
JOURNAL OF MECHANICAL ENGINEERING AND SCIENCES (JMES) 
ISSN: 2289-4659     e-ISSN: 2231-8380 
VOL. 16, ISSUE 1, 8754 – 8769 
DOI: https://doi.org/10.15282/jmes.16.1.2022.09.0692  

 

 

 
*CORRESPONDING AUTHOR  |  D. Singh  |    deepsingh.0318@gmail.com 8754 
© The Authors 2022. Published by Penerbit UMP. This is an open access article under the CC BY license.  
 

ORIGINAL ARTICLE 

Development of non-linear models to evaluate the NiTi SMA spring actuator      

D. Singh1, R. Choudhury1, M. Mukherjee2, Y. Singh1            

1 Department of Mechanical Engineering, National Institute of Technology Silchar, Assam, Pin-788010, India 
Phone: +91 9854149839 
2 Advanced Manufacturing Centre, CSIR-Central Mechanical Engineering Research Institute, Durgapur, West Bengal, Pin-713209, India 

 

 

ARTICLE HISTORY 
Received: 19th Oct. 2020 
Revised: 21st Sept. 2021 
Accepted: 01st Dec. 2021      
 

KEYWORDS 
NiTi spring;  

shape memory alloy;  

rate of contraction;  

non-linear model;  

fatigue life 

INTRODUCTION 

Smart materials are currently in high demand in varied fields due to its remarkable ability to change the structure in 

response to outside factors such as stress, temperature, electric and magnetic fields [1]. The actuation behaviour of one 

of the smart materials i.e. Ni-Ti alloy is outstanding and gaining huge importance in various fields including robotics and 

mechatronics. Robotics is one of the advanced technologies where huge research on the application of smart materials is 

being carried out from the last few years. 

Ni-Ti alloy is a smart material. When deformed, it can restore to its memorized shape under thermal loading due to 

the variation in crystal orientation from the monoclinic (martensite phase) to the BCC (body centred cubic) structure 

(austenite phase). Since nitinol contracts in the presence of adequate heat, it is termed as a Shape Memory Alloy. SMA 

provides high power per unit mass compared to the other conventional actuators, as discussed in Table 1 [2].  

 

Table 1. Power density versus mass of various actuators [2] 

Types of actuator Actuators Mass (kg) 
Power/mass ratio 

(W/kg) 

Conventional actuators 
Electric motor 0.1 to 100 10 to 50 

Hydraulic devices 10 to 1000 1000 

Smart actuators Shape memory alloy 0.05 230 

 

The table indicates that SMA possesses approximately five times higher power/mass ratio than the conventional 

electrical motors. Also, the mass of hydraulic devices like hydraulic linear actuators are very high and hence its 

comparison with SMA is irrelevant. Also, the SMA is very light in weight and undergoes silent actuation [3]. Variation 

in temperature of the SMA leads to change in its shape, location, natural frequency, stiffness and other mechanical 

properties. Because of such unique mechanical properties, the SMA is being researched and used for many applications 

such as commercial, biomedical, aerospace industries, etc., with one of its primary applications as actuators [4]. SMA 

actuators are demanding immense popularity as it is a very minute and compact actuator with a larger power/mass ratio, 

silent operation, low voltage activation and most importantly, biocompatibility [4]. Nitinol, a 50% Ni and 50% Ti SMA, 

exhibits one of the fundamental characteristics called super-elasticity, enabling it to recover even large strain under certain 

isothermal conditions [5]. There are many studies on SMA based actuators for different applications like the design of 
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prosthetic hand using two SMA actuators was introduced by Chee Siong et al. [6]. A robotic fish was designed by Tao et 

al. based on the idea of an FSMA hybrid mechanism with a caudal peduncle actuator which has a fast response and strong 

thrust ability [7]. BATMAV [8], [9] and Bat Robot [10] are a few flying robots developed using SMA. Also, Festo Group 

developed a dragonfly having 44 cm in length and a wingspan of 63 cm. Four SMA actuators controls the motion. It has 

13 degrees of freedom and is also known as BionicOpter which can fly in mid-air and manoeuvre in multi-directions [11]. 

Passive microgrippers were developed by Mohammed Ali and Takhata with a RF magnetic field and has wireless 

actuation capability [12]. SMA wires were implemented to develop bidirectional rotating actuators using open and closed-

loop control schemes and investigated mechanical, electrical and thermal characteristics for actuator characterization [13]. 

A rotational actuator using an SMA spring has been developed in which SMA displaces a rocker arm induces rotational 

motion to the drive shaft by displacement of the rocker arm. The result showed a peak torque of 1.72 Nm and a relatively 

smooth motion [14]. Variable Geometry Chevron (VGC), an active serrated aerodynamic device using SMA actuators, 

has been developed and is installed in the GE90-115B. It minimises noise during takeoff by increasing chevron deflection 

and improves cruise efficiency by decreasing chevron deflection [15–17]. Sofla et al. [18] developed a shape morphing 

wing design for small aircraft by applying SMA-actuated flexural structural forms which helps in varying the profile of 

the wing by bending and twisting to increase the aerodynamic efficiency. Icardi and Ferero also investigated that an 

adaptable wing on a small unmanned aircraft actuated by SMA devices could bear aerodynamic pressure in any flight 

condition without adding weight or reducing rigidity [19]. SMAs are utilised in spacecraft for low-shock release 

mechanisms as they can be operated slowly by progressive heating and can absorb vibration. It can also be developed in 

a compact and simple design which serves the purpose for the average and smaller sized aircrafts such as micro-satellite 

[20–22]. Recently, the SMA actuator was used to develop the seventh-generation Chevrolet Corvette vehicle in order to 

actuate the hatchvent, which helps in easy closing of the trunk lid by releasing air from the trunk [23]. SMAs are also 

used in future technologies such as electric generators for the electric generation from exhaust heat. It also controls the 

ow of air in the engine compartment. It also helps reduce aerodynamic drag at high speeds and is also used in the adaptive 

handle mechanism for opening the vehicle door [24]. In the reference [3], the researchers presented the inverse and 

forward kinematics along with the workspace of the three-legged U-shaped base PRP-PRP-PRP planar robotic 

manipulator experimentally by implementing the SMA nitinol as an actuator by joule heating. 

The U.S. Naval Ordnance Laboratory discovered a new material that exhibited shape memory effect. Hence, the 

material or the alloy was named as nitinol (Nickel Titanium Naval Ordnance Laboratory). Nitinol, a superelasticity alloy, 

helps the SMAs to recover even considerable strain under certain isothermal conditions [5]. The composition of nitinol 

is 50% Nickel and 50%Titanium. On heating, the shape memory alloys above the austenite finish temperature recover 

the deformation undergone due to applied stress [25]. With the increase in applied stress, the displacement also increases 

for the nitinol SMA actuator. Also, the actuation displacement rises with an increase in winding angle [26]. 

However, one of the key disadvantages of NiTi SMA is hysteresis, which complicates the displacement control due 

to its continual non-linear change in length, especially when micro-motion is taken into account [4]. 

Singh et al. analysed the workspace of the three-limb U-shape base 3PRP planar parallel robotic mechanism, as 

depicted in Figure 1, experimentally by implementing nitinol SMA spring as the actuator [3]. The nitinol spring was 

actuated by joule heating. The end-effector position and the workspace of the manipulator were determined based on 

open-loop condition of the actuator. It has two options: ON or OFF. The actuation was performed in order to fully contract 

the nitinol in the manipulator's limb. The simple ON/OFF actuation system seemed incompatible for accurate and precise 

end-effector motion. Also, a closed feedback system is necessary to automate the process for the end-effector to travel 

the designated path. Singh et al. [27, 28] also presented the workspace associated with the different U-shaped manipulators 

of its family. 

 

Figure 1. Schematic figure of 3PRP manipulator 

 

Each of the three legs of the manipulator, in Figure 1, consists of two springs which under contraction provides 

bidirectional motion to the active prismatic joints. The motion of the active prismatic joints varies the position of the end-
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effector. The end-effector orientation of the manipulator is dependent upon the actuators position and the precision 

depends upon its velocity. Hence, to position the end-effector precisely, the spring joints (5, 6, 7), in Figure 1, should be 

precisely positioned at the desired location based on inverse kinematics. As the supply of electric current actuates the 

nitinol spring, its contraction depends upon the parameters current and the time duration for which the current is supplied. 

Hence, such manipulator demands the mathematical model to determine the displacement (or the contraction) of the 

nitinol SMA spring in terms of current and time. 

There are only few articles available on the control of micro-displacement ofthe NiTi SMA actuators. Furthermore, 

the majority of the research is focused on the SMA wire and its macro-mechanism. The displacement response of SMA 

springs under joule heating conditions is merely presented. From the previous work on SMA wire and other available 

SMA actuators, there is a lot of scope for its study and analysis for the micro-motion behaviour of such SMA spring-

based actuators concerning time and current. 

Therefore, to further comprehend the behavioural complexity, the relationship between the contraction of the nitinol 

spring with respect to the time and current as input variables has been evaluated in this study. Also, the series connection 

response of the SMA springs has been investigated. The FEA analysis of the SMA wire and spring was carried out to 

understand and predict the fatigue life. Polynomial regression models were developed in order to predict the precise and 

accurate micro-positioning of the SMA spring. This study also predicts the range of applied current suitable for the 

purpose of actuation. Furthermore, this model can be implemented to develop a manipulator using the developed 

mathematical model, which can be programmed for different trajectories. 

 

EXPERIMENTAL PROCEDURE 

Material Selection and Specification 

The NiTi SMA spring with 19 helix windings and a diameter of 0.75 mm has been selected as the actuation material. 

The general composition of NiTi is 50 wt% Ni and 50 wt% Ti. The commercial NiTi SMA spring can contract ~ upto 29 

mm when cooled and can be expanded or deformed up to 140 mm on the application of 6 N load approximately. These 

SMA springs can also be used in series to acquire higher displacement and also in parallel for a higher force. NiTi SMA 

spring has the capacity to attain a maximum deformation of up to 8%, which is maximum as compared to other SMA 

materials [25], [29]. 

    Table 2. Components for variable DC power supply 

Component Details Quantity 

LM317T Adjustable linear voltage regulator 1 

BT139 NPN transistor 1 

2SD1047 Transistor to control the current flow 1 

Resistors 

220 ohms 1 

4000 ohm - 7 Watt 1 

4.7 ohm - 10W 1 

Potentiometers 10 kohm 2 

LED monochrome 1 

Wires copper 1 

Breadboard Non-soldering circuit board 1 

AC/DC Adapter Input: 100-240 V, 50/60 Hz, 1.6 A; Output: 15 V, 5 A 1 

 

In order to actuate the NiTi SMA spring, the temperature of the spring has to be elevated up to the austenite phase of 

the material in order to undergo phase conversion. The phase transformation is carried out with the help of either joule 

heating or any other heating process. In this present work, the temperature of the SMA springs are elevated by allowing 

through the current across the terminals, which in thereby increases the temperature of the springs (due to the internal 

resistance), resulting in phase transformation. To provide the variable DC, a variable current DC power supply using 

several components, as listed in Table 2, has been developed. The electrical current that leads to thermal loading on the 

nitinol spring needs to be studied as it correlates to its contraction. Higher the electrical current, faster the spring contracts 

and vice-versa. Hence, the correlation between the electrical current and contraction time and length is the key to forecast 

the actuation displacement. The minimum current deviation obtained in the DC variable power supply is 10 mA. The 

schematic circuit diagram for the DC variable power supply is depicted in Figure 2(a). The actual variable DC power 

supply utilised in the study is presented in Figure 2(b).  
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(a) (b) 

Figure 2. Variable DC power supply: (a) Circuit diagram and (b) Fabricated Prototype 

 

SolidWorks Model 

The CAD model for the Nitinol wire and the spring has been modelled in SolidWorks 2016 software to carry out the 

finite element analysis by using the Ansys Workbench 18.1. The 2D drawings of the computer aided designed wire and 

the spring has been shown in the Figure 3. The spring has been modelled with 0.75 mm as wire diameter with 10 helical 

windings. 

 

 
(a) (b) 

Figure 3. (a) Nitinol wire (b) Nitinol spring with 10 helical windings 

 

 

  
(a) (b) 

Figure 4. (a) Constant amplitude load fully reversed and (b) Mean stress correction theory 

 

To understand the fatigue life of the NiTi SMA, an FEA based fatigue analysis of a 0.75 mm diameter wire was 

modelled initially and then the result of the model was further implemented on the NiTi SMA spring model. The various 

input parameters [30], [31] that have been taken into consideration in order to carry out the FEA analysis is given in the 

Table 3. The static structural analysis of the NiTi SMA wire and spring was carried out using the SolidWorks 2016 CAD 

Model shown in Figure 3 by imposing the properties as shown in Table 3. The super-elasticity properties of the Nitinol 

SMA have been taken into consideration. The application of load is fully reversed (i.e. R = -1) and the Soderberg’s mean 

stress theory has been taken into consideration, as depicted in the Figure 4, with the σY value of the NiTi alloy.  
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The SolidWorks CAD Model of the wire and spring was imported into Ansys Workbench and the static structural test 

was selected. The parameters of the Nitinol were imported into the engineering material database which has been shown 

in Table 3. The default coarse mesh was implied in the model and the meshed model characteristics for the wire was 3986 

nodes and 748 elements and that for the spring was 36814 nodes and 6974 elements. To undergo the analysis, various 

load values were applied at one end of the wire by providing fixed support at the other end. Also, the ‘Large Deflection’ 

was activated to achieve real-time structural property. On changing the load values and performing the analysis various 

parameters such as maximum principal stress, maximum principal strain, total deformation, normal stress and fatigue life 

was noted without strain convergence and with 8% strain convergence. 

 

Table 3. Properties of Nitinol [30,31] 

Type of property Properties Value 

Physical property 
Density 6.45 g/cm3

 

Temperature 220C 

Isotropic elasticity 
Young’s modulus 70000 MPa 

Poisson’s ratio 0.33 

Strength 

Tensile yield strength 559 MPa 

Compressive yield strength 560 MPa 

Tensile ultimate strength 960 MPa 

Compressive ultimate strength 960 MPa 

Super-elasticity 

Sigma SAS 52000 psi 

Sigma FAS 60000 psi 

Sigma SSA 30000 psi 

Sigma FSA 20000 psi 

Epsilon 0.7 in/in 

Alpha 0.1 

Alternating mean 

stress 
Stress (for log-log interpolation) 

Cycles Alternating stress (Pa) 

1000 550 

5000 520 

10000 450 

100000 430 

1000000 410 

 

SMA Spring in Series Connection 

Two NiTi SMA springs were used to study the its behaviour under series arrangement. One end of first spring was 

locked at the origin (0, 0) and one of the ends of second spring was locked at location B (l, 0) where, l = 129 mm. As 

shown in Figure 5, the other end of the two SMA springs is linked together at point A (r, 0) with the aid of an ABS plastic 

pin printed using FDM 360 mc fused deposition modelling machine. Initially current is supplied to the second spring and 

the spring gets contracted due to the temperature rise. After contraction, the current is switched off. The spring is allowed 

to cool down to room temperature. The first spring is supplied with a constant current and the location of A is determined 

and recorded every 10 seconds.Similarly, the position of A was established by supplying different values of constant 

current to the spring using the developed variable DC power supply.  

 

 

Figure 5. Series connection of NiTi SMA spring 

 

Mathematical Models 

Several non-linear mathematical models were developed to understand the complex deflection behaviour of the NiTi 

SMA spring. The development of the mathematical models has been divided into two parts: 1) development of non-linear 

models for single spring connection and 2) development of non-linear models for series connection of two springs. The 
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current and the time of contraction of the spring are considered as the input variables in the models. The deflection or 

deformation of the spring after constant time interval was measured at different current amplitudes and considered as the 

response parameter of the models. Two types of model are used in the study to understand the response and variable 

relationships for different configurations. The non-linear exponential models were developed to realise the one-to-one 

relationship between response and variable for individual spring connection. The generalized non-linear exponential 

mathematical model can be represented by the Eq. (1). 

 

0

btd d a e= + 
 

(1) 

 

where d is displacement, t is time and d0, a and b are constant coefficients. 

 

Similarly, multivariable correlations were depicted by adopting a second-order quadratic polynomial model. The 

generalized second-order relationship for the deflection response as a function of time and current is given in Eq. (2).  

 

0 1 2 11 22 12

2 2d a a t a I a t a I a t I= +  +  +  +  +  
 

(2) 

 

where a0, a1, a2, a11, a22, a12 being the coefficients.  

 

RESULTS AND DISCUSSION 

Determination of Current-Time Domain for Single Spring Connection 

In this paper, an attempt has been made to control the displacement of the shape memory alloy spring so that it can 

efficiently be utilised as a smart linear actuator in the micron level. In the experiment, the SMA spring contracts, in the 

presence of electrical current, from its original stretched length (L0) of 100 mm. The Ohm’s law shows that for a fixed 

current if time increases energy also increases and vice-versa. This is applied in this study where the current is fixed at a 

particular value (with a specified tolerance) and the contraction time was recorded for a standard contraction length (Lc) 

of 71 mm. The details of the selected and obtained parameters are given in Table 4. 

 

Table 4. Experimental data for current vs time for full contraction 

Sl. 

No. 

Current, 

I (mA) 

Initial Length, 

L0 (mm) 

Final Length, 

Lf (mm) 

Contraction 

Length, 

Lc(mm) 

Time, t 

(sec) 
Remark’s 

1 1220 100 29 71 72.4 

Rapid 

actuation 

2 1150 100 29 71 84.4 

3 1100 100 29 71 100 

4 1080 100 29 71 101.7 

5 1030 100 29 71 153.7 
Fast actuation 

& Low 

precision 

6 1000 100 29 71 169 

7 950 100 29 71 180 

8 930 100 29 71 262 

9 900 100 29 71 300 

Slow actuation 

& High 

Precision 

10 850 100 29 71 358.6 

11 810 100 29 71 393.5 

12 800 100 29 71 420 

13 750 100 29 71 570.8 

14 700 100 29 71 626.8 

15 600 100 50.75 49.25 5460 Infeasible 

 

The current was altered from 600 mA to 1220 mA in 15 steps during the experiment to determine the total deflection 

time necessary to reach Lc. The results showed that the entire current range can be divided into four different groups 

according to the performance revealed. Therefore, the four categories are (i) rapid actuation, (ii) fast actuation & low 

precision, (iii) slow actuation & high precision and (iv) infeasible. The first category where the applied current was within 

the range of 1080 mA to 1220 mA, the time taken for contracting up to final length (Lf) was significantly lower, ranging 

between 101.7 sec to 72.4 sec which reflects the rapid contraction state of the SMA spring. In this state, it is difficult to 

manoeuvre the SMA spring in the micron level to develop a micro-motion linear actuator. However, for rapid movement, 

this stage is applicable where large deflection is significant and instantly needed. The current below 1080 mA and up to 

930 mA falls within the second category where the time required for the contraction was comparatively higher than the 
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first category. Hence, in this case fast actuation is possible with comparatively lower precision. This stage can be applied 

where the precise measurement is not significant. Furthermore, the current below 930 mA and up to 700 mA falls within 

the third category where the time required for the contraction was much higher than the second category which signifies 

high precision, but at the cost of slow actuation. This slow actuation and high precision are probably the most suitable 

domain for micro-motion linear actuation where the SMA spring deflection can be easily controlled up to micro-level. 

Beyond this category, where the current falls below 700 mA, the actuation of spring stops at the halfway of the Lc. 

Therefore, very low current cannot be utilized in the application because of the non-feasibility of complete deflection 

over time. Alternatively, it can be concluded that the contraction rate from 0.5917 to 1.1833 mm/sec is considered a rapid 

actuation stage. The contraction rate from 0.2367 to 0.5917 mm/sec is considered as fast actuation stage. Similarly, the 

contraction rate from 0.1075 to 0.2367 mm/sec is considered as slow/micro actuation. The contraction rate below 0.1075 

mm/sec is referred as an infeasible region. 

From Table 4, it is observed that there is a correlation between current and time for constant deflection. The 

development of mathematical modelling can predict correlations. The following sections discuss the non-linear 

correlations between response (deflection, d) and variables (current, I and time, t) by developing an exponential and 

second-order quadratic polynomial model respectively. 

 

Non-Linear Exponential Models for Single Spring 

The NiTi SMA spring was elongated to an initial length of 100 mm by applying uniaxial force. The experiment was 

conducted by passing different currents and the time required to reach Lf was noted. The collected data sets were used to 

develop a fitting correlation between current and time which is plotted in Figure 6.  

 

 

Figure 6. Current (mA) vs time (s) non-linear exponential plot 

 

Figure 6 presents an exponential curve with a negative gradient. This signifies that as the current increases, the time 

necessary for the same length of contraction (Lc) of SMA spring decreases.The slope is steeper at first and declines 

progressively indicating that the contraction rate is more prominent for high current than low current values. Also, with 

further increase in time, the slope will become parallel to the time axis which signifies zero contraction rate below certain 

current value resulting in no change in length. The plot can be considered in order to quantify the time to be necessary 

for full contraction (Lf) at any given current. Based on the data in Table 4, a non-linear exponential mathematical model 

was obtained for the current response with variable parameters as time for full contraction to 29 mm which is given in 

Eq. (3). The equation depicts a negative exponential coefficient, which clearly indicates that for a given contraction length, 

more time is needed at lower applied current, which has exponential correlations. The non-linear exponential fitted 

equation has a step regression value of 0.97442, which signifies that the suitability of the equation with approximately 

97.442% fit.  

 

I = 659.8844 + 683.8789 × exp (-0.00386 × t) (3) 

 

Figure 7(a) shows the real-time picture of variation of the NiTi SMA spring length with time when a constant current 

of 950 mA was supplied. It can be seen that the length of the SMA spring contracts gradually at a constant current supplied 

with respect to time. Similar behaviour of SMA spring was also obtained in other current conditions where time taken to 

reach Lf is different. Figure 7(b) shows the deflection curve with respect to time for different constant current values. It 

can also be seen how the curve varies and the time increases while the current value decreases. Also, it can be stated that 

the slope is reducing with the decrease in current and at a certain value of current, the slope will reduce to zero, thereby 

referring to no more deflection with an increase in time. The fitted graphs plotted in Figure 8(a) – 8(e) have been obtained 
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based on the obtained current-time response of the SMA spring test. In each case, the curve was fitted to a non-linear 

exponential model. The graph gives the deflection as a response with the variable parameter i.e. time. As can be seen 

from each graph, the fitted line has negative slope, which can be verified from the developed exponential Eqs. (4) – (8). 

In the equations, the exponential coefficient of individual fit is negative, representing the amount of time required for full 

contraction from L0. The obtained Eqs. (4) – (8), have adjusted regression values of 0.99356, 0.99365, 0.99229, 0.99576 

and 0.99286 respectively, which indicates the acceptability of equations with a more than 99.229% fit and the obtained 

fit data is mentioned in Table 5.  

 

 
(a) 

 

 
(b) 

Figure 7. (a) Real time deflection of NiTi SMA spring at 950 mA current and (b) deflection vs time curve at different 

constant values of current. 
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(a) (b) 

  

  
(c) (d) 

 

 
(e) 

Figure 8. Deflection vs time plots for different activation currents: (a) 730 mA, (b) 800 mA, (c) 900 mA, (d) 950 mA 

and (e) 1100 mA 

 

Table 5. Statistical fit data for the Eqs. (4) to (8) 

Deflection 

Coefficients of equation Statistics 

d0 a b 
Reduced 

Chi-Sqr 

Adj. R-

Square 

Deflection (730 mA) 51.62052 45.1314 -0.006250 0.94696 0.99356 

Deflection (800 mA) -83.4353 178.2451 -0.001090 2.42373 0.99365 

Deflection (900 mA) -3.18167 97.58434 -0.003520 2.85442 0.99229 

Deflection (950 mA) -4.10608 101.4273 -0.006470 1.99865 0.99576 

Deflection (1100 mA) -769.081 866.8399 -0.000840 3.85072 0.99286 
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The values of each coefficient for the Eqs. (4) – (8) have been provided in Table 5 along with the adjusted regression 

values. 

 

At 730mA, 51.6205 45.1314 exp( 0.00625 )d t= +  −   (4) 

  

At 800mA, 83.4353 178.2451 exp( 0.0011 )d t= − +  −   (5) 

  

At 900mA, 3.18167 97.5843 exp( 0.0035 )d t= − +  −   (6) 

  

At 950mA, 4.1061 101.4273 exp( 0.00647 )d t= − +  −   (7) 

  

769.0806 866.8398 exp( 0.0008 )d t= − +  −   (8) 

 

Based on the various coefficient data given in Table 5, for various current values, a generalized equation can be 

derived with the limits of the coefficients as represented in Eq. (9) with an acceptability of 99.43% fit. 

 

0 exp( )d d a b t= +  − 

0

0

769 51

45 866

0.00083935 0.00647

d

a

d

−   
 

 
 
     

(9) 

 

Mathematical Model for Deflection Control of Single Spring Connection 

Although Eq. (3) and Eq. (9) relate the current-time and deflection-time, respectively, it is not sufficient to correlate 

all the three parameters. Time should be considered based on the high or low precision requirements and the current will 

also vary as per productivity. 

 

Table 6. ANOVA for deflection of NiTi spring with respect to the time and current 

Source DF Seq. SS Adj. SS Adj. MS F-vale P-value 

Regression 5 51340.3 51340.3 10268.1 384.83 0.0001 

Linear 2 35021.4 1653.5 826.8 30.99 0.006 

t 1 20801.6 1643.9 1643.9 61.61 0.004 

I 1 14219.8 483.1 483.1 18.11 0.014 

Square 2 11294.3 2027.8 1013.9 38.00 0.002 

t*t 1 10798.6 1061.6 1061.6 39.79 0.001 

I*I 1 495.7 609.4 609.4 22.84 0.003 

Interaction 1 5024.6 5024.6 5024.6 188.31 0.002 

t*I 1 5024.6 5024.6 5024.6 188.31 0.001 

Residual    

Error 
161 4295.8 4295.8 26.7   

Total 166 55636.1     

Note: According to the probability value, all the variables are significant. 

 

So, a quadratic polynomial model has been formulated for different current values based on current vs time and 

deflection vs time data. A second-order quadratic polynomial regression model has been used to express the deflection 

(d) as a function of time (t) and current (I). With a regression value of 0.9204, the following full quadratic polynomial 

equation is developed. A result of ANOVA for the deflection has been shown in Table 6. Based on the obtained statistical 

F-value, the deflection response is acceptable because it is unlikely to have a large F-value due to noise. Even the 

probability value shows a clear indication regarding the importance of the quadratic polynomial equation. The adjusted 

R2 value is 0.9204 which is another clear evidence of the sufficiency for the derived quadratic polynomial regression 

equation for a single spring. 

 
2 230.6349 0.4427 0.2964 0.0002 0.0002 0.0008d t I t I t I= − +  +  +  −  −    (10) 

 

Equation (10) presents the deflection curve or response concerning time and current which are the sole parameters 

required for the design of the SMA spring-based actuation. Hence, based on any two known parameters, it will be easier 

to determine the third. Most of the time, the required length of deflection is known and the time can be assumed as per 
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the productivity and given categories mentioned in Table 6. Hence, the current required for single spring actuation can 

be predicted from the Eq. (10). This equation serves a vital role to determine the deflection possible for a single NiTi 

SMA spring at specific values of current and time. It can predict accurately within the domain of experimental data. The 

range of the various parameters should be within the limits as tabulated in Table 7. 

    

Table 7. Domain of variable parameters 

Sl. No. Parameters Minimum Maximum 

1 Displacement (mm) 29 100 

2 Current (mA) 800 1200 

3 Time (s) 0 400 

4 Ambient Temperature Room Temperature Room Temperature 

 

Predicted Deflection Trend of NiTi SMA Single Spring Connection 

As illustrated in Figure 9, the generated quadratic polynomial Eq. (10) provides the deflection variation by presenting 

the deflection line in a two-dimensional current – time graph.  

 

 

Figure 9. Current vs time graph within deflection range of 30 mm – 70 mm 

 

The figure depicts the deflection variation of limiting displacement as 70 mm and 30 mm. The deflection within this 

range comes in between. This typical graph gives a clear idea of the total time required for a known current to achieve 

any deformation. The lines depicting d = 70 mm and d = 30 mm have a negative gradient, indicating that the time required 

to accomplish any required deflection rises with a drop in current and vice versa. Also, it can be concluded that the 

gradient of any deflection curve goes on decreasing with a decrease in current. The curve will attain zero slope after a 

specified amount of time-based on the d = 30 mm line and the time required for the slope to become zero is infinite. Thus 

no more deflection is possible which shows the infeasibility region as mentioned in Table 4. The current value at this 

position can be considered as the critical current to start deflection. However, the critical current value varies with the 

deflection curve, which can easily be figured out based on the d = 30 mm and d = 70 mm lines. 

 

Mathematical Model for Deflection Control of SMA Spring in Series Connection 

To achieve micro-actuation with two-axis movement, two shape memory alloy springs were arranged in series with a 

pin in between, as depicted in Figure 5. The obtained non-linear models (Eqs. (3) to (9)) were used to control the deflection 

of the springs in series connection as these models are able to describe the single spring deflection suitably. Amazingly, 

the deformation of the series-joined springs differed from the normal, presumably due to the internal resistance of the 

springs acting in opposite directions. The deflection response of the series-linked SMA springs could not be interpreted 

using the equations discussed in the previous sections. As a result, a sequence of experiments were repeated in the same 

time-current domain, as shown in Table 4. The deflection data of the series connection was obtained for different applied 

current and the contraction time was recorded. These noted data were used to formulate another 2nd order quadratic 

polynomial equation similar to a single spring connection. 
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Table 8. ANOVA for deflection of NiTi spring with respect to time and current for series connection 

Source DF Seq. SS Adj. SS Adj. MS F-vale P-value 

Regression 5 11369.4 11369.4 2273.87 92.83 0.0001 

Residual Error 120 2939.3 2939.3 24.49   

Total 125 14308.7     

Note: According to the probability value, all the variables are significant 

 

The deflection (ds) of series joined SMA spring has been presented by a 2nd order quadratic polynomial regression 

model which consists of two process parameters such as time(t) and current(I). The subsequent quadratic polynomial 

equation is estimated for series connection with a step regression value of 0.8214. A result of ANOVA for the deflection 

has been shown in Table 8. The quadratic polynomial equation is clearly significant, as indicated by the high F-value and 

the probability value of smaller than 0.05. The quadratic polynomial function is clearly significant, as evidenced by the 

high F-value and probability value of less than 0.05. The adjusted R2 value is 0.8214, which is another clear signal of the 

sufficiency for the derived quadratic polynomial regression model.  

 
2 257.513 8.674 18.204 1.246 2.126 1.464sd I t I t I t= −  −  −  +  −    (11) 

 

Equation (11) dictates the deflection curve or response behaviour concerning the influencing factors, time and current, 

for a series connection. Based on any two known values, it will be easier to determine the third unknown. Most of the 

times, the required length of deflection is known and the time can be assumed as per the given categories mention in 

Table 3. Hence, the required current can be assumed from the Eq. (11). 

SMA springs, although being light in weight, provides larger stroke length as compared to conventional actuators. It 

can be used as actuators to obtain a higher level of accuracy for various applications. The presence of two springs in series 

also provides bidirectional motion to the joint with an additional advantage of getting a larger stroke length. 

The above discussed mathematical models are the key to control the nitinolSMA spring under the discussed limiting 

operations. The models possess the ability to predict and decide the control parameters such as deflection, current and 

time for the development of SMA actuators. The developed spring equations can be implemented for various applications 

including planar parallel manipulators. 

 

Finite Element Analysis (FEA) for the Fatigue of NiTi SMA Wire and Spring 

The actuation system is fundamentally a dynamic system where a specific amount of load is applied for a time period 

and released. This loading-unloading condition has a resemblance to the fatigue condition. Therefore, the fatigue 

behaviour of SMA springs is necessary to determine the life of the actuator. Estimation of endurance stress is essential 

for the design of real systems. FEA is an efficient tool to predict the structural fatigue fracture behaviour of the known 

materials without destructive experiments with adequate accuracy. The properties of the material required to develop a 

FE model should be known and, in this case, NiTi SMA is a well-known alloy. The properties of NiTi SMA is given in 

Table 3, which is used in the model. First, the SMA wire of 0.75 mm diameter is considered for the model to generate 

various parameters such as maximum principal stress, maximum principal strain, total deformation, normal stress and 

cycles.  

Table 9. Ansys data of NiTi SMA spring with 10 windings (with 8% strain convergence) 

Force 

(N) 

Total 

Deformation 

(mm) 

Maximum Principal 

Elastic Strain (mm/mm) 

Maximum 

Principal Elastic 

Stress (MPa) 

Normal 

Stress 

(MPa) 

Life 

(cycles) 

5 2.2518 0.0019434 391.01 266.88 1000000 

10 4.3319 0.0052176 1029.4 772.1 1000000 

15 6.4138 0.0058234 1171.6 842.13 1000000 

20 The solver engine was unable to converge on a solution for the nonlinear problem as constrained. 
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Figure 10. Fatigue life curve of NiTi SMA wire 

 

 

 
(a) 

 

 
(b) 

 

 
(c) 
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(d) 

 

 
(e) 

Figure 11. Ansys model of NiTi SMA spring at 10 N load with 8% strain convergence: (a) Total deformation, (b) 

Maximum principal elastic strain, (c) Maximum principal stress, (d) Normal stress and (e) Life.  

 

The nominal stress vs cycle, S-N, curves are plotted with and without strain convergence, as shown in Figure 10. The 

strain convergence of 8% is used in the model because the NiTi has the maximum strain recovery of 8%, beyond which 

it will not regain its original shape properly. The endurance limit in the S-N curve is generally considered as the stress 

limit up to 106 cycles. It is observed that without strain convergence or in normal conditions, the endurance stress of the 

wire is ~64 MPa. Correspondingly, the applied load at the endurance limit is ~71 N. 

On the other hand, higher endurance limit with endurance stress of ~100 MPa was obtained at a limiting strain 

convergence of 8%. In this condition, the applied load is about 75 N. Therefore, theoretically, under the application of 70 

N load the SMA wire will never fail due to fatigue fracture. These observations and theoretical endurance stress/load of 

wire were further applied to the spring of the same diameter. The experiment was started with a minimum load of 5 N 

and the endurance was achieved. Similarly, the load factor was further increased to 10 N and 15 N still, no significant 

change in endurance was observed. Figure 11 shows the NiTi SMA spring model analysis under a load of 10 N applied 

at one end by keeping the other end fixed with large deformation. The entire test was conducted under 8% strain 

convergence condition. The analysed theoretical data of the model is given in Table 9. It is also shown that when the 

force rises from 15 N to 20 N the solver is unable to converge the solution for the given non-linearity problem. 

 

CONCLUSION 

The present study classifies the current range for the SMA spring actuation into four groups based on its significance. 

The gradient of a regular deflection curve gradually reduces with reducing current over time until it hits critical current, 

an infeasible area beyond which further contraction is impossible. The deflection vs time plot of the experimental data, 

at different currents, showed an increase in contraction rate with a rise in current. With rise in current, the rate of 

contraction of the SMA spring increases and vice versa. It is observed that, for a fixed deflection length, an exponential 

relation is established between current and time. The developed second-order quadratic polynomial model (a correlation 

between displacement, current and time) presents the contraction behaviour of the nitinol spring adequately. The 

polynomial equation can forecast the response effectively as verified by ANOVA. Since the developed single spring 

polynomial model cannot predict the series connection, another 2nd order polynomial equation was developed to present 

the deflection response based on the input arguments for the series connected SMA spring. It can predict the response 

effectively as verified by ANOVA. 

The finite element analysis results in significant variation in endurance strength of NiTi SMA wire between 8% strain 

convergence and no strain convergence with the endurance strength being more in case of 8% strain convergence. Also, 

FEA of Nitinol springs is inconclusive at higher loads. The developed polynomial regression equations are significantly 

essential to quantify the deflection trend to develop positioning stages for varied applications. 

The study predicts the motion of the nitinol SMA spring based on the developed mathematical models for micro-

motion upon linear actuation. These mathematical models are the key to control the NiTi SMA based actuators. It can 



 D. Singh et al.   │ Journal of Mechanical Engineering and Sciences │ Vol. 16, Issue 1 (2022) 

8768   journal.ump.edu.my/jmes ◄ 

also be implemented to develop the planar micro-positioning stage for various applications, including 3D printers, micro-

milling machines, micro-drilling machines etc. It can also serve as a stage for the micro-motion of the workpiece within 

a plane. 
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