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INTRODUCTION 

  More and more modern vehicles are equipped with advanced driver assistance systems (ADAS) [1]. ADAS is 

supporting many vehicle functions, such as adaptive cruise control, automatic parking, collision warning, and automatic 

driving mode [2]. In addition to driver comfort and assistance, these systems can also be used to prevent vehicles from 

colliding with other objects or other vehicles, thereby improving safety [3, 4]. For example, when ADAS gives a proximity 

warning, and the driver fails to deal with it immediately, the system will force the vehicle to brake urgently, thereby 

avoiding a collision [5]. However, these systems are limited to the vehicle's sensors and capability [6]. It requires 

coordination between many sensors and cameras to complete the assistance work of the vehicle. The automatic driving 

function will control the vehicle automatically to avoid car accidents happen when the vehicle lost control and starts to 

deviate from the lane, not by the driver's control [7]. Usually,  most of the vehicles to have an understeer (US) or oversteer 

(OS) phenomenon occur was due to the driver's wrong operation US phenomenon is during the vehicle cornering [7, 8]. 

The steering angle cannot be achieved to the suitable cornering steering angle, also means the yaw moment is smaller 

than the actual needs [9]. OS is when the car steering angle more than the driver commanded, also means the value of the 

yaw moment is more than actual cornering needs [10]. There are many traffic accidents happen when the vehicles are lost 

control by the driver operation error [11]. To solve the problem of the vehicle are US and OS, by using X-by-wire 

technology in this research, the model vehicle is transformed into an electric vehicle model that can realize 4WDIS [12]. 

this is in order to increase the degree of freedom of the vehicle, thereby developing a more efficient ADAS [13]. For the 

4WDIS, the opposite steering mode means the rear wheel has a different direction from the front wheel. The parallel 

steering mode means the rear and front-wheel turning in the same direction. 

Generally, the four-wheel drive (4WD) refers to the four wheels of a modern vehicle that can provide power to the 

movement of the vehicle, but different types of vehicles provide power in different ways [14]. The way that the motor 

vehicle provides the power is that the engine transmits power to the wheels through the transmission shaft, and the electric 

vehicle (EV) is powered by the vehicle power supply driving the motor, and the motor powers the wheels through the 

transmission shaft [15]. The in-wheel motor also called a wheel hub motor, is an electric motor that is mounted in a wheel 

hub and can be direct drives it. In-wheel motor is usually used on EVs [16, 17]. This type of motor cuts mechanical losses, 

which are inherent in every component between the engine and wheel, and makes the car run more quietly. It also cuts 

weight which saves energy for the vehicle. All the wheels of EVs equipped with in-wheel motors can be controlled 

independently. It will be more able to achieve four-wheel drive independent steering (4WDIS) [18]. EVs are also a type 

of new energy vehicle [19], so EVs were selected for the simulation vehicle type in this paper.  

The Equation of motion (EOM) has two main descriptions of motion: dynamics and kinematics [20]. This paper uses 

dynamic equations of motion (DEOM) to simulate the vehicle. Due to there are many assumptions for the linear equation, 

even it is easier to calculate manually but the calculation results often deviate from the real results. Because of this study 
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uses MATLAB Simulink software to do the calculations in order to calculate the results more accurately, this paper uses 

nonlinear DEOM for simulation.  

In this study, the numerical simulation of the linear DEOM with a 4WDIS EV was performed There are eight different 

speed values was set by used in this study which are 10 km/h, 20 km/h, 30 km/h, 40 km/h, 50 km/h, 60 km/h, 70 km/h 

and 80 km/h. The simulation time range setting is 100s for each speed. For the steering angle, it starts with zero degrees 

and simulating with every single angle. The rules of the steering angle, positive means wheel turn left, negative means 

the wheel turn right. For the simulation, start with two-wheel steering (2WS) to find the stability velocity. Based on the 

results shown, the vehicle is oversteering when the vehicle speed rich to 50 km/h. So, the speed lower than 50 m/h use 

opposite steering mode, the speed greater or equal to 50km/h use parallel steering mode.  

 

METHODOLOGY 

Vehicle Model 

Figure 1 illustrated the Malaysian car brand-Proton, a Segment B type research vehicle from the University of 

Malaysia Pahang under the Automotive Engineering Center. The car is a sedan type with a 1.6-liter engine capacity and 

a manual transmission. This test car was used in the research to provide the specification for the numerical simulation. 

All the basic specifications of the simulation model have been derived from this vehicle.  

 

 
Figure 1. Testing vehicle of Universiti Malaysia Pahang 

 

Vehicle Dynamics Equation 

The key emphasis of vehicle dynamics analysis is on how vehicles react to driver feedback on a specific route. The 

dynamic equation of motion is derived from the application of Newton's law within the inertial frame of reference. For 

dynamic equation, longitudinal velocity, lateral velocity, and yaw rotational velocity were used in this paper [7]. In order 

to make the simulation result more realistic, the equation adopts a nonlinear equation, and the equations are listed below.  

 

𝑚 (
𝑑𝑢

𝑑𝑡
− 𝑣𝛾) = (𝑋𝐹𝑅 + 𝑋𝐹𝐿) 𝑐𝑜𝑠 𝜃𝐹 + ( 𝑋𝑅𝑅 + 𝑋𝑅𝐿) 𝑐𝑜𝑠 𝜃𝑅 − (𝑌𝐹𝑅 + 𝑌𝐹𝐿) 𝑠𝑖𝑛 𝜃𝐹 − (𝑌𝑅𝑅 + 𝑌𝑅𝐿) 𝑠𝑖𝑛 𝜃𝑅 

 

(1) 

  

𝑚 (
𝑑𝑣

𝑑𝑡
+ 𝑢𝛾) = (𝑋𝐹𝑅 + 𝑋𝐹𝐿) 𝑠𝑖𝑛 𝜃𝐹 + ( 𝑋𝑅𝑅 + 𝑋𝑅𝐿) 𝑠𝑖𝑛 𝜃𝑅 + (𝑌𝐹𝑅 + 𝑌𝐹𝐿) 𝑐𝑜𝑠 𝜃𝐹 + (𝑌𝑅𝑅 + 𝑌𝑅𝐿) 𝑐𝑜𝑠 𝜃𝑅 

 

(2) 

  

𝐼
𝑑𝛾

𝑑𝑡
= 𝑙𝐹[(𝑋𝐹𝑅 + 𝑋𝐹𝐿) 𝑠𝑖𝑛 𝜃𝐹 + (𝑌𝐹𝑅 + 𝑌𝐹𝐿)𝑐𝑜𝑠𝜃𝐹] + 𝑙𝑅[(𝑋𝑅𝑅 + 𝑋𝑅𝐿)𝑠𝑖𝑛𝜃𝑅 + (𝑌𝑅𝑅 + 𝑌𝑅𝐿)𝑐𝑜𝑠𝜃𝑅]

+
𝑑𝐹

2
[(𝑋𝐹𝑅 + 𝑋𝐹𝐿) 𝑐𝑜𝑠 𝜃𝑅 + (𝑌𝐹𝑅 + 𝑌𝐹𝐿) 𝑠𝑖𝑛 𝜃𝐹]

+
𝑑𝑅

2
[(𝑋𝑅𝑅 + 𝑋𝑅𝐿) 𝑐𝑜𝑠 𝜃𝑅 + (𝑌𝑅𝑅 + 𝑌𝑅𝐿) 𝑠𝑖𝑛 𝜃𝑅] 

 

(3) 
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Tire Characteristics 

In this research, the wheel is an important factor because it will affect the movement of the vehicle. Furthermore, 

during the simulation process, the slip ratio, the side-slip angle of the tire, and the weight distribution are all taken into 

consideration when measuring the friction force and the side lateral force. The tire model was based on the brushless tire 

model and it's also a nonlinear model. The deformation of the rubber tire tread is also used to derive these non-linear 

equations shown below. 

 

When ξs > 0, then the equations of longitudinal force and lateral force can be written as: 

 

𝐹𝑥 = −𝐾𝑠𝑠𝜉𝑠
2 − 6𝜇𝐹𝑧 𝑐𝑜𝑠 𝜃 (

1

6
−

1

2
𝜉𝑠

2 +
1

3
𝜉𝑠

3) (4) 

  

𝐹𝑦 = −𝐾𝛽(1 + 𝑠) 𝑡𝑎𝑛 𝛽 𝜉𝑠
2 − 6𝜇𝐹𝑧 𝑠𝑖𝑛 𝜃 (

1

6
−

1

2
𝜉𝑠

2 +
1

3
𝜉𝑠

3) (5) 

 

And when ξs ≤ 0, then 

𝐹𝑥 = −𝜇𝐹𝑧 cos 𝜃 (6) 

  

𝐹𝑦 = − 𝜇𝐹𝑧 sin 𝜃 (7) 

Where： 

 

tan 𝜃 =
𝐾𝛽 tan 𝛽 (1 + 𝑠)

𝐾𝑠𝑠
 cos 𝜃 =

𝑠

𝜆
 

  

𝑠𝑖𝑛 𝜃 =
𝐾𝛽 𝑡𝑎𝑛 𝛽 (1 + 𝑠)

𝐾𝑠𝜆
 

 

 

During the simulation, the equation of the point at which the contact surface changes from the adhesive region to the 

slip region is identified as follows: 

 

𝜉𝑠 = 1 −
𝐾𝑠

3𝜇𝐹𝑧

𝜆 (8) 

Where： 

𝐾𝑠 =
𝑏𝑙2

2
𝐾𝑥  𝐾𝛽 =

𝑏𝑙2

2
𝐾𝑦 

  

λ = √𝑠2 + (
𝐾𝛽

𝐾𝑠

)
2

(1 + 𝑠)2 𝑡𝑎𝑛2 𝛽 

 

 

The side-slip angle equation for each tire is given as below: 

 

𝛽𝐹𝐿 = 𝑡𝑎𝑛−1 (
𝑣 + 𝑙𝐹𝛾

𝑢 + 𝑑𝐹
𝛾
2

) − 𝜃𝐹 

 

, 𝛽𝑅𝐿 = 𝑡𝑎𝑛−1 (
𝑣 − 𝑙𝑅𝛾

𝑢 + 𝑑𝑅
𝛾
2

) − 𝜃𝑅 (9) 

    

𝛽𝐹𝑅 = 𝑡𝑎𝑛−1 (
𝑣 + 𝑙𝐹𝛾

𝑢 − 𝑑𝐹
𝛾
2

) − 𝜃𝐹 

 

, 𝛽𝑅𝑅 = 𝑡𝑎𝑛−1 (
𝑣 − 𝑙𝑅𝛾

𝑢 − 𝑑𝑅
𝛾
2

) − 𝜃𝑅 

 

 

Tire slip ratio s is used to calculate and express the slipping behavior of the vehicle wheel. The equation is shown 

below: 

𝑠 =
𝑢 − 𝑟𝜔

𝑟𝜔
 (10) 

 

The coefficient of tire friction µ can be approximated by the following equation:  

 

µ = −1.10𝑘 ×  (𝑒35𝜌 − 𝑒0.35𝜌) (11) 
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Passive Control System 

In this study, passive control is used to observe the influence of the rear wheels on the direction of the vehicle after 

the vehicle has skidded. Tire rotational speed ω is one of the variable and represents the different rated speeds of the 

vehicle. This vehicle's velocity is determined by the constant input of the tire rotational speed. As the vehicle reaches a 

constant speed, the front wheel steering angle θF is adjusted to rotate at a constant speed to the defined angle (to allow 

the observation of the influence of different angles of the rear wheels on the vehicle state, the defined angle is set to 10 

degrees, θF=10°). There is a various method to initiate the rear steer angle. In this research, the rear steer angle is 

proportional to the front steer angle. The gain of the proportionality is the objective which will be studied in the research.  

 

 
Figure 2. The front-wheel steering angle input against time 

 

The Figure 2 is the start steering time of the steering wheel. Starting time was determined based on the time after the 

vehicle has achieved a constant speed. It can be seen from the Figure 2 that as the value of the required speed increases, 

the time for the vehicle to reach a constant speed also increases. Calculating the time when the steering wheel starts to 

turn is to reduce the error, The yaw value will be affected when the vehicle starts to turn before reaching a constant speed 

and the final yaw value will be affect too.  

 

Simulation Producdures 

This research was executed by using the software of MATLAB Simulink to do the simulation [20]. Firstly, the 

modeling is done in the software that includes the vehicle’s specifications and parameters. Then, the simulation is divided 

into two stages, which is the first stage is the 2WS steady-state cornering simulation, and the second stage is the 4WDIS 

steady-state cornering simulation. In both simulations, the front-wheel steering angle of the vehicle was fixed θF=10°. 

However, in the second stage simulation, the angle of the rear wheel is set as a dependent variable regulated by the value 

of k. The k value is an actual independent variable that is determined according to the effects of the two-wheel steering 

simulation. 

 

Steady-state Cornering with Two-Wheel Steering 

For the simulation of the two-wheel steering, the k value must be set as zero and the tire rotational velocity must be 

set as the input variable. The vehicle can be driven with two-wheel steering when the rear-wheel steering angle is zero. 

After the parameter has been set, simulate with ΔF=0 ° in order to know the time it takes for the vehicle’s speed reach a 

constant value. After the steering time has been calculated, then running the simulation with the ΔF=10 ° and start time 

for steering which following Table 1.  

 

Table 1. Tire rotational speed with the front wheel steering initiate timing 

Item 

 

No 

Target Speed Tire rotational speed （ω） Theta F Start time for steering 

km/h m/s rad/s degree s 

1 10 2.7778 9.3371 

10 

5.5 

2 20 5.5556 18.6741 13 

3 30 8.3333 28.0112 16 

4 40 11.1111 37.3483 22.5 

5 50 13.8889 46.6853 29 

6 60 16.6667 56.0224 33 

7 70 19.4444 65.3595 39 

8 80 22.2222 74.6965 45 
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Table 1 described when the vehicle had to start steering. The table shows four items. The first is the target speed which 

is the speed that this paper needs to be used. Second is the tire rotational speed (ω) which calculated by vehicle velocity 

divided by the radius of the tire. The equation is shown below: 

 

𝜔 =
𝑉

𝑟
 (12) 

 

Where: "V" is the vehicle " target speed ",  

 

Steady-state Cornering with Four-Wheel Steering 

For the 4WS simulation, the k value is a ratio between the front and rear-wheel steering angle, and it is used to control 

the rear-wheel steering angle. When the US phenomenon occurs in the vehicle, that is, the vehicle's yaw angle fails to 

reach the required yaw angle value for turning, then the vehicle needs to use the positive steering mode to increase the 

yaw angle. When the vehicle has an OS phenomenon, that is, the yaw angle of the vehicle is greater than the value required 

for turning, then the vehicle needs to use parallel steering mode to reduce the yaw angle. It can be seen from Equation 3 

that different vehicles require different yaw angle values when turning. Normally, there is not necessary to find a fixed 

yaw angle. When the vehicle is at the same speed and the steering angle is the same, as long as the vehicle can do steady-

state cornering (SSC), it can be considered that the yaw angle is normal in this case.  

When starting the four-wheel steering simulation, it was found that the speed of the vehicle after steering was less 

than the set speed and the steering speed also changed with the change of k value. This paper uses tire rotational speed as 

a variable to simulate in order to intuitively distinguish the state of the rear-wheel steering at different speeds impact. And 

tire rotational speed can also be called the speed displayed on the car dashboard. Usually called as the speed of the vehicle. 

When the test speed is 10km/h, 20km/h, 30km/h, 40km/h, and 50km, the steering speed of the vehicle can reach a uniform 

speed. However, when the vehicle speed is lower than 30km/h, the vehicle has a US phenomenon. Meanwhile, the vehicle 

needs a larger steering angle to make a cornering. By applying the 4WDIS system which is decreasing the k value to 

increase the steering angle, the vehicle can still make a steady-state cornering even when turning at a low speed. When 

the set speed is 60km/h, the vehicle will slip slightly when cornering and the speed of the vehicle cannot reach a constant 

speed. When the vehicle speed is greater than or equal to 70km/h, the vehicle has an OS phenomenon. By applying the 

4WDIS system which is increases the value of k to reduce the steering angle, so that the vehicle can make steady-state 

cornering at high speeds. The determination of the k value of a certain speed depends on whether the vehicle can make a 

steady-state cornering at this k value. 

 

RESULTS AND DISCUSSION 

Results for Steady Steady-State Corning with Two-Wheel Steering 

Figure 3 shows the results of the simulation for the SSC with two-wheel steering. In this figure, the yaw rate is plotted 

based on the last constant value during the SSC for each constant vehicle’s velocity. The yaw rate increases when the 

constant velocity for the SSC increases. However, after 30 km/h, the yaw rate is saturated in between the range of 0.2581 

to 0.2439 rad/s. When the vehicle speed is over 60 km/h, the vehicle could not have a constant yaw rate, which means 

that it could not perform SSC. The dotted line in the figure does not represent the value when the vehicle reaches a 

constant speed. These values are taken from the value of the yaw angle that the vehicle can reach when the simulation 

time is 100 seconds. The changes in the yaw rate for each constant velocity during the SSC can be shown in Figure 4 to 

further explain the vehicle behavior. 

Figure 4 shows the changes in the yaw rate with time for each constant velocity during steady-state cornering. When 

the constant velocity is the range of 10km/h until 50km/h, the yaw rate can maintain a constant value after a period of 

time. However, when the constant velocity is 60 km/h, they can no longer have a constant yaw rate and there was a slight 

increase in the value during the SSC. In the case of the constant velocity above 60 km/h, the increase in the yaw rate is 

very visible especially for velocity 80 km/h. So, we can conclude that above the 60km/h, the vehicle yaw rate could not 

perform the SSC. The yaw rate for the constant velocity increases which shows that the vehicle is in OS condition. 

Therefore, in this region, the parallel steering of the four-wheel steering should be implemented. About the steering mode 

selection, the speed higher than 60km/h been decided to use parallel steering mode which is the k value is positive, and 

the speed lower than 60km/h been decided to use opposite steering mode which is k value is negative.  
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Figure 3. The constant value of yaw at different speeds 

 

 

 
Figure 4. The yaw moment changes with the various speed 

 

Steady-State Cornering with Four-Wheel Steering 

Figure 5 to 8 shows that how the k value effect the vehicle yaw moment for the speed from 10km/h to 40 km/h. At 

these speeds, the vehicle will have US phenomena occur. So, the negative k value was applied to increase the yaw moment 

since the yaw moment is very small. Based on the results of each figure, it is easy to find that the yaw moment can be 

reached to constant when the vehicle speed range between 10km/h and 40 km/h. After applied the 4WS system, the 

constant yaw moment value is rising almost at a constant speed. In Figure 8, the yaw moment is keeping increasing when 

the speed of the vehicle at 40 km/h and the k = -3. It means that the vehicle had an OS phenomenon that happened in this 

condition.  

 
Figure 5. The yaw moment for the vehicle speed at 10 km/h 
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Figure 6. The yaw moment for the vehicle speed at 20 km/h 

 

 

 
Figure 7. The yaw moment for the vehicle speed at 30 km/h  

 

 

 

Figure 8. The yaw moment for the vehicle speed at 40 km/h 

 

 

 
Figure 9. The yaw moment for the vehicle speed at 50 km/h 

 

Figure 9 is the yaw moment at different k value from 0 ~8 when the vehicle speed at 50 km/h. The top line is during 

the k = 0, which means that this is 2WS line, the bottom line is when k = 0.8196, this k value is getting from many times 
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simulation, This line with the means of the vehicle speed equals to vehicle velocity. This k value also the dividing line 

between OS and US for this speed.  

 

 
Figure 10. The yaw moment for the vehicle speed at 60 km/h 

 

 

 

 
Figure 11. The yaw moment for the vehicle speed at 70 km/h 

 

 

 

 
Figure 12. The yaw moment for the vehicle speed at 80 km/h 

 

Figure 10 and Figure 12 also show when the k equals zero the yaw moment not constant but still can be seen that the 

yaw moment increased slower to an infinite value. From Figure 12 it is not hard to find that when the value equal to zero, 

the yaw moment will be increased sharply and become infinite. As the value of k increases, the value of yaw moment 

becomes stable and more and more become small. From Figure 9 to 12, the bottom line in each figure represents the value 

of the "vehicle speed" equals to the "target speed" under these k values. This can also be understood as that there is no 

change in the vehicle speed when vehicle turning. 

Figure 13 shows how the slide-slip angle will change when the vehicle at the vehicle speed from 10km/h to 80 km/h. 

The line of “2WS” is meaning that the vehicle is doing cornering with two-wheel steering, rear steering angle equals to 

zero. The rest legend represented how the side-slip angle change based on the different vehicle speed at 4WS condition. 

From the “2WS” line, it is easy to see that the slide-slip angle gradually decreased according to the vehicle speed is 

increase. The most obvious reason for this phenomenon is the speed is increasing. The line above the “2WS” line is the 

4WS which the rear wheels have the same direction as the front wheels. In contrast to this, the lines below the “2WS” 
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line are the vehicle has a different direction between front wheels and rear wheels. The interval between each point is k 

equals to ± 0.1. The point above the “2WS” line means a positive k value, the opposite side of this line means that the k 

value is negative. The line of “2WS” is means k equals to zero. 

Figure 14 shows the relationship between the vehicle’s speed and the side-slip angle. From this figure, it can be 

intuitively seen that the vehicle velocity is getting closer to the vehicle speed as the k's value increased. The line “poly. 

(SS tread)” is a polynomial trendline and is performed the steady-state trendline for the vehicle sideslip angle. The value 

of “k” can be determined based on the steady-state side slip angle trendline. the side-slip angle is gradually decreased 

when the speed of the vehicle from 10 km/h up to 40km/h. Among them, 30km/h to 40km/h has shown a very slow 

downward trend. The polynomial trendline on this figure is made by the selected point, and this trendline is 4 orders 

polynomial trendline. The reason for those points been selected is depends on the vehicle speed. when the vehicle speed 

is lower than 50 km/h, the vehicle does not have a spinning phenomenon happen. So, the k value of each speed is just a 

suggestion. Such as, when the vehicle turning at a speed of 10km/h, usually the vehicle will have an understeer 

phenomenon happen. So, in this situation, the vehicle needs more steering angles to increase the steering performance 

and it can be achieved by decreasing the value of k. when the speed of the vehicle is higher than 50km/h, the vehicle will 

have oversteering phenomena occur. It is proved through experiments that when the speed of the vehicle is greater than 

50 km/h and less than 80 km/h, the value of k can be taken as the value below the polynomial trendline, and the minimum 

can be taken as the value on the polynomial trendline.  

 

 

Figure 13. The relationship between side-slip angle and vehicle speed 

 

 

 
Figure 14. The relationship between the side-slip angle and the vehicle velocity 

 

It can be seen from the Figure 13 and 14 that the relationship between k and the side-slip angle is proportional. The 

side-slip angle increases as the value of k increases and decreases as the value of k decreases. Comparing with both 

figures, the value side-slip angle is the same, the difference is the different types of speed. Figure 13 is the vehicle speed 

(dashboard shown speed) and Figure 14 is the vehicle velocity (actual speed). It can be seen from Figure 14 that the value 

of the side-slip angle changes with the increase and decrease of the value of k at the same vehicle speed because of the 

value of any speed can be selected individually from Figure 13. On the contrary, it’s not easier to find the difference 
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between the value of the side-slip angle and the value of k at a constant speed value from Figure 14. However, in the case 

of the same vehicle speed, the effect of the k on the value of the vehicle speed and the side-slip angle is that as the value 

of k increases, the side-slip angle will increase, and the speed of the vehicle will gradually rise, and the speed of the 

vehicle will gradually approach the vehicle speed. Both graphs had the same point which is the 2WS line is from 0 to 

60km/h and it is not connected with the speed at 70 km/h and 80 km/h. That is due to the vehicle speed is not constant 

after the speed at 60km/h. From Figure 13 it’s can be found that when the speed at 60 km/h the vehicle velocity is very 

close and lower than 50km/h. For this reason, the characteristics of this car can be defined as that no drift occurs when 

cornering at a speed of less than 50 km/h. 

Figure 15 shows the effect of the change in k on yaw at different rotational speeds. It can be seen from the figure that 

the whole figure is divided into 2 parts by 2WS lines. The 2WS line indicates that with only the front wheels turning, the 

value of yaw changes with the speed increase. The part above the 2WS line is negative k, the part below the 2WS line is 

positive k. The range of k values between each point is 0.1. And the 2WS line is k equal to zero. When the vehicle speed 

is below 30 km/h, the value of yaw is increasing as the speed increases. When the speed is from 0-20 km/h, the value of 

yaw is increasing rapidly, and the ascent speed slows down between 20-30 km/h. When the vehicle speed is between 30-

50km / h, the value of yaw is a gentle state. 

Figure 16 not only shows the effect of the k value on yaw in the case of the same vehicle speed but also shows that 

when the vehicle at one speed, the vehicle velocity gradually approaches vehicle actual speed with the value of k increases. 

The "poly. (SS Yaw)" line is a polynomial trendline for the steady-state yaw, “SS Yaw” meaning is steady-state yaw. 

This line has two different meanings. Before the vehicle speed reaches 50km / h, the k value passed by this line represents 

when the vehicle turning with this speed, this vehicle using the rear-wheel steering angle as the angle corresponding to 

the value of k will be suggested. If the vehicle is turning at a speed greater than 50km / h, this line represents the lowest 

k value for the vehicle cornering. If the value of k is lower than the value on the 2WS line (the value above the trendline 

line), the vehicle will drift.  

 

 

Figure 15. The relationship between the yaw moment and the vehicle speed 

 

 

 
Figure 16. The relationship between the yaw moment and the vehicle velocity 
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From Figure 15 and Figure 16, it can be seen from the data above the 2WS line that as the speed increases, the change 

in the value of k has a greater effect on yaw. When the vehicle speed is 10 km/h, and k decreases to 0.1, yaw increases 

by about 0.02 rad/s. However, at a tire speed of 10 km/h, and k decreases to 0.1, yaw increases by approximately 0.05 

rad/s. And when k equal to -3, the value of yaw increases from 0.3587 rad/s to 0.5324 rad/s. When the vehicle speed 

exceeds 40km/h, the effect of k on yaw is only compared when k is less than 0.1 and greater than 0 When k is greater 

than 0.1, the effect of k on yaw is relatively average. For example, at a vehicle speed of 60km/h, k increases from 0.1 to 

0.2, and yaw decreases from 0.1946 rad/s to 0.1623 rad/s, which decreases by about 0.03 rad/s. When k increases from 

0.2 to 0.3, yaw changes from the reduction of 0.1623 rad/s to 0.1363 rad/s is also about 0.03 rad/s. A decrease in the yaw 

value means that the turning radius of the vehicle becomes larger. When the vehicle is turning in a low-speed environment, 

a larger yaw value means that the turning radius of the vehicle is smaller, which is more conducive to steering. When the 

vehicle is driving at a high speed, the turning radius does not mean that it is unfavorable for the vehicle to turn, but to 

prevent the vehicle from turning at a high speed, the vehicle body will slip and cause dangerous accidents. 

 

CONCLUSION 

By changing the value of k, the yaw moment of the vehicle will change accordingly. The value of the yaw moment 

does not mean that the vehicle can steer smoothly, it is based on whether the steering angle at a given speed can make the 

yaw moment have a constant value. For example, in Figure 11, when the value of k is between 0.1 and 0.8, the yaw 

moment still has a constant value. However, when the value of the yaw moment is very small, the vehicle does the corning 

request more road conditions. 

This Study used the 4WS system to solve the OS and US phenomena that occur when the vehicle turns. At first, the 

vehicle's steering time is determined by simulating the vehicle going straight until it reaches a uniform speed. Secondly, 

use this steering time to simulate the two-wheel steering. The result shows that when the vehicle speed is 60km/h, the 

yaw angle cannot reach a constant speed. According to this situation, it can be judged that the vehicle appears a slight 

spin phenomenon. When the vehicle speed reaches 60km/h, the vehicle velocity is only about 50km/h, so when the vehicle 

speed reaches 50km/h, the author uses the parallel steering mode in 4WS to reduce the yaw moment value so that the 

vehicle will not spin. When the vehicle speed is lower than 50km/h, the positive steering mode in 4WS is used to increase 

the yaw moment value so that the vehicle will not get out of control on the road. Finally, through a large number of 

simulations, these results in Figures 12 to 15 are obtained. It can be seen from these four pictures that it is feasible to 

judge whether the US or OS phenomenon appears in the vehicle, whether by side-slip angle or yaw moment. And the 

figure proves that the 4WS system can be used to solve the phenomenon of US or OS in the vehicle during the steering 

process. Figures 12 and 14 show the changes in side-slip angle and yaw moment after applying the 4WS system. And 

according to the result, a polynomial trend line is made. This polynomial trend line is only used in this experiment because 

different front-wheel steering angles will have different speeds that can reach the OS. When the vehicle is driving under 

experimental conditions, turning according to the k value at the trendline, the vehicle will not have the phenomenon of 

the US or OS. 

In real life, the phenomenon of OS occurs mainly because the driver turns the steering wheel while turning and does 

not reduce the speed of the car to a speed suitable for turning. The phenomenon of the US mainly occurs because the 

steering angle is too low and the steering angle does not reach the proper angle or the vehicle speed is too fast to turn the 

reassuring disk to the angle of the appropriate road. At the beginning of the design of this study, the author also considered 

the problem that the same steering angle cannot correspond to all road curves. However, this study is to design a solution 

to the problem of the US or OS phenomenon in vehicles. For the 4WS system can correspond to all road information. 

This research can be left to qualified people to complete. 
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NOMENCLATURE 

Symbol Means Description Value Unit 

lF length from the front wheel axle to gravity 1.08 m 

lR length from the rear wheel axle to gravity 1.52 m 

dF front tread 1.475 m 

dR rear tread 1.47 m 

r the radius of the tire 0.2975 m 

m mass of the vehicle 1447.5 Kg 

b width of wheel interact surface 0.152 m 
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(Cont.) 

Symbol Means Description Value Unit 

l length of wheel interact surface 0.145 m 

k road coefficient 0.8  

I yaw inertia moment at gravity point of the vehicle 274.39 kgm2 

KX longitudinal tread rubber stiffness 1.5x106 N/m3 

KY lateral tread rubber stiffness 1.5x106 N/m3 

ωFL, ωFR, ωRL, ωRR tire rotational speed of each tire  Rad/s 

XFR,XFL,XRR,XRL friction force for each tire  N 

θF, θR front and rear wheels steer angle  ° 

γ: yaw rotational speed  Rad/s 

ρ slip ratio   

β side slip angle  ° 

βFR, βFL, βRR, βRL tire side slip angle  ° 
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