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INTRODUCTION 

With the increasing number of vehicles on the road today, the concept of platoon was introduced to improve traffic 

efficiency [1–3]. According to Horowitz [4], a platoon involves organizing a group of nearby vehicles and may help to 

increase road capacity. Vehicles will be able to travel 30 feet or less by using standard distance sensors in most cars. The 

concept of platoon also provides dramatic reduction in fuel consumption at highway speeds through reduced aerodynamic 

load on vehicles [5–7]. According to Hucho [8], aerodynamic loads on standard-sized cars moving at 62 mph (100 km/h) 

contribute to almost 75-80% of vehicle fuel losses. Hence, it is relevant to examine the effect of distance between vehicles 

in the platoon towards the reduction of drag and lift forces, for more efficient fuel consumption. 

A number of studies have been conducted by various organizations in relation to the effect of distance on the 

aerodynamic forces of platoon vehicles [9–12]. An on-the-road experiment performed by California Partners for 

Advanced Transit and Highways (PATH) using heavy trucks equipped with Intelligent Transport System (ITS), had 

demonstrated technical feasibility for the driving of two trucks with a 3m gap and three trucks with 4m gaps. The 

results showed direct fuel saving of within 5% for the main truck and 10-15% for the following trucks [12]. Effective 

energy saving observed from the PATH project was associated with aerodynamic drag reduction due to reduced distances 

between vehicles. 

Previous studies of platoon vehicles in excess of two vehicles (ie. three vehicles or more) had involved uniform 

distances between vehicles as reviewed by Rajamani [13], Schito and Braghin [14] and Davila et al. [5]. Therefore, it 

would be interesting to know the impact of different gaps between vehicles towards aerodynamic forces of each vehicle 

involved in the platoon. Furthermore, only a small number of studies have studied the relationship between drag and lift 

to each car in a platoon and this phenomenon has not been fully understood. With high-speed cars being a common 

phenomenon today, reducing the coefficient of lift to improve stability on the road is no longer a concern for racing cars 

ABSTRACT – Aerodynamics of vehicles account for nearly 80% of fuel losses on the road. Today, 
the use of the Intelligent Transport System (ITS) allows vehicles to be guided at a distance close 
to each other and has been shown to help reduce the drag coefficients of the vehicles involved. In 
this article, the aim is to investigate the effect of distances between a three car platoons, to their 
drag and lift coefficients, using computational fluid dynamics. To that end, a computational fluid 
dynamics (CFD) simulation was first performed on a single case and platoon of two Ahmed car 
models using the STAR-CCM+ software, for validation with previous experimental studies. 
Significant drop in drag coefficients were observed on platoon models compared to a single model. 

Comparison between the k- and k- turbulence models for a two car platoon found that the k- 
model more closely approximate the experimental results with errors of only 8.66% compared to 

21.14% by k- turbulence model. Further studies were undertaken to study the effects of various 
car gaps (0.5L, 1.0L and 1.5L; L = length of the car) to the aerodynamics of a three-car platoon 
using CFD simulation. Simulation results show that the lowest drag coefficient that impacts on 
vehicle fuel savings varies depending on the car's position. For the front car, the lowest drag 
coefficient (CD) can be seen for car gaps corresponding to X1 = 0.5L and X2 = 0.5L, where CD = 
0.1217, while its lift coefficient (CL) was 0.0366 (X1 and X2 denoting first to second and second to 
third car distance respectively). For the middle car, the lowest drag coefficient occurred when X1 = 
1.5L and X2 = 0.5L, which is 0.1397. The lift coefficient for this car was -0.0611. Meanwhile, for the 
last car, the lowest drag coefficient was observed when X1 = 0.5L and X2 = 1.5L, i.e. CD = 0.263. 
The lift coefficient for this car was 0.0452. In this study, the lowest drag coefficient yields the lowest 
lift coefficient. The study also found that for even X1 and X2 spacings, the drag coefficient increased 
steadily from the front to the last car, while the use of different spacings were found to decrease 
drag coefficient of the rear car compared to the front car and had a positive impact on platoon 
driving and fuel-saving. 
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alone [15]. A previous study indicated that platoons with large number of vehicles may not be practical due to instabilities 

and traffic conditions [16], and as a result, we limit our attention in the present study to a three vehicle platoon. 

Currently, computational fluid dynamics (CFD) simulations have been widely used in place of actual experiments for 

analyzing the flow of air around a body due to their improved processing time and ability to analyze various situations or 

conditions that are not practical by experiments. Not surprisingly, the overall validation of fluid simulation is dependent 

on the turbulent model and meshing scheme applied [17,18]. For the aerodynamic simulation study of vehicles using 

CFD, the two RANS (Reynolds-Averaged Navier Stokes) models frequently used are the k-epsilon (k-) and k-omega (k-

) models. Nevertheless, the type of model that provides the most accurate and time-saving solution for the case of 

platoon vehicles is unknown. Hence, it is important to compare the simulation between k- and k- models to identify 

the appropriate turbulent model in terms of accuracy and computational efficiency for this study. 

In the present study, the Ahmed car model based on the study of Ahmed et al. [19] has been used. An Ahmed body 

or model is basically a simplified car model with a rear slant [20]. The Ahmed model is composed of a flat but rounded-

edge forward section, a removable slant section placed at the rear of the body to study separation phenomena at different 

rear inclination angles, and a rectangular box that connects the front and rear inclination angles [21]. It is widely used to 

represent the shape of a real car because of its simple geometry for modeling, and the ability to emulate the typical car 

airflow especially sedan-shaped cars as in studies by Bayraktar et al. [22], Minguez et al. [23], Bruneau et al. [24], Serre 

et al. [25] and Madharia et al. [26]. Figure 1 shows an actual model of an Ahmed car. In this study, we considered a rear 

slant angle of 30o, which replicates drag coefficients and typical slant angle of present cars. 

 

 

Figure 1. An Ahmed car model [21] 

 

METHODS AND MATERIALS 

Geometry and Flow Domain 

The present aerodynamic studies of three cars in tandem using computational fluid dynamics had involved two main 

phases. The first phase involved the construction of Ahmed's car model geometry and fluid domain using CAD Inventor, 

while STAR-CCM+ software was used to run aerodynamic simulations on the car model. Figure 2 presents the geometry 

of the Ahmed car model and computational flow domain used in the numerical simulations. The length (L), width (W) 

and height (H) of the Ahmed body are 1044 mm × 389 mm × 288 mm respectively [19,20].   

 

 
 

(a) (b) 

Figure 2. (a) Computational domain and (b) Geometry of Ahmed car model (courtesy of [19,20]) 
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The streamwise (ie. x-direction) dimension of the flow domain was set such that the distance from the front of the first 

body to the inlet is 2L and the distance from the rear of the last body to the outlet is 5L. While the spanwise (ie. z-direction) 

and height (ie. y-direction) of the flow domain were set as 1L × 2L respectively, giving a blockage ratio of approximately 

5.1%, which is within the recommended 10% limit where blockage effect may not be negligible [27]. 
A total of nine cases were studied that involved a gap of 0.5L, 1.0L and 1.5L between the cars. The study was limited 

to maximum spacing of 1.5L based on a research by Watkins and Vino [28], which found no significant change between 

the drag coefficient of a car in a platoon and a single car when exceeding such distance. X1 represents the distance between 

car 1 and car 2 while the X2 represents the distance of car 2 to car 3. Figure 3 shows the side view of car positions for 

simulation purposes. 

 

 

Figure 3. The position of the car and their distances for the simulation 

 

Flow Governing Equations 

The aerodynamics around the cars was captured using both the conservation of momentum and conservation of mass 

in the flow. For incompressible and Newtonian fluid, these correspond to the Navier-Stokes and continuity equations 

respectively. As the flow and wakes anticipated in this problem may possibly be unsteady and turbulent, we considered 

the unsteady Reynolds-Averaged Navier Stokes (RANS) turbulent models, which use the following form for the Navier-

Stokes and continuity equations:  
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𝜕�̅�𝑖
𝜕𝑥𝑖

= 0 (2) 

 

where �̅� and �̅�𝑖 denotes the time-averaged pressure and velocity components respectively (i = 1, 2, 3 for three-dimensional 

problems). In addition, 𝜇𝑒𝑓𝑓 = 𝜇 + 𝜇𝑡 represents the effective viscosity in the fluid considering its dynamic viscosity (𝜇) 

and viscosity due to turbulent effects (𝜇𝑡) - which needs to be determined using the RANS turbulence model used. In the 

present problem, standard air properties are used, where its constant density () is 1.225 kg/m3 and its dynamic viscosity 

(𝜇) is 1.856×10-5 kg/(m.s). 

For the selection of turbulent models, numerical experiments will be conducted on two types of RANS turbulent 

models available in STAR-CCM + to identify model with the least error compared to experimental results, which 

are:  

1. Realizable k-: The k- model solves two variables: k (ie. turbulence kinetic energy) and  (ie. turbulence kinetic 

energy dissipation rate). Turbulent k- model is very popular for industrial applications due to their good 

convergence rates and low memory requirements. It does not accurately model flow regions with adverse 

pressure gradients or strong curvature for flow, or a jet stream, but is useful for external flow problems around 

complex geometries. Realizable k- is an improvement from the standard k- [29]. This model contains a new 

formula for turbulent viscosity (𝜇𝑡) and new transport equations for dissipation rates . 

2. SST (Menter) k-: The k- model is similar to the k- model, but instead of solving the dissipation rate , it 

solves for  (ie. specific turbulence kinetic energy dissipation rate). It also uses wall functions and therefore has 

comparable memory requirements. It has more difficulty converging and is quite sensitive to the initial guess of 

the solution. Therefore, k- model is often used first to find the initial state to solve the k- model. This model 

is useful in many cases where the k- model is inaccurate, such as internal flow, flow that shows strong curvature, 

separated flows and jets. The shear stress transport (SST) model is a variant of the standard k- model that 
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utilizes a blending function, allowing it to behave like a k- model in the region near the wall and like a k- 

model in the free flow region of the fluid domain. 

 

Boundary Conditions 

Figure 4 shows the boundary types prescribed on all the boundaries in the computational domain and Table 1 

summarizes their corresponding boundary conditions employed in the present study. 

 

 
Figure 4. Boundary conditions defined in the flow domain 

  

Table 1. Boundary conditions prescribed in the present model 

Boundary 
Conditions 

Prescribed 
Input Parameters 

Inlet 

Velocity inlet 
U = 25 m/s, v = 0, w = 0 (for case studies)                 

U = 35 m/s, v = 0, w = 0 (for validation studies) 

Turbulent 

intensity 
1.8% 

Outlet Pressure outlet 0 Pa (relative atm. pressure) 

Left face Symmetry  

Car faces Wall No-slip 

Top, right, 

bottom face 
Wall Free-slip 

 

Numerical Grid Generation 

In order to solve the governing flow equations, the flow domain is discretized into smaller elements, allowing 

appropriate numerical schemes to be used. Figure 5 samples the meshing scheme tested and adopted in the present study. 

In general, a mesh control volume was used where finer grids are prescribed in regions close to the cars to accurately 

resolve the boundary layers, while coarser grids are generated away from the cars. This also includes finer grids behind 

and in between the cars to increase flow resolution in the wake regions of the cars. 

 

  

(a) (b) 

Figure 5. Meshing scheme employed: (a) single car (b) two-car platoon 
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To obtain accurate and time-saving simulation results, mesh independence studies were first conducted, involving 

comparisons with experimental results by Ahmed et al. [19] for the case of a single car and by Watkins and Vino [28] for 

a two-car platoon. In the first case involving a single car, it was found that a mesh with a total 230818 elements 

was sufficient to get results approximating the experimental value. Table 2 shows the drag coefficient comparison 

between the two types of turbulent models (k- and k-) involving a single car. 
  

Table 2. Comparison of drag coefficients for a single car 

Turbulence model 
Drag coefficient 

CD 

Error 

CD = 0.378 [19] 

k- 0.376 -0.56% 

k- 0.375 -0.88% 

  

Based on the results of the study, both turbulent models produced very low error values. However, the k- yielded 

closer drag coefficient value with the experiment (ie. 0.376) with only -0.56% error compared to k- with error -

0.88%. Taking into account the accuracy of k- in obtaining the drag coefficient values closest to the experiment, the 

mesh-independence study was continued using this turbulent model for two Ahmed body in a platoon arrangement (with 

gap 1L) and compared to the results of the wind tunnel experiments by Watkins and Vino [28]. Inlet velocity was set at 

35m/s with time-step of 0.001s. Table 3 shows the comparison of the drag coefficient results for three different mesh 

sizes for the rear car – one of which considers no volume control around the car (where a volume control prescribes finer 

grids inside a volume surrounding or close to the bodies, to increase flow resolution in this region). 

 

Table 3. Mesh-independence study of two-car platoon 

Total mesh 
Volume Control 

Around Car 

Drag coefficient 

CD 

Error 

CD = 0.25 [28] 

518435 No 0.312 19.87% 

724974 Yes 0.274 8.66% 

938092 Yes 0.275 9.22% 

  

Based on the table above, it can be seen that when volume control is not applied around the car, i.e. with total 518435 

elements, the drag coefficient obtained is significantly different than the value obtained from the experimental results, 

with error of 19.87%. When volume control is applied around the car, the mesh total increased to 724974 elements. The 

drag coefficient is approaching experimental value with an error of only 8.66%. The decline in this error is due to finer 

mesh detail in the rear car wake region that affects the value of the drag coefficient. The mesh is then increased to 938092 

elements to further refine meshing around the car. However, the value of the drag coefficient obtained is not significantly 

different from the previous mesh configuration. Hence, for the purposes of accuracy and time-saving simulation, the mesh 

model that produces 724974 elements will be used for simulation of the present three-car platoon using CFD. 

 

Numerical Setup and Discretization Scheme 

The three-dimensional flow governing equations were discretized and solved using a finite volume scheme, in a 

commercial CFD solver  (STAR-CCM+). A segregated flow algorithm was employed, where the pressure-velocity 

equations were solved separately, and coupled using a predictor-corrector scheme. For temporal discretization, a 

more stable implicit scheme was used for time-marching the unsteady solution. Atmospheric conditions with velocity 

equivalent to the inlet velocity were defined as the initial conditions. A time step of 0.001s was used in the simulation 

runs. In addition, air inlet velocity of 25 m/s - equivalent to 90 km/h, which is a realistic velocity level for fuel savings 

on the road, was considered in all the platoon case studies. 

Pressure forces were integrated from pressure distribution around the car surface and resolved to their x and y-

components to obtain respectively, the horizontal (𝑑𝑟𝑎𝑔) and vertical (𝑙𝑖𝑓𝑡) forces. The drag coefficient 𝐶𝐷 =
𝑑𝑟𝑎𝑔 (0.5𝜌𝑈2⁄ 𝐴) and lift coefficient 𝐶𝐿 = 𝑙𝑖𝑓𝑡 (0.5𝜌𝑈2⁄ 𝐴) were then determined based on the projected car frontal 

area 𝐴, which was estimated from the Ahmed body dimensions in Figure 2(b). 

Overall, the computations were undertaken on a computer using 8GB RAM Intel i5 processor. The maximum 

run time in some of the cases took approximately 12 hours.  
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RESULTS AND DISCUSSION 

Turbulence Model Study 

The objective of this study was to carry out computational fluid dynamic simulation involving different gaps between 

three cars. In addition, the second objective of the study was to identify the effect of the distance on drag and lift 

coefficients for each model of the car studied. The third objective is to identify the most suitable type of RANS turbulence 

model for simulation between k- and k- based on comparison with experiment results. Simulation results of one car 

and comparison with the study of Ahmed et al. [19] found that the turbulent k- model yields the closest results to 

experimental value with -0.56% error, compared to k- with error of 0.88%. The turbulent model study was further 

continued for a two-car platoon case and compared to experiments by Watkins and Vino [28]. Table 4 presents the 

comparison between the two turbulent models. 

  

Table 4. Comparison of drag coefficients for two car platoon 

Model Type 
Drag coefficient 

CD 

Error 

CD = 0.25 [28] 

k- 0.317 21.14% 

k- 0.274 8.66% 

  

Based on the table above, it can be seen that the turbulence k- model once again results in a closer estimation to 

experimental value with an error of 8.66% compared to the k- with an error of 21.14%. This may perhaps be due to the 

advantage of the SST (Menter) k- model in comparison to the k- model which may not be as accurate for near wall 

flow regions or flow with strong curvatures. Instead, the SST model behaves like a k- model in near wall regions, 

allowing more accurate prediction for cases involving separating flows as in this car model. Thus, for the next simulation 

involving three cars, SST (Menter) k- turbulence model will be used to find the drag and lift coefficients of each 

car. Figures 6 and 7 below illustrate the velocity streamlines for a single car and two car platoon case.  

 

 

Figure 6. Velocity streamline for a single car 

(contours colored by velocity magnitude (m/s)) 

 

Figure 7. Velocity streamline of two cars (contours colored 

by velocity magnitude (m/s)) 

 

Based on the figure above, it can be seen in the case of a single car, the circulating flow known as the vortex is 

generated behind the car by the separation of the flow from the rear inclined angle of the car, as explained by Rajamani 

[13]. This strong vortex swirl contains high kinetic energy and reduces the rear pressure of the car, which then increases 

drag coefficient of the car. In the case of two car platoon, the presence of the second car resulted in the vortices generated 

from the rear of the first car to be disrupted, while reducing the vortex strength. As a result, the rear pressure of the first 

car is higher, yielding lower difference in pressure between the front and rear of the car and helped to reduce the drag 

coefficient of the car. 

 

Aerodynamic Forces 

In the case of three-car platoon, nine cases will be studied involving combination of distances between 0.5L, 1.0L and 

1.5L. X1 represents the distance between car 1 and 2 while the X2 represents the distance between car 2 and 3. Table 5 and 

Table 6 below show the results of the drag and lift coefficients generated by the simulation. 
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Table 5. Drag coefficient values for three-car platoon 

Case 

Car Distance 

1 & 2 

(X1) 

Car Distance       

2 & 3 

(X2) 

Drag Coefficient 

CD 

Car 1 Car 2 Car 3 

1 0.5L 0.5L 0.1217 0.2004 0.3408 

2 0.5L 1.0L 0.1242 0.2900 0.2740 

3 0.5L 1.5L 0.1244 0.3311 0.2630 

4 1.0L 0.5L 0.2179 0.1683 0.3100 

5 1.0L 1.0L 0.2252 0.2522 0.2856 

6 1.0L 1.5L 0.2244 0.2707 0.2670 

7 1.5L 0.5L 0.2257 0.1397 0.3152 

8 1.5L 1.0L 0.2546 0.2353 0.2934 

9 1.5L 1.5L 0.2493 0.2655 0.2734 

  

 

Table 6. The lift coefficient of three-car platoon 

Case 

Car Distance 

1 & 2 

(X1) 

Car Distance       

2 & 3 

(X2) 

Lift Coefficient 

CL 

Car 1 Car 2 Car 3 

1 0.5L 0.5L 0.0366 0.0560 0.1514 

2 0.5L 1.0L 0.0425 0.1829 0.0807 

3 0.5L 1.5L 0.0549 0.2738 0.0452 

4 1.0L 0.5L 0.0996 -0.0078 0.0951 

5 1.0L 1.0L 0.1311 0.0800 0.1089 

6 1.0L 1.5L 0.1145 0.0377 0.0700 

7 1.5L 0.5L 0.1598 -0.0611 0.1051 

8 1.5L 1.0L 0.1819 2.62E-8 0.0959 

9 1.5L 1.5L 0.1641 0.1014 0.0466 

  

Based on the above table, it can be noted that cars that produce the minimum drag and lift coefficient values are 

different for each case. For example, in case 1, the drag coefficient value is the minimum for the first car (i.e. 0.1217). This 

is in contrast to case 4 where the drag coefficient value is the minimum for the second car (i.e. 0.1683). Similarly, for the 

lift coefficients, in which case the minimum value for case 1 is the first car (i.e. 0.0366), while for case 9, the minimum 

value is at the last car (i.e. 0.0466). In general, the different minimum values for each case are due to differences in the 

distance between vehicles for each case studied. Additionally, data also shows that when the same distance is applied 

between the three cars, the drag coefficient will increase in the order from the first car to the second car and the third car. 

 

Aerodynamic Trend between Cars 

Based on the table above, graphs for both drag and lift coefficients against car distance were plotted to obtain a clearer 

and more detailed view of how drag and lift coefficients vary by car distance. This part of the results will be divided into 

three main cases. The first case is when the distance between X1 is set at 0.5L. The second case is when the distance of X1 

is 1.0L and the third case when the distance of X1 is set at 1.5L. For all three cases, the value of X2 was varied between 

0.5L, 1.0L and 1.5L, while drag and lift coefficient values were compared. Figures 8 and 9 respectively show graph of 

drag and lift coefficients against car distance, for the first case. 

Based on Figure 8, it is found that for the first car, the drag coefficient does not vary much although the distance varies 

between the second and third cars. This is due to the first car drag coefficient being influenced mainly by its distance to 

the second car i.e. 0.5L. For the first car, the lowest drag coefficient is when the distance between cars 2 and 3 is 0.5L 

(i.e. CD = 0.1217). For the second car, the lowest drag coefficient is also when X2 = 0.5L between cars 2 and 3, where CD 

= 0.2004. While for the third car, the lowest drag coefficient is when X2 = 1.5L between cars 2 and 3 (i.e. CD = 

0.2630). Overall for this case, the lowest drag coefficient value is on the first car i.e. when X1 = 0.5L between cars 1 and 

2, and X2 = 0.5L between cars 2 and 3, where CD = 0.1217. 
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Figure 8. Graph of drag coefficient against car distance for the first case (X1 = 0.5L, X2 = 0.5L, 1.0L and 1.5L) 

 

 

 
Figure 9. Graph of lift coefficient against the car distance for the first case (X1 = 0.5L, X2 = 0.5L, 1.0L and 1.5L) 

 

Turning our attention to Figure 9, it is found that the same pattern as the drag coefficient can be seen in the lift 

coefficient. For all three cars, the coefficient of lift is the lowest for the same car distance as the drag coefficient, where 

CL is 0.0366, 0.0560 and 0.0452. In addition, it was found in this case that the first car produced the lowest lift coefficient 

value when X1 = 0.5L between cars 1 and 2 and X2 = 0.5L between cars 2 and 3. The study was then continued with the 

second case where the distance was extended to 1.0L between cars 1 and 2. Figure 10 and Figure 11 respectively shows 

graph of the drag and lift coefficient versus distance between cars for the second case. 

 

 
Figure 10. The drag coefficient graph against the car distance for the second case (X1 = 1.0L, X2 = 0.5L, 1.0L and 1.5L) 
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In this second case, it can be seen that when the distance is extended from 0.5L for the first case to 1.0L for the second 

case, the average drag coefficient of the first car increases. This is because when the distance between the cars goes 

farther, the vortex strength behind the first car is recovered (i.e. not disrupted by proximity of neighboring car) which 

reduces the back pressure of the first car while increasing its drag coefficient. This is verified by the velocity vector plots 

in Figure 16 and 17. A fully developed recirculation region can be seen (behind car 1) when car 2 is sufficiently far from 

car 1, in comparison to the under-developed recirculation region when car 2 is 0.5L away from car 1, as shown in Figure 

17 and 16 respectively. For the second car, just like in the first case, the lowest CD value is when the distance between 

cars 2 and 3 is 0.5L. Similarly, for the third car, the lowest CD value is when the gap between cars 2 and 3 is 1.5L. Overall, 

the lowest drag coefficient in this case is for the second car i.e. when car gap is 1.0L between cars 1 and 2, and 0.5L gap 

between cars 2 and 3 (where CD = 0.1683). 

  

 
Figure 11. Graph of lift coefficient against car distance for the second case (X1 = 1.0L, X2 = 0.5L, 1.0L and 1.5L) 

 

Based on Figure 11, significant differences are seen between the first, second and third car lift coefficients. On 

average, the second car clearly produces the lowest coefficient of lift compared to the first and third cars. The lowest lift 

coefficient in this case is on the second car with a distance of 1.0L between cars 1 and 2, and 0.5L between cars 2 and 

3 (i.e. CL = -0.0078). The negative value in this coefficient of lift indicates that there is a change in the direction of lift to 

a force that push down the car rather than lifting the car upwards. This increases the attraction force between the car to 

the road surface without increasing the load of the car. 

 

 
Figure 12. The graph of drag coefficient against car distance for the third case (X1 = 1.5L, X2 = 0.5L, 1.0L and 1.5L) 

 

Figure 12 shows a drag coefficient graph against the distance between cars for the third case, where the spacing for 

cars 1 and 2 is fixed at 1.5L. It can be seen that the average drag coefficient for the first car is highest in this third case 

compared to its first and second cases. This proves the initial expectation of the study where, as the distance between cars 

1 and 2 goes farther, the drag coefficient of the first car is increased and approaches the single car drag coefficient. Overall 

in this case, the lowest drag coefficient value is obtained for second car when X1 = 1.5L between cars 1 and 2, and X2 = 

0.5L between cars 2 and 3 (i.e. CD = 0.1397). 
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Figure 13. Graph of lift coefficient against car distance car for third case (X1 = 1.5L, X2 = 0.5L, 1.0L and 1.5L) 

 

Based on Figure 13, there are different patterns between the first, second and third cars. For the first car, the average 

coefficient of the lift is the highest compared to the second and third cars. The second and third car shows an upward and 

downward pattern respectively, for their lift coefficient when the distance between cars 2 and 3 is increased. In addition, 

for this third case (X1 = 1.5L between cars 1 and 2), the lowest lift coefficient value is in the second car when X2 = 0.5L 

between cars 2 and 3 – i.e. CL = 0.0611. Overall, the car that yields the lowest drag or lift coefficients varies for each case 

of the distance being studied. There appears a link between the two aerodynamic values where the car that produces the 

lowest drag coefficient also yields the lowest lift coefficient. 

 

Fluid Flow Visualization 

Figure 14 depicts velocity streamline on car platoon that produces the lowest drag and lift coefficients on the first car, 

where CD = 0.1217 for the first car, 0.2004 for the second car and 0.3408 for the third car. The distance between cars 1 

and 2 and 2 and 3 is equal to 0.5L. Figure 14 shows the difference in the vortex behind the cars, where for the first car, 

the vortex is weaker and could not be formed compared to behind the second and third cars. This also reduces the kinetic 

energy behind the first car. The results can be seen with the low streamline velocity recorded behind the first car. This 

low velocity increases the rear pressure of the first car, which reduces the drag coefficient of the car. For platoon cases 

producing the lowest drag coefficient on the second car, it can be seen clearly for X1 = 1.5L distance between cars 1 and 

2, and X2 = 0.5L between cars 2 and 3. Figure 15 below shows the velocity streamline of this platoon case. 

 

 

Figure 14. Car velocity streamline (X1 = 0.5L, X2 = 0.5L) 
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Figure 15. Car velocity streamline (X1 = 1.5L, X2 = 0.5L) 

 

Based on Figure 15 above, the difference in vortex formed behind the three cars could be observed. In this case, the 

second car recorded the lowest drag coefficient of 0.1397 in comparison to 0.2257 for the first car and 0.3152 for the third 

car. From the resulting streamline, for the first car, the distance with the second car of 1.5L causes no effective interference 

in the production of vortex swirls behind the first car, thereby increasing the rotary kinetic energy while reducing the 

vehicle's back pressure and raising the drag coefficient. The same can be seen on the last car on this train where no back-

to-back car interfering with its vortex, causing a high drag coefficient. Meanwhile, for the second car, the presence of a 

third rear car at a distance of 0.5L disrupts the production of vortex swirls, which reduces the resulting kinetic energy, 

while increasing the rear pressure of the car and reducing its drag coefficient. The rear velocity of the second car also 

indicates low velocity region corresponding to high rear pressure compared to rear regions of other cars. 

 The car lift coefficient is closely related to the attractive force of the car to the road surface. When the force is positive, 

the force will be directed upwards and reduces the stability of the car, while when it is negative, the force will act 

downward and increase the stability and attraction of the car to the surface. Figure 16 shows the velocity contour resulting 

in the case where the lowest drag coefficient is on the first car. 

 

 

Figure 16. Car velocity vector (X1 = 0.5L, X2 = 0.5L) 

 

Figure 16 shows the car velocity vector for distance equals 0.5L between cars 1 and 2, and cars 2 and 3. In this case, 

the coefficient of lift for the first car is lowest with CL = 0.0366 compared to 0.0560 for second car and 0.1514 for third 

car. It could be observed from the flow velocity that in the first car, its velocity below the car is highest compared to the 

second and third cars. Based on the principle of Bernoulli, with high velocity, the value of pressure under the car will 

decrease, thereby reducing its lift coefficient and improving the stability of the car on the road. Figure 17 below shows 

the platoon case that produces negative lift coefficient on the second car. 
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Figure 17. Car velocity vector (X1 = 1.5L, X2 = 0.5L) 

 

In the case where X1 = 1.5L , the value of the lift coefficient for first of the three cars is not much different when X2 is 

varied. However, the negative lift coefficient that results in the second car when X2 = 0.5L indicates a change in the 

direction of the its lift from pushing upwards to pushing downwards. Based on Figure 17 above, this phenomenon may 

be explained by high flow velocities below the car resulting in significant pressure drop underneath and reduced drag 

coefficients, in addition to the proximity of the car behind that assists aerodynamic efficiency of the second car. This 

downforce generate traction between the car and the road surface while improving the stability of the car.  

 

CONCLUSIONS 

Based on the simulation conducted and comparison with the single car experimental study by Ahmed et al. [19], it 

was found that the turbulent k- approximate the experimental value with error of -0.56% compared to the k- model 

which had an error of 0.88%. The next comparison of two Ahmed car with experiments by Watkins and Vino [28] found 

that the k- model was more accurate (with error of 8.66%) compared to k- model with a high error of 21.14%. This 

study has also successfully undertaken a computational fluid dynamic simulation involving different gaps for three 

Ahmed cars in a platoon. A total of 9 gap cases were investigated between cars 1 and 2 (X1) and cars 2 and 3 (X2) involving 

0.5L, 1.0L and 1.5L distances. It was found that the lowest drag coefficient that impacts on vehicle fuel savings varied 

depending on car positions. It can be concluded that the for lead car ahead, the lowest drag coefficient may be observed 

for a distance X1 = 0.5L and X2 = 0.5L (where CD = 0.1217). The lift coefficient for this car is 0.0366. For the middle car, 

the lowest drag coefficient occurs at distance X1 = 1.5L and X2 = 0.5L, where CD is 0.1397. The lift coefficient on this car 

is -0.0611. Meanwhile for the last car, the lowest drag coefficient may be seen when X1 = 0.5L and X2 = 1.5L, i.e. CD = 

0.2630. The coefficient of lift for this car is 0.0452. Drag coefficients were also found to decline from front car to rear 

car when different gaps are set between three cars and have a positive impact on fuel savings for cars in a platoon.  
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