shows the 

streamlines for the basic heat exchanger and the modified heat exchanger with twist ratios of 7.5, 6, and 4.5, respectively. 

This figure illustrates the scenario of the swirl flow inside the inner copper tube of the heat exchanger. For the basic heat 

exchanger, there is no secondary flow that means no swirling of the hot fluid. However, in the cases of the modified heat 

exchanger, with decreasing twist ratio the swirling of the hot fluid increased. Due to higher swirling in the modified heat 

exchanger with a twist ratio of 4.5, the hot fluid is contained inside the copper tube a bit longer time than the other heat 

exchangers, resulting in increased heat transfer. The velocity contours of the basic heat exchanger (BHE) and modified 

heat exchangers (MHEs) are demonstrated in Figure 9. From this figure, it is understandable that the velocity of the hot 

fluid increased due to the insertion of twisted tapes as these twisted tape inserts decrease the flow area. For the case of 

the MHE with the twist ratio of 4.5, a higher velocity region is obtained compared to other twist ratios. On the other hand, 

the velocity contour of the cold fluid in the annular tube remains the same for all the heat exchangers. The twisted tapes 

with a lower twist ratio induce higher turbulent kinetic energy (TKE) in the fluid flow through the tube as shown in Figure 

10, which eventually generate higher swirling in the fluid flow inside the tube. A lower twist ratio in a twisted tape insert 

means the number of turns in the insert is higher with a smaller pitch length. Therefore, the twisted tape inserts with a 

lower twist ratio generate more turbulence in fluid flow than that with the twisted tape with higher twist ratios. From 

Figure 10, the lowest turbulent kinetic energy is found in the BHE (the heat exchanger without twisted tape), while the 

maximum turbulent kinetic energy is found in the MHE with twisted tapes of 4.5 twist ratio. It is evident that the twist 

ratio of twisted tape inserts has a significant impact on generating turbulence in the flow field which in the end succors 

to enhance the heat transfer.   
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Figure 8. Streamlines of hot fluid domain inside the copper tube with twisted tape 

 

 

 
Figure 9. Velocity field of HEs: (a) Basic HE, (b) Modified HE [y/w = 7.5], (c) Modified HE [y/w = 6] and  

(d) Modified HE [y/w = 4.5] 

 

 

 
Figure 10. Turbulent kinetic energy contours of HEs: (a) Basic HE, (b) Modified HE [y/w = 7.5], (c) Modified HE 

 [y/w = 6] and (d) Modified HE [y/w = 4.5] 
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Heat Transfer Characteristics 

The variation of Nusselt number (𝑁𝑢) as a function of Reynolds number (𝑅𝑒) for modified HEs with three different 

twist ratios along with basic HE is shown in Figure 11. The Nu is higher in the MHE with a twist ratio of 4.5 for both 

experimental and numerical study, than the BHE, and the other MHEs for different mass flow rates of hot water. - The 

insertion of twisted tape increases the turbulent intensity of the flow through the tube (as depicted in Figure 10) and 

interrupts the thermal boundary layer that results in a better mixture of the fluid inside the tube, which increases the 

convective heat transfer (characterized by Nu). It also shows the linear variation of Nu along with Re for both BHE and 

MHEs. Besides, the developed numerical model gives a reliable prediction of the experimental scenario for all the cases 

as revealed in Figure 11.  

Figure 12. displays the variation of the Nusselt number ratio (Nu/Nuo; the ratio of MHE’s Nusselt number (Nu) to that 

of BHE (Nuo)) with Reynolds number for all the MHEs. This figure demonstrates a good agreement of the numerical 

results with the experimental ones and an enhanced heat transfer rate in the modified HEs. In comparison with the BHE, 

the augmentation of heat transfer in the MHEs with twist ratios of 7.5, 6, and 4.5 are about 18%, 27%, and 56%, 

respectively. While the results for the twist ratios of 7.5 and 6 are relatively closer, a significant increase is observed for 

the case with a twist ratio of 4.5. It is to be mentioned that the tape thickness (w) was constant for all cases and the pitch 

length (y) of the tapes were varied to achieve different twist ratios. A change in twist ratio from 7.5 to 6 led to a 20% 

decrease in the pitch length, while a subsequent change in twist ratio from 6 to 4.5 led to a 25% decrease in the pitch 

length. Therefore, the effect of a change in twist ratio from 6 to 4.5 led to a more increased number of turns in the tapes 

and generate a more complex flow pattern inside the tube. This complex flow pattern includes an induced secondary flow 

as a swirl flow in the fluid mainstream, and owing to this complex flow pattern, the flow resistance and heat transfer are 

both improved significantly with a decrease in the twist ratio. The twisted tape inserts disturb the thermal boundary layer 

and enhance turbulent intensity, which results in higher convective heat transfer in modified HEs than the Basic HE. 

Shown in Figure 13 are the temperature profiles at the outlet of the BHE and MHEs for a Reynolds number of 35000 for 

the hot fluid. As illustrated in this figure, the temperature distribution at the outlet of the MHEs is more uniform than the 

BHE because of the insertion of twisted tape inserts. This eventually reduced the circumferential temperature gradient. 

The boundary layer disruption and the mixing of the hot fluid in the inner tube as a result of the generated swirl flow 

enhances both the heat transfer and the circumferential temperature differences. Due to the higher heat transfer rate, the 

MHE with a twist ratio of 4.5 possesses a more uniform temperature contour at the outlet of hot fluid. Conversely, the 

BHE has a nonuniform temperature field at the outlet of hot fluid.   
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Figure 11. Variation of Nu as a function of Re for the BHE and MHEs  
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Figure 12. Variation of Nusselt number ratio (Nu/Nuo) as a function of Reynolds number (Re) for the modified heat 

exchangers (MHEs)  

 

 

 

Figure 13. Temperature profile at the outlet of heat exchangers at Re = 35000  
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Figure 14. Variation of friction factor with Re for the BHE and MHEs 
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Figure 15. Variation of friction factor ratio with Re for the BHE and MHEs 

 

Friction Factor Characteristics 

Figure 14. shows the influence of the twist ratio of the twisted tape inserts on the friction factor. Here, the modified 

heat exchanger with a twist ratio of 4.5 results in the higher friction factor for both numerical and experimental 

investigations. From this figure, it is understandable that at the low Reynolds number friction factor is higher and on the 

other hand friction factor reduces with an increase of Reynolds number. This trend is identical for all the heat exchangers 

in both experimental and simulated investigations. Figure 15. reveals the variation of the friction factor ratio (f/fo), the 

ratio of the MHE’s friction factor (f) to that of the BHE (fo), with respect to Reynolds number. In comparison to the basic 

HE, the maximum amount of friction factor increases by about 190%, 290%, and 350% for the modified HEs with the 

twist ratios of 7.5, 6, and 4.5, respectively. Shown in Figure 16 are the pressure contours for all the heat exchangers which 

narrate that the maximum pressure drop occurs at the modified HE with a twist ratio of 4.5 and the minimum pressure 

drop occurs in the basic HE. Additionally, it is experimentally observed that the pressure drop inside a heat exchanger 

increases with the decrease in the twist ratio of the inserts. Since the fluid is forced to flow a longer path along with the 

twisted tape profile in MHEs compared to BHEs, the pressure drops are higher at the MHEs. For the twisted tapes with 

the lower twist ratios, the path is longer than the heat exchangers with twisted tapes with higher twist ratios. Thus, the 

friction factor is significantly high in the MHEs comparatively with the BHEs, in consequence of the helical path of the 

fluid which increases the pressure drop for certain a Reynolds number.   

 

 
Figure 16. Pressure contour of HEs: (a) Basic HE, (b) Modified HE [y/w = 7.5], (c) Modified HE [y/w = 6],  

(d) Modified HE [y/w = 4.5] 
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Thermal Performance Factor  

The significance of inserting twisted tape inserts and their twist ratios can be evaluated by a factor thermal 

performance factor (η) for the modified heat exchangers [45]. From the above discussions, it becomes understandable 

that the smaller twist ratio (y/w) of an insert induces higher heat transfer performance and higher pressure drop which 

requires more pumping power. Both the heat transfer augmentation and pumping pressure are considered in calculating 

η. For the same pumping power for heat exchangers (BHE or MHEs), η yields [46]  

 

𝜂 =

𝑁𝑢
𝑁𝑢𝑜

(
𝑓
𝑓𝑜

)
1
3

 (17) 

 

Figure 17 illustrates the variation of the thermal performance factor (η) as a function of the Reynolds number. For all 

modified heat exchangers, η is found above the unity in both the experimental and numerical investigations. The 

maximum range of η, i.e., η = 1.197-1.237, is achieved for the modified HE with the tape inserts with a twist ratio of 4.5. 

Conversely, the minimum range of η, i.e., η = 1.0788-1.13, is identified for the modified HE with the tape inserts with a 

twist ratio (y/w) of 7.5. So, this figure shows that the main objective of this study is achieved and the insertion of twisted 

tape inserts in heat exchangers is a promising heat transfer augmentation technique.    
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Figure 17. Variation of thermal performance factor as a function of Re  

 

CONCLUSION 
 

Experimental investigation of the present study aims at understanding the effect of variable twist ratios (y/w) of twisted 

tape on different performance indicators in double tube heat exchangers (HEs) with or without twisted tape inserts by 

using a variable flow of hot fluid and a constant flow of cold fluid in a closed circuit. Besides, a numerical analysis has 

been performed by the Renormalization group (RNG) k-ε turbulence model to visualize the performance enhancement in 

the heat exchangers with the aid of streamline, velocity contour, temperature contour, and pressure contour. The 

computations carried out in the developed numerical model show a good agreement with the experimental results. 

According to the analysis, several conclusions can be listed as follows:  

1) The insertion of twisted tapes in a double tube heat exchanger significantly augments the heat transfer 

performance. The rate of heat transfer augmentation is ~56% for HE with TR of 4.5, ~27% for HE with TR of 

6.0, and ~18% for HE with TR of 7.5 in the modified heat exchangers (MHEs) compared to that of the basic 

heat exchanger (BHE).  

2) The Nusselt number is found to be increased in the MHEs due to the augmentation in the heat transfer through 

the inner copper tube wall.  

3) The friction factor increases with the increase of the twist density in the twisted tape for MHEs as it narrows the 

flow field inside the host tube.  
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4) The evaluation of the thermal performance factor corroborates the findings of the present study, i.e., the insertion 

of twisted tape can enhance the heat transfer in heat exchangers. Also, the thermal performance factor increases 

with a decrease in the twist ratio of the inserted tapes.   

5) The developed numerical model can be exploited to reliably predict the heat transfer and fluid flow behavior in 

double tube heat exchangers with or without twisted tape inserts.  
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