
JOURNAL OF MECHANICAL ENGINEERING AND SCIENCES (JMES) 
ISSN: 2289-4659     e-ISSN: 2231-8380 
VOL. 15, ISSUE 2, 7964 – 7982 
DOI: https://doi.org/10.15282/jmes.15.2.2021.03.0628  

 

 

 
*CORRESPONDING AUTHOR  |   R. Chiremsel  |   ra24inf81@gmail.com 7964 
© The Authors 2021. Published by Penerbit UMP. This is an open access article under the CC BY license.  
 

ORIGINAL ARTICLE 

CFD analysis of unsteady and anisotropic turbulent flow in a circular-sectioned 90° 
bend pipe with and without ribs: A comparative computational study 

 R. Chiremsel1,*, A. Fourar1, F. Massouh2 and Z. Chiremsel3     

1 Department of Hydraulics, University of Batna 2, Research Laboratory in Applied Hydraulics, Constantine road N°53 Fesdis, Batna 05078, Algeria 
Phone: +21333230202; Fax: +21333230222. 
2 National Higher School of Arts and Crafts (ParisTech; ENSAM), Laboratory of Fluid Mechanics 75013, France 
3 Safety Department, University of Batna2, IHSI-LRPI, Constantine road N°53.Fesdis, Batna 05078, Algeria 

 

 

ARTICLE HISTORY 
Received: 20th July 2020 
Revised: 27th Oct 2020 
Accepted: 15th Dec 2020 
 

KEYWORDS 
RSM; 
unsteady flow; 
anisotropy function; 
Dean number; 
invariant anisotropy map 

INTRODUCTION 

Turbulent flows are common physical phenomena, which are very numerous in industrial and natural environments. 

They are the physical counterpart of the nonlinearity of the Navier-Stokes nonlinear differential equation, which is one 

of the most important in all physics arising from the fundamental principle of Newton’s dynamics associated with the 

forces applied to a fluid in motion. Despite all the astounding and exceptional observations made by scientists and the 

existence of credible mathematical models faithfully reflecting turbulence, the latter remains so complex that it is almost 

impossible for physicists to make a clear statement on the matter. Turbulent flows occur in the fields of industry, fluid 

engineering, which seek to make good use of turbulence in order to improve mixing processes, prediction, and control of 

noise due to pressure fluctuations, improve heat exchange and mass transfers, and determine the hydraulic performance 

of equipment.  

A study of turbulent, unsteady and anisotropic flows in 90° bend pipes is of great practical importance where 

anisotropy plays a role in the production of turbulent energy. Almost all bend pipes are presented in 90° devices and 

equipment incorporating fluids and flows such as the pulling pipe of hydraulic turbines and centrifugal pumps, energy 

production systems, transport lines, as well as in the human body, such as blood circulation in vessels and air in the 

respiratory tract [1, 2]. The flow in such geometries is complex and consists of a primary flow in the axial direction and 

a secondary flow (which consists of longitudinal vortices) generated as a result of an imbalance between the centrifugal 

force and the pressure gradient in the radial direction of curvature. This makes the precise numerical simulation of the 

flow difficult, in particular for turbulent, unsteady and anisotropic flows with high Reynolds number where it is extremely 

interesting to have knowledge on the expected anisotropy in the flow field [3]. Modeling the anisotropy of Reynolds 

stress tensor is the most important and delicate element of the Reynolds stress model, where knowledge of the deviation 

from isotropy is essential. 

For this reason, the numerical simulation of the unsteady turbulent flows presenting an anisotropy between the 

turbulent normal stresses and the secondary flows induced by the ribs drawn up across the 90° bend of circular section to 

explore their influence on the disturbance of the flow arouses great scientific interest in the understanding and modeling 

of the various unsteady phenomena and a certain application interest, notably in the industrial field and has received much 

greater attention than suggests that the small amount devoted to it in specific works.  

ABSTRACT – The Reynolds–averaged Navier–Stokes (RANS) equations were solved along with 
Reynolds stress model (RSM), to study the fully-developed unsteady and anisotropic single-phase 
turbulent flow in 90° bend pipe with circular cross-section. Two flow configurations are considered 
the first is without ribs and the second is with ribs attached to solid walls. The number of ribs is 14 
ribs regularly placed along the straight pipe. The pitch ratios is 40 and the rib height e (mm) is 10% 
of the pipe diameter. Both bends have a curvature radius ratio, of 2.0. The solutions of these flows 
were obtained using the commercial CFD software Fluent at a Dean number range from 5000 to 
40000. In order to validate the turbulence model, numerical simulations were compared with the 
existing experimental data. The results are found in good agreement with the literature data. After 
validation of the numerical strategy, the axial velocity distribution and the anisotropy of the 
Reynolds stresses at several downstream longitudinal locations were obtained in order to 
investigate the hydrodynamic developments of the analyzed flow. The results show that in the 
ribbed bend pipe, the maximum velocity value is approximately 47% higher than the corresponding 
upstream value but it is 9% higher in the case of the bend pipe without ribs. It was also found for 
both cases that the distribution of the mean axial velocity depends faintly on the Dean number. 
Finally, it can be seen that the analyzed flow in the bend pipe without ribs appears more anisotropic 
than in bend pipe with ribs. 
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Several researchers have studied turbulent flows in bend pipes using theoretical, experimental and numerical methods. 

Ito [4] experimented with fully developed turbulent flow in a series of curved pipes, each with a different radius of 

curvature, Rc. He produced an experimental semi-empirical formula to calculate the frictional factor in smooth curved 

pipes. Lyne [5] initiated the theoretical study of unsteady flows in curved pipes, did the first experiment to confirm his 

theoretical findings. However, the experimental structure in his work was over simplified, and because of the small 

thickness of the Stokes layer, he could detect only the secondary motion in the interior tube region. Munson [6] 

investigated the unsteady flow caused by an oscillating axial pressure gradient in a curved pipe and determined the 

secondary velocity at the center of the pipe by recording the time for a spot of neutrally buoyant dye to travel a specified 

distance. Humphrey et al. [7] investigated the steady, incompressible, isothermal, developing flow in a square-section 

curved duct with smooth walls. The longitudinal and radial components of mean velocity and corresponding components 

of the Reynolds stress tensor were measured with a laser-Doppler anemometer along with the secondary mean velocities, 

driven mainly by the pressure field. Humphrey et al. [7] and Taylor et al. [8] measured the velocities of water and wall-

pressure of developing turbulent flow through a square-sectioned 90° bend with a 4.5 radius ratio (with a short upstream 

tangent), which is the magnitude of the mean curvature radius to the half hydraulic diameter of the bend, using laser 

doppler velocimetry (LDV). They found that the boundary layer thickness at the start of the bend is important to the flow 

development within the bend, the pressure-driven secondary flows were much stronger than the stress-driven secondary 

flows and they provided detailed results including Reynolds stresses. Enayet et al. [9] and Azzola et al. [10] used laser 

doppler velocimetry for the measurements of water turbulent flows in bends with a circular cross-section. Longitudinal 

mean, fluctuating velocities and turbulent intensity fields were measured in a 90° bend with a radius ratio of 5.58 at a 

Reynolds number of 43000 by Enayet et al. [9]  and in a 180° bend with a radius ratio of 6.75 at Re of 57400 and 110000 

by Azzola et al. [10]. Unfortunately, these data are limited only to the longitudinal direction. Bovendeerd et al. [11] 

measured the velocity fields in a 90° bend with curvature ratio Rc/D=3, at Re=700 using the Laser Doppler Velocimetry 

(LDV). They choose oil and kerosene as a working fluid in order to match the refractive index of fluid to that of bend 

material. They obtained the time-averaged axial and secondary flow velocities. Ohadi and Sparrow [12] studied the heat 

transfer in the straight pipe downstream of a bend. Ohadi et al. [13] measured the pressure distribution in the pipe 

downstream of the bend. For a 90° elbow with the hydrodynamically-developed flow at the inlet to the elbow, they found 

only small differences in pressure gradient and friction coefficient in the pipe downstream of the elbow up to X/D=20, 

compared to those corresponding to fully developed flow. Al-Rafai et al. [14] performed an experimental and numerical 

study of turbulent airflow in the downstream region of the circular pipe bends to investigate the influence of Rc/D on the 

flow. Anwer and So [15] characterize the secondary motions in the following way: a so-called Dean cell is found near 

the pipe wall at the inside of the bend. This cell is directly driven by the centrifugal force and is therefore always present. 

A second cell may form near the pipe center as a result of a local imbalance between the centrifugal force and the pressure 

gradient. Finally, a third cell can sometimes be found at the outside of the bend. Its formation is attributed to the anisotropy 

of the turbulent normal stresses and their gradients. The second cell is only present in developing flow and the third cell 

is only found in a flow with a rather high Dean number. Kim and Patel [16] using a five-hole pressure probe and two-

sensor hot-wire probes measured mean velocities and Reynolds stresses for developing turbulent flow in a 90° curved 

duct of rectangular cross-section. Their data showed that within the bend there is an extensive region of two-dimensional 

boundary layers under strong stream-wise curvatures and attendant pressure gradients. Moreover, their results showed 

the development of the pressure-driven secondary motion in the corner region which eventually leads to the formation of 

a longitudinal vortex on the convex wall. Hilgenstock and Ernst [17] modeled 45°, 90°, and 135° bends. They compared 

two turbulence models, namely the standard k–ε and the renormalization group (RNG) k–ε models, to experimental data. 

The RNG k–ε model was found to agree well with the experimental data and predicted the velocity profiles more 

accurately than the standard k–ε model but at the expense of increased CPU time. Xiaofeng and Ted [18] simulated 

numerically flows in curved tubes using a third party software package, FIDAP. The purpose of the work was to 

investigate the axial and secondary motions of developing flows. Kim et al. [19] compared the standard k–ε, RNG k–ε, 

realizable k–ε, RSM, and Spalart–Allmaras turbulence models in a range of complex flow situations. They showed that a 

second-order discretization scheme should be used for complex flows and that the wall functions provided an effective 

means of modeling the near-wall regions in wall-bounded flows. The RSM gave the best predictions, as the three k–ε-

based models over-predicted the pressure recovery. Kim et al. [19] concluded that further studies were needed to 

understand the strengths and weaknesses of turbulence models in complex flows involving pressure gradient, streamline 

curvature, and separation. Sudo et al. [20] investigated experimentally the turbulent flow in a circular-sectioned 90° bend. 

The longitudinal, circumferential and radial components of mean and fluctuating velocities and the Reynolds stresses in 

the pipe cross-section at several longitudinal stations were obtained. They found that the curvature has a considerable 

impact on the pressure and velocity distributions. Kumar et al. [21] also conducted experimental studies in rough 90° 

bends of different radius ratio for single-phase flow and established that bend loss coefficient is minimum for a bend 

having radius ratio of 5.6 and also re-established that the flow disturbances caused by the bend persist up to 40–50 pipe 

diameters downstream of the bend and no significant disturbance is seen upstream of the bend. Hüttl and Friedrich [22] 

observed that the turbulent fluctuations in the curved pipe are drastically reduced compared to flow in a straight 

configuration and also provided a useful database, albeit at low Reynolds number, for flow modeling for a variety of 

configurations, including data for few selected terms of the Reynolds stresses. Kawamura et al. [23] measured the velocity 

field and turbulence intensity field in a 90° elbow with Rc/D=0.55, 1 and 2 at the Re=5×104 and 5×105 using LDV 

measurement. They focused on the turbulent intensity and the characteristics of the power spectrum of the turbulent 

intensity. They gave the important findings that the normalized power spectrum of the turbulent intensity was not affected 
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by the Reynolds number. Though the separation occurred in the case of Rc/D=0.55 and 1, the unsteady flow structure 

formed by the separation and the secondary flow was not mentioned in detail. Chang and Lee [24] conducted experiments 

using the two-dimensional particle image velocimetry technique (PIV) with 21°C water as the fluid. Time-averaged 

velocity distribution and turbulence intensity of the swirl flow generated by a tangential inlet were obtained for a 90°bent 

tube for Re=10000, 15000, 20000 and 25000. Spedding et al. [25] measured the pressure drop in curved pipes and elbow 

bends for both laminar and turbulent single-phase flow and developed empirical correlations. The transitional Reynolds 

number for curved pipes of large bends was also determined using empirical relation. Pruvost et al. [26] investigated the 

fluid flow in the 90° and 180°bend with a small curvature ratio (Rc/D=0.25) using different turbulence models and wall 

equations. The results showed that the relation between swirl motion and Dean motion is complicated and swirl motion 

has an inhibitory effect against Dean motion. Raisee et al. [27] investigated numerically developing turbulent flow through 

two different 90°curved ducts: a square duct and a rectangular duct. The low-Re models of turbulence are employed. The 

main objectives of their study are to examine how curvature alters flow development in the curved ducts and to explore 

the predictive capabilities of a recently modified variant of the cubic non-linear k-ε model, relative to those of the linear 

low-Re k-ε model, in predicting flow characteristics in curved ducts. According to the conclusions, both models could 

show a satisfactory prediction of the mean flow filed. The nonlinear k-ε model has better performance for turbulence 

field, pressure and friction coefficients, but it is not accurate for the prediction of flow recovery after the bend exit. 

Crawford et al. [28] investigated numerically the pressure drop for turbulent flow in 90° elbow bends. Shiraishi et al. [29] 

and Shiraishi et al. [30] measured the pressure fluctuation and observed the flow regime in the pipe with elbow with 

Rc/D=1 up to the Re=8.0×106. Although they concluded that the fluctuating pressure was generated by the movement of 

the boundary of flow separation and reattachment region, their data of axial velocity profile in the elbow measured by 

LDV was limited at several positions and not enough to understand clearly the complex and unsteady flow field around 

the flow separation region. Mojtaba et al. [31] used the PIV technique allows reliable measurement of the velocity vectors 

of the secondary motion in a developing laminar pulsating flow through a curved pipe. Analysis of the vorticity and strain 

variations during an oscillation period then identifies favorable pulsating conditions that enhance mixing. Ono et al. [32] 

investigated using water experiments in elbows the mechanism of flow fluctuation induced by the interaction between 

the flow separation and secondary flow due to the elbow curvature. The elbow curvature ratio was chosen as an 

experimental parameter in order to change the intensity of the secondary flow induced by the centrifugal force. The time-

series of velocity fields in the elbows were measured using a high-speed Particle Image Velocimetry (PIV). Noorani et 

al. [33] investigated the evolution of selected characteristics of the turbulent flow in straight to bent pipes over a limited 

range of Reynolds numbers and curvatures. Min and Zhiguo [34] provided high-resolution velocity maps of the primary 

and secondary flow upstream and downstream of a 90° bend pipe. The flow field parameters were obtained using 

numerical methods at Re=10000. One of the particular areas of interest is the behavior of the vorticity, turbulent structure, 

specifically the Dean vortex and swirling flow upstream and downstream of a 90° bend pipe. Niu and Dou [35] used the 

energy gradient theory to analyze numerical simulation of the flow in a 90° bend with a square cross-section. This study 

shows that the occurrence of instability is closely related to the evolution of the energy gradient function. Hellström et al. 

[36] investigated experimentally the secondary flow structures downstream of a 90° bend to try and resolve some of these 

ambiguities with Reynolds numbers between 2×104 and 1.15×105. Specifically, they investigated the nature of the swirl 

switching mode and its relationship to the Dean motions, using snapshot proper orthogonal decomposition (POD). Jongtae 

et al. [37] performed experimental and numerical studies on turbulent pipe flow after 90° elbows and to characterize the 

secondary flows induced by the 90° elbows including the dissipation characteristics. Dutta and Nandi [38] studied the 

pressure drop characteristics of single-phase turbulent flow downstream of the elbow for high Reynolds number (Re= 

1×105 to 10×105) and for different curvature ratio (Rc/D=1 to 5) using k-ε RNG turbulence model with standard wall 

function. Yan et al. [39] predicted by numerical simulation the fluid flows through a curved pipe for Rc/D>0.5. Flow 

behaviors such as, secondary flow, boundary layer separation and the oscillatory flow are illustrated and studied. 

Furthermore, the variation of flow characteristics, such as the turbulence intensity and the secondary flow intensity is 

estimated for a given flow condition. Röhrig et al. [40] compared RANS and LES simulations to PIV data on cross-

sections downstream of the elbow, validating the LES velocity and pressure field calculations. Dutta et al. [41] presented 

the simulation of the flow pattern in 90° pipe bends with different curvature ratios with different Reynolds numbers. The 

details of the flow pattern throughout the bend were studied. The variations of velocity profiles with curvature ratio and 

Reynolds number were studied. The dependency of swirl intensity on a wide range of curvature ratio and Reynolds 

number are unique features. Wang et al. [42] employed Direct Numerical Simulation and studied a turbulent pipe flow 

with 90° bends. 

In this study, we examine the development of unsteady and anisotropic turbulent flow while considering a circular-

sectioned 90° bend pipe with and without ribs. This geometry is of particular interest since it has been the subject of 

multiple experimental campaigns and numerical studies in recent years which have made it possible to advance in the 

understanding of the flow topology involved in this hydraulic installation. 

To select a suitable turbulence model for the numerical simulation of an unsteady and anisotropic turbulent flow in a 

bend pipe, the validation of the numerical results of the turbulence model is very important. The experiments carried out 

by Sudo et al. [20] on turbulent flows in 90° bend pipe are used to validate the chosen turbulence model. With this in 

mind, the RSM turbulence model was selected to evaluate accurately the characteristics of the analyzed flow at the outlet 

of the bends, but its application to turbulent flows in three-dimensional complex engineering problems requires 

tremendous computational resources. Simulations are carried out to choose the mesh which gives the best compromise 

between the precision of the results and calculation time. 
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Useful tools for quantifying the degree of anisotropy in turbulent flows are anisotropy maps. These maps represent a 

domain in which all the invariants of the realizable Reynolds stresses must be found. In this work, an invariant anisotropy 

map (AIM) which is a representation proposed by Lumley and Newman [43] is used. 

Considering the above, the objectives of this work are, therefore, on the one hand, to study the effect of the 90° bend 

pipe with and without ribs on the degree of anisotropy of turbulence to improve our knowledge and on hydraulic 

performance inherent phenomena (velocity distributions, departures from isotropy) at the exit of the curvature, while 

carrying out a comparative study between these two geometric models and on the other hand to assess the capacity of the 

RANS turbulence modeling approach and the RSM turbulence model to faithfully reproduce the flow in these systems as 

part of the numerical simulation of an unsteady and anisotropic turbulent flow by considering a total of four flow 

conditions. These flow conditions are selected to study the effect of the increase in the Dean number on the behavior of 

the type of flow studied.  

 

DESCRIPTION OF THE PHYSICAL PROBLEM 

The problem that is considered here is the fluid flow characteristics through two circular-sectioned 90° bending pipes 

having a diameter D=50 (mm) and curvature ratio (Rc/D)=2. For both cases, the lengths of the upstream and downstream 

sections are 15D and 10D respectively. The first bend pipe is considered without ribs and the second is with square ribs. 

The number of which is 14 ribs regularly placed along the straight pipe. The pitch ratios Pt/e=40 where Pt-e=195 (mm) 

is the distance between two successive ribs and e (mm) is the rib height. The rib height e is 10% of the pipe diameter 

(e/D=0.1). It is defined that the axial direction downstream the bend is x-coordinate, the direction from the inner core to 

the outer core of the bend is y-coordinate and the perpendicular direction to x and y is z-coordinate. The geometry of the 

flow field for both cases is shown in Figure 1.  

 

 

Figure 1. Schematic representation of bends investigated: (a) 90° bend pipe without ribs and, (b) 90° bend pipe with 

ribs  

 

GOVERNING CONSERVATION EQUATIONS OF TURBULENT FLOW  

Three-dimensional governing equations under consideration of the RANS simulation are solved using the finite 

volume method [44]. The second-order upwind scheme was implemented for the solution of momentum terms. The 

SIMPLE algorithm is used for pressure-velocity coupling [45]. 

Considering an incompressible and Newtonian fluid, three-dimensional continuity and momentum equations used in 

this numerical analysis in cartesian tensor notation can be written respectively as in Eq. (1) and (2). 

 
𝜕𝑈𝑖

𝜕𝑥𝑖

= 0        (1) 

  

𝜕𝑈𝑖

𝜕𝑡
+

𝜕

𝜕𝑥𝑗

𝑈𝑖𝑈𝑗 = −
1

𝜌

𝜕𝑃

𝜕𝑥𝑖

+ 𝜈
𝜕2𝑈𝑖

𝜕𝑥𝑗
2 −

𝜕

𝜕𝑥𝑗

(𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅ )        (2) 

 

where Ui (m/s) is the axial mean velocity, P (Pa) the mean pressure, xi (m) the coordinate vector, t (s) the time, ρ (kg/m3) 

the density, ν (m2/s) the kinematic viscosity while 𝑢𝑖
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′̅̅ ̅̅ ̅̅  (m2/s2) denotes the Reynolds stress tensor. 
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The Reynolds averaging equations are preceded by a decomposition of the instantaneous values of velocity and 

pressure into a mean and a turbulent fluctuating quantity [46] which are given respectively in Eq. (3) and (4). 

 

𝑢𝑖 = 𝑈𝑖 + 𝑢𝑖
′  (3) 

 

where ui (m/s) is the instantaneous velocity and ui̍ (m/s) denotes the fluctuating velocity. 
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where pi (Pa) is the instantaneous pressure, Pi (Pa) the mean pressure and pi̍ (Pa) the fluctuating pressure. 

The new term 𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅  that appears in the RANS equation Eq. (2) somehow represents the average of the pulse transfer 

rate due to turbulence. In three dimensions, it is described by Eq. (5).  
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This term comes from the non-linearity of the convection term of the Navier-Stokes equations. It comes with the 

addition of a number of additional unknowns. The tensor being symmetrical, the number of additional unknowns is 6 for 

three-dimensional problems. This addition of unknowns without adding equations leads to the problem known as the 

closure problem. It will therefore naturally be necessary to find new equations to solve the system.  

 

Turbulence  Modelling Equations  

In order to close the RANS equations, a model of turbulence must be provided. The transport equations include a 

number of unknowns. The aim of turbulence modeling is to treat these unknowns in terms of the physically known 

properties. It is now accepted that, without modification, conventional turbulent viscosity models are incapable faithfully 

reproducing the behavior of secondary flows, whereas the Reynolds stress model has proved capable of predicting such 

flows. One of the main characteristics of second-order closings lies in the possibility of representing the different 

mechanisms that govern the evolution of double correlations [47]. 

In this paper, the Reynolds stress model (RSM) is proposed, the latter proved to be able to predict the anisotropy of 

turbulent flows [48]. RSM is theoretically more adapted when turbulence is found to be anisotropic, as in bend flows 

[49]. This RSM model is extremely complicated to solve the three-dimensional equations, where the differential transport 

equations are solved for each Reynolds stress component which requires more effort and time to simulate the flow. These 

equations include some terms that are exact and some that must be modeled [50]. The modeled terms require a variety of 

ad hoc wall damping functions and the numerical values of the coefficients are chosen based on empiricism [51].The 

exact transport equations for the transport of the Reynolds stresses, 𝑢𝑖
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𝜕𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅

𝜕𝑡
+ 𝑈𝑘

𝜕𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅

𝜕𝑥𝑘

= 𝜈
𝜕2𝑢𝑖

′𝑢𝑗
′̅̅ ̅̅ ̅

𝜕𝑥𝑘𝜕𝑥𝑘

−
𝜕𝑢𝑖

′𝑢𝑗
′𝑢𝑘

′̅̅ ̅̅ ̅̅ ̅̅ ̅

𝜕𝑥𝑘

−
1

𝜌
𝑢𝑖
′
𝜕𝑝′

𝜕𝑥𝑗

̅̅ ̅̅ ̅̅ ̅
−

1

𝜌
𝑢𝑗
′

𝜕𝑝′

𝜕𝑥𝑖

̅̅ ̅̅ ̅̅ ̅
− 𝑢𝑖

′𝑢𝑘
′̅̅ ̅̅ ̅̅ 𝜕𝑈𝑗

𝜕𝑥𝑘

− 𝑢𝑗
′𝑢𝑘

′̅̅ ̅̅ ̅̅ 𝜕𝑈𝑖

𝜕𝑥𝑘

− 2𝜈
𝜕𝑢𝑖

′

𝜕𝑥𝑘

𝜕𝑢𝑗
′

𝜕𝑥𝑘

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 (6) 

 

where  𝑢𝑖
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′̅̅ ̅̅ ̅̅ ̅̅ ̅ (m3/s3) is the triple correlations of fluctuating velocities. 

Equation (6) can be written as the following Eq. (7). 
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The turbulent production, convection, viscous dissipation, velocity-fluctuating pressure correlation, turbulent 

diffusive transport and molecular diffusion are defined using respectively following Eq. (8), (9), (10), (11), (12) and (13). 
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′𝑢𝑘

′̅̅ ̅̅ ̅̅
𝜕𝑈𝑖

𝜕𝑥𝑘

 (8) 

  

𝐶𝑖𝑗 = 𝑈𝑘

𝜕𝑢`𝑖𝑢 �̀�
̅̅ ̅̅ ̅̅ ̅

𝜕𝑥𝑘

 (9) 

  

𝜀𝑖𝑗 = 2𝜈
𝜕𝑢𝑖

′

𝜕𝑥𝑘

𝜕𝑢𝑗
′

𝜕𝑥𝑘

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 (10) 
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Ф𝑖𝑗 = −
1

𝜌
𝑢𝑖

′
𝜕𝑝′

𝜕𝑥𝑗

̅̅ ̅̅ ̅̅ ̅̅
−

1

𝜌
𝑢𝑗

′
𝜕𝑝′

𝜕𝑥𝑖

̅̅ ̅̅ ̅̅ ̅̅
 (11) 

  

𝐷𝑖𝑗
𝑇 = −

𝜕𝑢𝑖
′𝑢𝑗

′𝑢𝑘
′̅̅ ̅̅ ̅̅ ̅̅ ̅

𝜕𝑥𝑘

 (12) 

  

𝐷𝑖𝑗
𝜈 = 𝜈

𝜕2𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅

𝜕𝑥𝑘𝜕𝑥𝑘

 (13) 

 

The terms, 𝐶𝑖𝑗, 𝐷𝑖𝑗
𝜈  and 𝑃𝑖𝑗  can be preserved in their exact form, no modeling is necessary. However the terms 𝐷𝑖𝑗

𝑇 , Ф𝑖𝑗 

and 𝜀𝑖𝑗 require modeling that provides mathematical relationships to close the system. For the ε-based RSM, 𝐷𝑖𝑗
𝑇  can be 

modeled as given by Eq. (14) [52].  

 

𝐷𝑖𝑗
𝑇 =

𝜕

𝜕𝑥𝑘

(
𝜇𝑡

𝜎𝑘

𝜕𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅

𝜕𝑥𝑘

) (14) 

 

where σk is an empirical constant and µt is the turbulent viscosity (kg/(m.s)) which is computed by Eq. (15). 

 

𝜇𝑡 = 𝜌𝐶𝜇

𝑘2

𝜀
 (15) 

 

k (m2/s2) is the turbulent kinetic energy, 𝜀 (m2/s3) the turbulence dissipation rate and 𝐶𝜇 is an empirical constant. 

By default in ANSYS Fluent, the pressure-strain term, Ф𝑖𝑗 is modeled according to the proposals by Gibson and 

Launder [53], Fu et al. [54] and Launder [48]. The classical approach to modeling Ф𝑖𝑗 uses the following decomposition 

which is given in Eq. (16). 

 

Ф𝑖𝑗 = Ф𝑖𝑗,1 + Ф𝑖𝑗,2 + Ф𝑖𝑗,𝑤 (16) 

 

Ф𝑖𝑗,1 is the slow pressure-strain term, also known as the return-to-isotropy term, Ф𝑖𝑗,2 is called the rapid pressure-strain 

term, and Ф𝑖𝑗,𝑤 is the wall-reflection term. The slow pressure-strain term Ф𝑖𝑗,1 is modeled as in Eq. (17). 

 

Ф𝑖𝑗,1 = −𝐶1𝜌
𝜀

𝑘
(𝑢𝑖

′𝑢𝑗
′̅̅ ̅̅ ̅ −

2

3
𝛿𝑖𝑗𝑘) (17) 

 

The rapid pressure-strain term Ф𝑖𝑗,2 is modeled as in Eq. (18). 

 

Ф𝑖𝑗,2 = −𝐶2 ((𝑃𝑖𝑗−𝐶𝑖𝑗) −
1

3
𝛿𝑖𝑗(𝑃𝑘𝑘 − 𝐶𝑘𝑘)) (18) 

 

where 𝛿𝑖𝑗 is the Kronecker symbol, C1 and C2 are the empirical constants.  

The wall-reflection term Ф𝑖𝑗,𝑤 is responsible for the redistribution of normal stresses near the wall. It tends to damp 

the normal stress perpendicular to the wall while enhancing the stresses parallel to the wall. This term is modeled using 

the Eq. (19). 

 

Ф𝑖𝑗,𝑤 =   𝐶1
′

𝜀

𝑘
(𝑢𝑘

′ 𝑢𝑚
′̅̅ ̅̅ ̅̅ ̅𝑛𝑘𝑛𝑚𝛿𝑖𝑗 −

3

2
𝑢𝑖
′𝑢𝑘

′̅̅ ̅̅ ̅̅ 𝑛𝑗𝑛𝑘 −
3

2
𝑢𝑗
′𝑢𝑘

′̅̅ ̅̅ ̅̅ 𝑛𝑖𝑛𝑘)
𝐶𝜇

3/4
𝑘3 2⁄

𝜀𝑑𝜅

+ 𝐶2
′ (Ф𝑘𝑚,2𝑛𝑘𝑛𝑚𝛿𝑖𝑗 −

3

2
Ф𝑖𝑘,2𝑛𝑗𝑛𝑘 −

3

2
Ф𝑗𝑘,2𝑛𝑖𝑛𝑘)

𝐶𝜇
3/4

𝑘3 2⁄

𝜀𝑑𝜅
 

(19) 

 

where nk is the unit vector normal to the wall, d is the normal distance to the wall, κ the von Kármán constant while C1̍ 

and C2 ̍ denote an empirical constants. 

For Reynolds stress models based on the ε-equation, the dissipation tensor 𝜀𝑖𝑗 is modeled as shown in Eq. (20).  

 

𝜀𝑖𝑗 =
2

3
𝛿𝑖𝑗(𝜌𝜀 + 𝑌𝑀) (20) 

 

where YM is an additional dilatation dissipation term according to the model of Sarkar and Balakrishnan [55]. 
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𝑌𝑀 = 2𝜌𝜀𝑀𝑡
2 (21) 

 

From Eq. (21), the turbulent Mach number Mt is defined as: 

 

𝑀𝑡 = √
𝑘

𝑎2
 (22) 

 

where in Eq. (22), a (m/s) is the speed of sound. 

The scalar dissipation rate, ε, is computed with a model transport equation similar to that used in the standard k-ε 

model, it is found by solving its transport equation that can be denoted as in Eq. (23). 

 

𝜕

𝜕𝑡
(𝜌𝜀) +

𝜕

𝜕𝑥𝑖

(𝜌𝜀𝑢𝑖) =
𝜕

𝜕𝑥𝑗

[(𝜇 +
𝜇𝑡

𝜎𝜀

)
𝜕𝜀

𝜕𝑥𝑗

] +𝐶𝜀1

𝑃𝑖𝑖

2

𝜀

𝑘
− 𝐶𝜀2𝜌

𝜀2

𝑘
 (23) 

 

where µ (kg/(m.s)) is the dynamic viscosity while σε, Cε1 and Cε2 denote an empirical constants.  

The constant values for the Reynolds stress model are given in Table 1. 

 

Table 1. Empirical constants for the RSM model 

Cµ σk C1 C2 C1̍ C2 ̍ κ σε Cε1 Cε2 

0.09 0.82 1.8 0.6 0.5 0.3 0.4187 1.0 1.44 1.92 

 

MESH GENERATION AND GRID INDEPENDENCE STUDY 

In this study, for both geometries, 3D structured hexahedral meshes with inflation near the walls are used due to its 

capabilities in providing a high-quality solution with fewer numbers of cells, higher accuracy and reduce CFD 

computational effort [56, 57]. Using the sizing functions, a high adaptive mesh density was maintained in the bend and 

regions close to the wall and ribs where the mesh is stretched from the solid wall toward the centerline to gain a higher 

resolution near the wall, where better resolution is needed [58]. The value of non–dimensional distance from the wall 

(y+) is controlled using a wall treatment function. The wall treatment used for all of the computations reported is the 

standard wall function approach. The grid generation is a key issue in flow simulation that governs the stability, the 

accuracy of the predictions and the time of CFD numerical computation. A very fine grid is computationally more 

expensive and is necessary to ensure reasonable resolution of the mesh [59, 60]. The appropriate quality and quantity of 

grids are very important. In this study, five three-dimensional meshes are generated by using ANSYS ICEM to optimize 

the mesh convergence by study the effects of grid numbers on the stability of numerical results and ensure that the solution 

was independent of the mesh. They are summarized in Table 2. The convergence criterion used for these calculations is 

10-5 for continuity and 10-4 for the other flow equations.  

 

Table 2. Grid convergence study 

Mesh Number of nodes Number of elements 

Mesh1 602745 140070 

Mesh2 1605075 390264 

Mesh3 4019697 981834 

Mesh4 6234372 1534929 

Mesh5 12241833 3018520 

 

In Figure 2 the mean axial velocity profile at X/D=0 is used in a grid independence test where X (m) is defined as the 

position on the longitudinal axis, R (mm) is the radius of the pipe, r (mm) denotes the radial distance and the Dean number 

is De=3×104. Based on the results, it appears that the distribution of the mean axial velocity Ux normalized by the inlet 

velocity uin (Ux/uin) obtained for the mesh-5 does match with the profile obtained for the mesh-4. It can be clearly observed 

that the relative deviation of axial velocity between mesh-4 and mesh-5 is only 0.078%. Therefore, it was concluded that 

the mesh-4 consists of 1534929 elements and 6234372 nodes ensures a grid-independent solution and this mesh is used 

for all analyses in this study. 

Referring to Table 3, the mesh quality is excellent, where the metrics skewness and aspect ratio are equal to 0.25 and 

0.52 respectively. The following table lists the range of skewness values and the corresponding cell quality. 

 

https://www.coursera.org/lecture/fe-exam/continuity-and-energy-equations-energy-equation-examples-9mStZ
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Table 3. Classification of the mesh quality metrics based on skewness [61].  

0-0.25 0.25-0.50 0.50-0.75 0.75-0.9 0.9-<1 1 

Excellent Good Fair Poor Bad(sliver) Degenerate 

 

 

 

Figure 2. Normalized mean axial velocity distribution for different structured meshes 

 

Validation of Model 

After establishing grid independence, the selection of an appropriate turbulence model for the numerical simulation 

of an unsteady and anisotropic turbulent flow in a bend pipe is very important. For it, our turbulent model and simulation 

setup are first validated against the existing experimental data with air as the working fluid [20] where the measurements 

of velocities were performed at a Dean number of 3×104. The mean axial velocity profile normalized with inlet velocity 

along the symmetry line at different sections downstream the bend shows very good agreement with the experimental 

measurements currently available (see Figure 3). The four evolutions are perfectly superimposed and the observed 

difference between the different results is barely remarkable where for X/D=0, X/D=0.5, X/D=1 and X/D=2, the 

maximum errors of mean axial velocity differences range between 5% and 6% where a similar behavior is observed with 

the published results however at X/D=5 the errors is around 14%. This translates that in the case of experimental data of 

Sudo et al. [20], the mean axial velocity profile is significantly altered and take the form of the fully-developed turbulent 

profile. However, in the present simulation, a further longitudinal distance is required for the flow to be fully developed 

turbulent. The estimates of errors are summarized in the following table.  

 

Table 4. Measurement errors (%) 

X/D Error (%) 

0 

0.5 

1 

2 

5 

5.34 

5.75 

5.95 

5.54 

13.66 

 

In view of the above, the trends for the mean axial velocity profiles are well captured properly and accurately by the 

RSM model which appears superior in predicting the axial velocity peak; this is due that the RSM model was formulated 

by involving the strong anisotropic turbulent flows. However, the effort of obtaining the converged solution using RSM 

model is not easy. 

From the Figure 3, it was found that the use of the Reynolds stress model (RSM) presents a very sufficient 

approximation with the published results; therefore, this mesh generation and simulation configuration procedure was 

used for the rest of our study by adopting the RSM model as the turbulence model.  
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Figure 3. Comparisons of the non-dimensional mean axial velocity profiles with experimental data of Sudo et al. [20], 

along the symmetry line, at different sections downstream of the bend 
 

BOUNDARY CONDITIONS AND NUMERICAL DETAILS 

The resolution of the nonlinear governing equations presented above, is done by the use of the defined boundary 

conditions which are described in Figure 1. A total of four flow conditions, as shown in Table 5, are studied in this study. 

Inlet boundary conditions applied in entry are defined in terms of velocity, temperature, turbulent kinetic energy and 

specific dissipation rate. The velocity at the inlet was calculated based on the Reynolds number referred to the pipe 

diameter and entrance flow conditions. The fluid inlet temperature was fixed at 293k. The values of the turbulent kinetic 

energy and its specific dissipation rate are calculated from the inlet turbulence intensity and pipe diameter using Eq. (24) 

and (25) respectively. 
 

𝑘𝑖𝑛 = 1.5(𝐼𝑢𝑖𝑛
2) (24) 

  

𝜀𝑖𝑛 = (𝐶𝜇𝑘1.5)/0.3D (25) 

 

The turbulence intensity is defined by Eq. (26). 

 

𝐼 = 0.16𝑅𝑒−0.125 (26) 

 

At the pipe wall no slip boundary conditions for the velocity has been applied and the wall was treated as stationary. 

The outlet was given as outflow and the working fluid (water) was supposed to be incompressible with constant properties 

summarized in Table 6 where cp (J.kg−1.K−1) denotes the specific heat and k (W.m-1.k-1) is the thermal conductivity. The 

flow was assumed to be three-dimensional turbulent, unsteady and anisotropic.  

In the analysis of flows through bend pipes the Dean number is used frequently. It is defined according to the following 

equation: 

De = 𝑅𝑒√
D

2𝑅𝑐
 (27) 

 

From Eq. (27), Rc (mm) is the radius of curvature and Re is the Reynolds number. 

 

 

Table 5. List of flow conditions investigated in the current study 

Flow conditions De uin kin εin I (%) 

Run 1 5000 0.200 0.0001500 1.102E-5 5 

Run 2 10000 0.402 0.0005129 6.969E-5 4.60 

Run 3 20000 0.804 0.0017514 4.399E-4 4.25 

Run 4 40000 1.608 0.0058990 2.718E-3 3.90 

 

 

Table 6. Thermophysical properties of the fluid at T=293k 

ρ cp K µ 

998.21 4182 0.6024 0.001003 

 

The second-order upwind scheme was implemented for the solution of momentum terms. The SIMPLE algorithm is 

used for pressure-velocity coupling. The time step size and the number of time steps used in current simulations 

Sudo et al.         Present simulation
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considering established flow conditions are summarized in Table 7. The Solutions of these flows were obtained using the 

commercial computational fluid dynamics (CFD) software Fluent at a Dean number ranging from 5000 to 40000. Analysis 

results at different locations downstream of the bend were used in this study. 

 

Table 7. List of flow run calculations investigated in the current simulations 

 Bend pipe without ribs Bend pipe with ribs 

Flow 

conditions 

Time step 

size 

Number of 

time steps 

Time step 

size 

Number of time 

steps 

Run 1 18.970E-4 3708 20.810E-4 3381 

Run 2 9.438E-4 3708 10.353E-4 3381 

Run 3 4.719E-4 3708 5.177E-4 3381 

Run 4 2.359E-4 3708 2.588E-4 3381 

 

ANISOTROPY TENSORS 

To highlight the anisotropic character of the flow, it is often convenient to use the so-called anisotropy invariant maps 

(AIM) or Lumley triangles. To investigate and quantify the degree of anisotropy in turbulent flows, the technique 

proposed by Lumley and Newman [43], is based on the analysis of the anisotropy tensor 𝑎𝑖𝑗  which is the result of 

decomposing the Reynolds stress tensor into an anisotropic and an isotropic term as shown in Eq. (28) [43]. 

 

𝑎𝑖𝑗 =
𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅

2𝑘
−

1

3
𝛿𝑖𝑗 (28) 

 

The turbulent kinetic energy can be therefore defined as in Eq. (29). 

 

𝑘 =
1

2
𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅ =
1

2
(𝑢′2̅̅ ̅̅ + 𝑣 ′2̅̅ ̅̅ + 𝑤 ′2̅̅ ̅̅ ) (29) 

 

In matrix form, 𝑎𝑖𝑗  can be written as given in Eq. (30) below: 

 

[𝑎𝑖𝑗] = [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

] (30) 

 

This tensor has three independent scalar invariants, which are described by Eq. (31) to (33) [43, 62]. 

 

I = 𝑎𝑖𝑖 = 0 (31) 

 

where the invariant I is the trace of the anisotropy tensor 𝑎𝑖𝑗 , therefore it is identically zero. 

 

II = 𝑎𝑖𝑗𝑎𝑗𝑖 (32) 

  

III = 𝑎𝑖𝑘𝑎𝑘𝑗𝑎𝑗𝑖  (33) 

 

The second invariant II represents the degree of anisotropy whereas III represents the nature (or topology) of the 

anisotropy. A plot of -II versus III, defines the anisotropy invariant map (AIM which defines the domain of validity of 

the tensor 𝑎𝑖𝑗  whose limits are represented by Eq. (34), (35) and (36). 

 

9II + 27III + 1 = 0 (34) 

  

III = 2 (
−II

3
)

3/2

 (35) 

  

III = −2 (
−II

3
)

3/2

 (36) 
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Therefore, anisotropy can be more clearly seen from these anisotropy maps. Characteristic states of turbulence are 

represented by the boundaries of this map as shown in Figure 4.  

 

 

Figure 4. The anisotropy invariant map (AIM), showing admissible domain of anisotropy in invariant coordinates,  -II 

vs III [43] 

 

For the case of anisotropic turbulence we distinguish three states of anisotropy that occur within the bounds of the 

AIM. The upper limit of the AIM corresponds to two-component turbulence where one of the normal components of the 

Reynolds tensor is zero. The two curves correspond to the axisymmetric states, of type pancake-shaped (III ≤ 0) in which 

one component is smaller than the other two components which are equal and of type cigar-shaped (III ≥ 0) corresponding 

to a situation where one diagonal component of Reynolds stress tensor is larger than the other two equally distributed 

components. The origin of the graph (II=0, III= 0) corresponds to 3D isotropic turbulence, where 𝑢′2̅̅ ̅̅ ̅ = 𝑣′2̅̅ ̅̅ = 𝑤′2̅̅ ̅̅ ̅. The 

right corner point (2/27,1/3), characterizes one-component turbulence and the end of the left curve (-1/109,1/12), 

represents isotropic two-component turbulence. 

To evaluate the flow anisotropy, Lumley [3] introduced another invariant function J which is defined by Eq. (37). 

This function is used to determine the linear distance to the isotropic state. In another way, it measures the difference 

between isotropic and two-component turbulence. Therefore for two-component turbulence, J is close to zero and J=1 

for isotropic turbulence. 

 

J = 9II + 27III + 1 (37) 

 

RESULTS AND DISCUSSION 

The main objective of the current study is, on the one hand, the comparison of the hydrodynamic behavior of unsteady 

and anisotropic single-phase turbulent flow into 90° bend pipe without and with ribs through numerical simulation along 

the different positions downstream of the bend and on the other hand investigate how the ribs affect the three-dimensional 

unsteady and anisotropic turbulent flow and turbulence characteristics such as velocity distributions, anisotropy of the 

Reynolds stresses and anisotropy function. 

The results are reported in terms of the normalized mean axial velocity, Reynolds stresses anisotropy and anisotropy 

function as a function of Dean number ranging from 5×103 to 40×103.  

 

Mean Velocities 

The distributions of mean axial velocity normalized by the inlet velocity uin and its evolution with the increasing of 

downstream location and the Dean number are presented in Figure 5. The negative r (mm) values represent the inner core 

of the bend and the positive values represent the outer core. The data displayed are taken in the symmetry plane of the 

configuration according to the coordinate r which extends perpendicular to the centerline. 

An examination of Figure 5 shows that for the two geometric models considered, the distribution of the mean axial 

velocity does not present any great difference between the different Dean numbers used, which means that there is a 

similarity in the structure of the analyzed flow after the elbow with the radius of curvature adopted if the Dean number is 

between 5000 and 40000. We deduce that for the bend pipe with a small curvature ratio (Rc/D≤2) the Dean number is 

found as a weak function.  

For the case of bend without ribs Figure 5, we observe a significant shift of the peak velocity towards the outer wall 

just at the exit of the bend up to a distance X=2.5D. The velocity profile has an inflection point corresponding to a change 

in concavity causing a rate of increase in acceleration towards the outer wall of the pipe. This acceleration is due to the 

pressure gradients that develop at the entrance to the elbow due to the centrifugal force. The main characteristic of this 
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flow in this area is the appearance of camel back shapes in the distribution of velocity. These forms are the result of the 

loss of momentum. 

By moving away from the bend and from X=5D, we see that the flow tends to regain its fully developed form, the 

velocity profile is approximately symmetrical (flattened form) and similar behavior has been observed.  

From Figure 5 again, in the bend pipe with ribs, the fluid moves more quickly and the mean axial velocity has been 

accelerated at the central region of the pipe. The maximum velocity value is approximately 47% higher than the 

corresponding upstream value but it is 9% higher in the case of the bend pipe without ribs. 

It is found that the fluid is somewhat displaced towards the exterior surface of the wall. Consequently, the flow tends 

to regain its fully developed form in the inner heart downstream the bend by slowing the effects thanks to the ribs placed 

upstream and downstream of the bend where the flattened form in the central part of the pipe is observed at X=D. The 

recovery of the profile seems to be caused by turbulent transport, which should be more important in the presence of ribs. 

 

 

Figure 5. Comparison of normalized mean axial velocity profiles at different locations downstream the bends with and 

without ribs obtained with RSM model, De=5000, 10000, 20000 and 40000 

 

 

We observed a secondary flow structure composed of two counter-rotating cells located downstream of the second rib 

at X=8.5D. These vortices appear to be induced near the inner and outer walls of the cross-section for a short time. 

Figure 6 shows the velocity contours for different cross-sections downstream of the bend considering a Dean number 

De=40000. It appears that moving away from the downstream, the fluid in the central region of the pipe moves towards 

the outer wall due to the centrifugal force (see Figure 6(a)). The position of the flow shows that the greatest axial velocity 

changes are seen by going towards the outer wall however in the case of the bend pipe with ribs, near the top and bottom 

walls of the pipe, the fluid moves more slowly than that near the central plane due to the presence of ribs where the flow 

is more accelerated pushes the fluid in the boundary layer towards the walls (see Figure 6(b)), this, therefore, requires a 

smaller pressure gradient to balance the centrifugal force.  

 

-0.5

-0.3

-0.1

0.1

0.3

0.5

0 0.5 1 1.5 2 2.5

r/D

Ux/uin

X/D=0

-0.5

-0.3

-0.1

0.1

0.3

0.5

0 0.5 1 1.5 2 2.5

r/D

Ux/uin

X/D=1

-0.5

-0.3

-0.1

0.1

0.3

0.5

0 0.5 1 1.5 2 2.5

r/D

Ux/uin

X/D=2.5

-0.5

-0.3

-0.1

0.1

0.3

0.5

0 0.5 1 1.5 2 2.5

r/D

Ux/uin

X/D=7

-0.5

-0.3

-0.1

0.1

0.3

0.5

0 0.5 1 1.5 2 2.5

r/D

Ux/uin

X/D=8

-0.5

-0.3

-0.1

0.1

0.3

0.5

-1 -0.5 0 0.5 1 1.5 2 2.5

r/D

Ux/uin

X/D=8.5

-0.5

-0.3

-0.1

0.1

0.3

0.5

0 0.5 1 1.5 2 2.5

r/D

Ux/uin

X/D=9.5

-0.5

-0.3

-0.1

0.1

0.3

0.5

0 0.5 1 1.5 2 2.5

r/D

Ux/uin

X/D=5

 Without ribs, De=5000              With ribs, De=5000             Without ribs, De=10000             With ribs, De=10000 

Without ribs, De=20000            With ribs, De=20000      +   Without ribs, De=40000        +   With ribs, De=40000 

 



R. Chiremsel et al. │ Journal of Mechanical Engineering and Sciences │ Vol. 15, Issue 2 (2021) 

7976   journal.ump.edu.my/jmes ◄ 

 

Figure 6. Streamwise velocity contours for De=40000 at different sections downstream of the bend. (a) bend pipe 

without ribs, (b) bend pipe with ribs 

 

Anisotropy of Turbulence 

The anisotropy of unsteady turbulent flows is probably the most important characteristic of the turbulence to be 

parameterized. The precise numerical simulation of these flows then requires to correctly predict the quantity and type of 

anisotropy. To do this, we exploit the properties of the Reynolds stress anisotropy tensor 𝑎𝑖𝑗 . Analysis of the 

characteristics of this tensor provides a good indication of the anisotropic aspect of the flow and a useful tool in the study 

of departures from isotropy. The second and third mathematical invariants of the Reynolds stress anisotropy tensor 

represented with the Lumley triangle [43] describe together the realizable states of turbulence, characterized by the 

positivity of the normal stresses, in any orientation.  

To investigate the anisotropic behavior, we compare in this current section the anisotropy tensor invariant in Lumley's 

plan directly downstream the bend considering firstly the evolution of anisotropy invariant map in various positions with 

Dean number equal to 40000 as shown in Figure 7 and secondly we fix the position at X/D=8.5 and we vary the Dean 

number between 5000 and 40000 as shown in the Figure 8. This allows us to see the relationship between the transverse 

position and the Dean number with the distribution of the turbulence while considering the geometry with and without 

ribs. 

Analyzing the Figure 7, it is observed just downstream the bend, that some points show a heigh level of anisotropy 

and does not approach to any particular spatial distribution but some points approach to the cigar-shaped limit.  

By moving away from the bend Figure 7(a), we can clearly see a tendency of the invariants to approach the asymptotic 

branch characteristic of the axisymmetric cigar-shaped turbulence where a similar anisotropic behavior can be observed. 

The most anisotropic point max (III,-II)=(0.0191,0.1464) obtained in this case is located at r/R=0.997. 

Figure 7(b) indicate that in the presence of ribs, the level of anisotropy decrease.  Far from the ribs, the turbulence 

would thus be rather characterized by cigar-shaped axisymmetry, whereas downstream of the ribs near the wall and at a 

distance of X=1D and X=8.5D some points come close to the two-component turbulence and the Reynolds stress tensor 

is most anisotropic at r/R=0.8 with a maximum of (III,-II)= (0.0148,0.1238). However in all other measurement positions, 

the maximum value of (III,-II) occurs at r/R =0.997. Note that the peak value of III and -II is 0.0145 and 0.1183 

respectively.  

By inspection of the anisotropy invariant maps (AIM) represented in Figure 8(a,b), we note that the evolution of the 

anisotropy is practically identical, always showing a trend towards the cigar-shaped axisymmetry state with some points 
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that come closer to the state two-component turbulence in the case of the bend with ribs. It appears also, that the variation 

of the Dean number does not have a clear influence on the evolution of the anisotropy whether with or without ribs. 

In conclusion, for both cases (with and without ribs), it appears that near the centerline of the pipe, the turbulence 

seems more isotropic (II=III=0), but it is most anisotropic near the wall at r/R=0.997 in the case of bend without ribs and 

at r/R=0.8 for the case of bend with ribs. However, some differences between them can still be observed, such as the 

increasing level and the nature of anisotropy. For this, the results show that the turbulence in the absence of ribs is more 

anisotropic than in the case with ribs. In fact, it occurs that in the presence of ribs the degree of anisotropy decreases by 

19% and the turbulence changes its state as it has been shown in Figure 7 where it has been observed, that downstream 

of the ribs, some points evolve from the cigar-shaped turbulence towards the two-component turbulence.    

In general, it can be seen that the analyzed flow in the bend pipe without ribs appears more anisotropic than in bend 

pipe with ribs. We noted an accordance between our predictions and those obtained by Shafi and Antonia [63] where they 

demonstrated that rough-wall turbulence appears more isotropic than its smooth-wall.  

 

 

Figure 7. Distribution of the anisotropy invariants throughout the selected locations downstream the bend, De=40000, 

(a) non-ribbed bend pipe, (b) ribbed bend pipe 
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Figure 8. Distribution of the anisotropy invariants at X/D=8.5 downstream the bend for Dean number range from 5000 

to 40000, (a) non-ribbed bend pipe, (b) ribbed bend pipe 

 

Measures of Anisotropy 

Figure 9, represents the anisotropy function J used as a measure of departure from isotropic and two-component 

turbulence in different positions downstream the bend for De=40000. From this figure, we can clearly see, that just 

downstream the bend with ribs (X/D=0) up to X/D=1, the turbulence in the center of the pipe (r/R=0) appears more 

isotropic with J=0.98 that in the case of bend without ribs where J=0.8. Although from X/D=2.5, it appears at the 

centerline of the bend without ribs, that the turbulence is near-isotropy compared to bend with ribs. 

From X/D=0 up to X/D=5 and moving away from the center of the pipe where the turbulence is initially isotropic, it 

occurs that the function J decreases and the return to anisotropy begins to be efficient for both bend pipes considered. 

From X/D=7 and considering the case of the bend without ribs, an almost constant range of J appears in the region 

0.4<r/R≤0.7 indicating that the distance from isotropy turbulence is smaller. However in the case of the bend with ribs, a 

continuous decrease in J is observed always showing a tendency of the flow towards anisotropy where the distance from 

isotropy is bigger.  

Approaching the wall and taking into account the case without ribs, it appears that the function J gradually increases 

again over a short distance from r/R=0.6 up to r/R=0.8 then rapidly decreases in the region 0.8<r/R≤1. However, in the 

case of the bend with ribs, it is observed that the function J increases from r/R=0.6 at the level of ribs (X/D=0 and X/D=8) 

and from r/R=0.8 elsewhere then decreases again. Also, it must be mentioned that, behind the ribs at X/D=1 and X/D=8.5, 

J decreases and tends towards 0 showing a smaller measure of departure from a two-component state where the two-

component upper boundary of the triangle (9II+27III+1=0) is closely satisfied by the near-wall data. 

Finally, for the analyzed turbulent flow, the function J near the wall was smaller in the bend without ribs when 

compared to the bend with ribs which is in accordance with Antonia et al. [64] and Smalley et al. [65].  
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Figure 9. Comparison of the anisotropy invariant function of the turbulence throughout the selected locations 

downstream the bend, De=40000, (a) non-ribbed bend pipe, (b) ribbed bend pipe 

 

Considering the comparison of the evolution of the function J at X/D=8.5 downstream of the bend exit for different 

Dean numbers as shown in Figure 10. It is envisaged that the maximum value of J is located near the centerline of the 

pipe (r/R=0) indicating that the turbulence in this zone is nearly isotropic where in the bend without ribs Figure 10(a), 

J=0.83, 0.89, 0.96 and 0.97 for De =5000, 10000, 20000 and 40000 respectively. It occurs, that the value of J for the 

higher Dean number to be somewhat bigger. It seems to be an effect of the Dean number. Although in the bend with ribs 

Figure 10(b), it appears that J=0.96 for different Dean numbers considered and the function J follows the same general 

trend towards the wall where a superposition of the curves representing the variation of J is observed showing that in the 

presence of ribs, the Dean number is found as a weak function.  

 

 

Figure 10. Comparison of the anisotropy invariant function of the turbulence at X/D=8.5 downstream the bend for 

Dean number range from 5000 to 40000, (a) non-ribbed bend pipe, (b) ribbed bend pipe 

 

CONCLUSION 

In the present study, a numerical simulation of the three dimensional unsteady and anisotropic turbulent flow of single-

phase incompressible fluid through two 90˚bend pipes one without ribs and the other with ribs were carried in ANSYS 

Fluent solver using realizable RSM turbulence model. The RSM turbulence model is used in order to predict the 

anisotropic turbulent structure precisely. A large Dean number range from 5000 to 40000 was tested for each geometry 

in order to investigate its effect on flow characteristics. 

For both bend pipe cases (with and without ribs) considered, the process of formation of different profiles representing 

the dynamic and turbulent characteristics of the analyzed flow, in the straight section, downstream the bend, was taken 

into consideration. 
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A comparison of numerical simulation results between the two geometries considered has been presented in order, to 

see on the one hand how the analyzed flow behaves dynamically in 90° bend pipes and on the other hand globally evaluate 

the impact of ribs on the velocity, anisotropy of the Reynolds stresses and anisotropy invariant function. 

The conclusions based on the analysis of obtained results are presented as follows:  

• Near the bend, it was observed for both cases with and without ribs that the maximum value of the Ux/uin is 

located near the outer wall. However as it moved away from the curvature it was found that the maximum is 

located more towards the centerline in the bend pipe with ribs that in the case without ribs. It can be clearly noted 

that the profile of Ux/uin in the ribbed case does not resemble the profile of the non-ribbed case, emphasizing the 

fact that the core flow is affected by the presence of the ribs. As a result, the higher resistance generated by the 

ribs produced relatively larger velocity gradient (∂U/∂y) compared to the case of bend pipe without ribs where a 

more uniform mean velocity profile is observed. 

• The anisotropy invariants technique proposed by Lumley and Newman [43] was applied to characterize the 

turbulent structures of the analyzed flow. Analysis of the maps of the second and third invariants in Lumley’s 

triangle shows that without corrective functions, the RSM model successfully restores the anisotropic character 

of the analyzed flow where the profiles of the second invariant as a function of the third invariant of this model 

are located within the admissible range of anisotropy. The maps of the second and third invariants in the Lumley 

plane show that the levels of anisotropy obtained with the RSM model are well predicted. This last has a greater 

potential to give accurate predictions for complex flows. It was also observed, that in the bend pipe without ribs 

a majority of points in the anisotropy invariant map is concentrated near the axisymmetric cigar-shaped 

turbulence whereas, in the case of ribbed bend pipe, a similar anisotropic behavior can be observed, however, 

some points are close to the cigar-shaped limit which shows a trend to the two-component turbulence due to the 

presence of ribs. 

• The turbulence distributions of the analyzed flow in both considered configurations show that the influence of 

the Dean number on the evolution of anisotropy is not significant. While in the presence of ribs examined in this 

study, the magnitude of the anisotropy decreases and the flow anisotropy is modified in some points. 

• Finally, for the analyzed turbulent flow, it is envisaged that at the centerline of the bend without ribs, the 

turbulence is near-isotropy compared to bend with ribs. However, approaching the wall, the anisotropy function 

appears smaller in the bend without ribs when compared to the bend with ribs where the Dean number is found 

as a weak function.  

 

REFERENCES 

[1] S. A. Berger, L. Talbot, and L. S. Yao, “Flow in curved pipes,” Ann. Rev. Fluid Mech., vol. 15, no. 1, pp. 461–512, 1983, doi: 

10.1146/annurev.fl.15.010183.002333. 

[2] A. K. Vester, R. Ӧrlü, and P. H. Alfredsson, “Turbulent flows in curved pipes: recent advances in experiments and simulations,” 

Appl. Mech. Rev., vol. 68, no. 5, pp. 1–25, 2016, doi: 10.1115/1.4034135. 

[3] J. L. Lumley, “Computational modeling of turbulent flows,” Adv. App. Mech., vol. 18, pp. 123–176, 1979, doi: 10.1016/S0065-

2156(08)70266-7. 

[4] H. Ito, “Friction factors for turbulent flow in curved pipes,” J. Basic Eng., vol. 81, no. 2, pp. 123–132, 1959, doi: 

10.1115/1.4008390. 

[5] W. H. Lyne, “Unsteady viscous flow in a curved pipe,” J. Fluid Mech., vol. 45, no. 1, pp. 13–31, 1971, doi: 

0.1017/S0022112071002970. 

[6] B. R. Munson, “Experimental results for oscillating flow in a curved pipe,” Phys. Fluids., vol.18, no. 12, pp. 1607–1609, 1975, 

doi: 10.1063/1.861077. 

[7] J. A. C. Humphrey, J. H. Whitelaw, and G. Yee, “Turbulent flow in a square duct with strong curvature,” J. Fluid Mech., vol. 

103, pp. 443–463, 1981, doi: 10.1017/S0022112081001419. 

[8] A. M. K. P. Taylor, J. H. Whitelaw, and M. Yianneskis, “Curved ducts with strong secondary motion: velocity measurements 

of developing laminar and turbulent flow,” J. Fluids Eng., vol. 104, no. 3, pp. 350–359, 1982, doi: 10.1115/1.3241850. 

[9] M. M. Enayet, M. M. Gibson, A. M. K. P. Taylor, and M. Yianneskis, “Laser-Doppler measurements of laminar and turbulent 

flow in a pipe bend,” Int. J. Heat & Fluid Flow., vol. 3, no. 4, pp. 213–219, 1982, doi: 10.1016/0142-727X(82)90024-8. 

[10] J. Azzola, J. A. C. Humphrey, H. Iacovides, and B. E. Launder, “Developing turbulent flow in a U-bend of circular cross-

section: measurement and computation,” J. Fluids Eng., vol. 108, no. 2, pp. 214–221, 1986, doi: 10.1115/1.3242565. 

[11] P. Bovendeerd, A. Steenhoven, F. Vosse, and G. Vossers, “Steady entry flow in a curved pipe,” J. Fluid Mech., vol. 177, pp. 

233–246, 1987, doi: 10.1017/S0022112087000934. 

[12] M. M. Ohadi and E. M. Sparrow, “Heat transfer in a straight tube situated downstream of a bend,” Int. J. Heat Mass Transfer., 

vol. 32, no. 2, pp. 201–212, 1989, doi: 10.1016/0017-9310(89)90168-3. 

[13] M. M. Ohadi, E. M. Sparrow, A. Walavalkar, and A. I. Ansari, “Pressure drop characteristics for turbulent flow in a straight 

circular tube situated downstream of a bend,” Int. J. Heat Mass Transfer., vol. 33, no. 4, pp. 583–591, 1990, doi: 10.1016/0017-

9310(90)90157-P. 

https://doi.org/10.1146/annurev.fl.15.010183.002333
https://doi.org/10.1115/1.4034135
https://www.sciencedirect.com/science/journal/0142727X
https://doi.org/10.1016/0142-727X(82)90024-8


R. Chiremsel et al. │ Journal of Mechanical Engineering and Sciences │ Vol. 15, Issue 2 (2021) 

7981   journal.ump.edu.my/jmes ◄ 

[14] W. N. Al-Rafai, Y. D. Tridimas, and N. H. Woolley, “A study of turbulent flows in pipe bends,” J. Mech. Eng. Sci., vol. 204, 

pp. 399–408, 1990, doi: 10.1243/PIME_PROC_1990_204_120_02. 

[15] M. Anwer and R. M. C. So, “Swirling turbulent flow through a curved pipe,” Exp. Fluids., vol. 14, pp. 85–96, 1993, doi: 

10.1007/BF00196992. 

[16] W. J. Kim and V. C. Patel, “Origin and decay of longitudinal vortices in developing flow in a curved rectangular duct(data 

bank contribution),” J. Fluids Eng., vol. 116, no. 1, pp. 45–52, 1994, doi: 10.1115/1.2910240. 

[17] A. Hilgenstock and R. Ernst, “Analysis of installation effects by means of computational fluid dynamics - CFD vs 

experiments,” Flow Meas. Instrum., vol. 7, pp. 161–171, 1996, doi: 10.1016/S0955-5986(97)88066-1. 

[18] G. Xiaofeng and B. M. Ted, “Simulations of flow in curved tubes,” Aerosol Sci Tech., vol. 26, no. 6, pp. 485–504, 1997, doi: 

10.1080/02786829708965448. 

[19] S. E. Kim, D. Choudhury, and B. Patel, “Computations of complex turbulent flows using the commercial code Fluent,”in 

Modeling Complex Turbulent Flows., vol. 7, Springer, Dordrecht, 1997, pp. 259–276, doi: 10.1007/978-94-011-4724-8_15. 

[20] K. Sudo, M. Sumida, and H. Hibara, “Experimental investigation on turbulent flow in a circular-sectioned 90-degree bend,” 

Exp. Fluids., vol. 25, pp. 42–49, 1998, doi: 10.1007/s003480050206. 

[21] U. Kumar, S. N. Singh, and V. Seshadri, “Pressure losses in rough 90° bends of different radius of curvature,” in 26th National 

Conference on Fluid Mechanics and Fluid Power, I.I.T., Kharagpur, 15-17 December, 1999, pp. 337–342. 

[22] T. J. Hüttl and R. Friedrich, “Direct numerical simulation of turbulent flows in curved and helically coiled pipes,” Comput 

Fluids., vol. 30, no. 5, pp. 591–605, 2001, doi: 10.1016/S0045-7930(01)00008-1. 

[23] T. Kawamura, T. Nakao, and M. Takahashi, “Reynolds number effect on turbulence downstream from elbow pipe,” Trans.  

Jpn. Soc. Mech. Eng. B., vol. 68, no. 667, pp. 645–651, 2002, doi: 10.1299/kikaib.68.645. 

[24] T. H. Chang and H. S. Lee, “An experimental study on swirling flow in a 90 degree circular tube by using particle image 

velocimetry,” J. Vis., vol. 6, pp. 343–352, 2003, doi: 10.1007/BF03181741. 

[25] P. L. Spedding, E. Benard, and G. M. McNally, “Fluid flow through 90 degree bends,” Dev. Chem. Eng. Mineral Process., vol. 

12, no. 1-2, pp. 107–128, 2004, doi: 10.1002/apj.5500120109. 

[26] J. Pruvost, J. Legrand, and P. Legentilhomme, “Numerical investigation of bend and torus flows, part I: effect of swirl motion 

on flow structure in U-bend,” Chem. Eng. Sci., vol. 59, no. 16, pp. 3345–3357, 2004, doi: 10.1016/j.ces.2004.03.040. 

[27] M. Raisee, H. Alemi, and H. Iacovides, “Prediction of developing turbulent flow in 90°-curved ducts using linear and non-

linear low-Re k-ε models,” Int. J. Numer. Meth. Fluids., vol. 51, no. 12, pp. 1379–1405, 2006, doi: 10.1002/fld.1169. 

[28] N. M. Crawford, G. Cunningham, and S. W. T. Spence, “An experimental investigation into the pressure drop for turbulent 

flow in 90° elbow bends,” Proc Inst Mech Eng E, J Process Mech Eng., vol. 221, no. 2, pp. 77–88, 2007, doi: 

10.1243/0954408JPME84. 

[29] T. Shiraishi, H. Watakabe, H. Sago, M. Konomura, A. Ymaguchi, and T. Fujii, “Resistance and fluctuating pressures of a large 

elbow in high Reynolds numbers,” J. Fluid Mech., vol. 128, no. 5, pp. 1063–1073, 2006, doi: 10.1115/1.2236126. 

[30] T. Shiraishi, H. Watakabe, H. Sago, and H. Yamano, “Pressure fluctuation characteristics of the short radius elbow pipe for 

FBR in the postcritical Reynolds regime,” J. Fluid Sci. Technol., vol. 4, no. 2, pp. 430–441, 2009, doi: 10.1299/jfst.4.430. 

[31] J. Mojtaba, C. Cathy, and P. Hassan, “Secondary flow velocity field in laminar pulsating flow through curved pipes-PIV 

measurements,” Proc. ASME Fluids Eng. Div. Summer Meet., 78141, pp. 1577–1584, 2009, doi: 10.1115/FEDSM2009-78141. 

[32] A. Ono, N. Kimura, H. Kamide, and A. Tobita, “Influence of elbow curvature on flow structure at elbow outlet under high 

Reynolds number condition,” Nucl. Eng. Des., vol. 241, no. 11, pp. 4409–4419, 2011, doi: 10.1016/j.nucengdes.2010.09.026. 

[33] A. Noorani, G. K. El Khoury, and P. Schlatter, “Evolution of turbulence characteristics from straight to curved pipes,” Int. J. 

Heat & Fluid Flow., vol. 41, pp. 16–26, 2013, doi: 10.1016/j.ijheatfluidflow.2013.03.005. 

[34] C. Min and Z. Zhiguo, “Numerical simulation of turbulent driven secondary flow in a 90° bend pipe,” Adv Mat Res., vol. 765-

767, pp. 514–519, 2013, doi: 10.4028/www.scientific.net/AMR.765-767.514. 

[35] L. Niu and H. S. Dou, “Stability study of flow in a 90° bend based on the energy gradient theory,” in 6th International 

Conference on Pumps and Fans with Compressors and Wind Turbines, IOP Conf. Ser: Mater. Sci. Eng., vol. 52, no. 2, pp. 1–

6, 2013, 10.1088/1757-899X/52/2/022006.  

[36] L. H. O. Hellström, M. B. Zlatinov, G. Cao, and A. J. Smits, “Turbulent pipe flow downstream of a 90° bend,”  J. Fluid Mech.,  

vol. 735, pp. 1–12, 2013, doi: 10.1017/jfm.2013.534. 

[37] K. Jongtae, Y. Mohan, and K. Seungjin, “Characteristics of secondary flow induced by 90-degree elbow in turbulent pipe 

flow,” Eng. Appl. Comput. Fluid Mech., vol. 8, no. 2, pp. 229–239, 2014, doi: 10.1080/19942060.2014.11015509. 

[38] P. Dutta and N. Nandi, “Effect of Reynolds number and curvature ratio on single phase turbulent flow in pipe bends,” Mech. 

Mech. Eng., vol. 19, no. 1, pp. 5–16, 2015. 

[39] W. Yan, D. Quanlin, and W. Pengfei, “Numerical investigation on fluid flow in a 90-degree curved pipe with large curvature 

ratio,” Math. Probl. Eng., vol. 2015, no. 2, pp. 1–12, 2015, doi: 10.1155/2015/548262. 

[40] R. Röhrig, S. Jakirlic´, and C. Tropea, “Comparative computational study of turbulent flow in a 90° pipe elbow,” Int. J. Heat 

& Fluid Flow., vol. 55, pp. 120–131, 2015, doi: 10.1016/j.ijheatfluidflow.2015.07.011. 

[41] P. Dutta, S. K. Saha, N. Nandi, and N. Pal, “Numerical study on flow separation in 90° pipe bend under high Reynolds number 

by k-ε modeling,” Eng. Sci. Technol. Int J., vol. 19, no. 2, pp. 904–910, 2016, doi: 10.1016/j.jestch.2015.12.005. 

https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1007%2FBF00196992
https://www.sciencedirect.com/science/journal/09555986
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1299%2Fkikaib.68.645
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.ces.2004.03.040
https://doi.org/10.1115/1.2236126
https://doi.org/10.1299/jfst.4.430
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1115%2FFEDSM2009-78141
https://doi.org/10.1016/j.nucengdes.2010.09.026
https://www.sciencedirect.com/science/journal/0142727X
https://www.sciencedirect.com/science/journal/0142727X
https://doi.org/10.4028/www.scientific.net/AMR.765-767.514
https://www.cambridge.org/core/search?filters%5BauthorTerms%5D=Metodi%20B.%20Zlatinov&eventCode=SE-AU
https://www.cambridge.org/core/search?filters%5BauthorTerms%5D=Guangjun%20Cao&eventCode=SE-AU
https://www.cambridge.org/core/search?filters%5BauthorTerms%5D=Alexander%20J.%20Smits&eventCode=SE-AU
https://www.sciencedirect.com/science/journal/0142727X
https://doi.org/10.1080/19942060.2014.11015509
https://www.sciencedirect.com/science/journal/0142727X
https://www.sciencedirect.com/science/journal/0142727X
https://doi.org/10.1016/j.ijheatfluidflow.2015.07.011
https://doi.org/10.1016/j.jestch.2015.12.005


R. Chiremsel et al. │ Journal of Mechanical Engineering and Sciences │ Vol. 15, Issue 2 (2021) 

7982   journal.ump.edu.my/jmes ◄ 

[42] Z. Wang, R. Örlü, P. Schlatter, and Y. M. Chung, “Direct numerical simulation of a turbulent 90° bend pipe flow,” Int. J. Heat 

& Fluid Flow., vol. 73, pp. 199–208, 2018, doi: 10.1016/j.ijheatfluidflow.2018.08.003.  

[43] J. L. Lumley and G. Newman, “The return to isotropy of homogeneous turbulence,” J. Fluid Mech., vol. 82, no. 1, pp. 161–

178, 1977, doi: 10.1017/S0022112077000585. 

[44] S. Nayak, N. Kumar, S. M. A. Khader, and R. Pai, “Effect of dome size on flow dynamics in saccular aneurysms– A numerical 

study,” J. Mech. Eng. Sci., vol. 14, no. 3, pp. 7181–7190, 2020, doi: 10.15282/jmes.14.3.2020.19.0564. 

[45] D. Ramírez, A. R. Clemente, and E. Chica, “Design and numerical analysis of an efficient H-Darrieus vertical-axis hydrokinetic 

turbine,” J. Mech. Eng. Sci., vol. 13, no. 4, pp. 6036–6058, 2019, doi: 10.15282/jmes.13.4.2019.21.0477. 

[46] P. Pasymi, Y.W. Budhi, A. Irawan, and Y. Bindar, “Three dimensional cyclonic turbulent flow structures at various geometries, 

inlet-outlet orientations and operating conditions,” J. Mech. Eng. Sci., vol. 12, no. 4, pp. 4300–4328, 2018, doi: 

10.15282/jmes.12.4.2018.23.0369. 

[47] G. Honoré, “Numerical analysis of anisotropic turbulent flows using nonlinear turbulence models,” Mechanical PhD thesis, 

Polytechnic of Lille. 2008. 

[48] B. E. Launder, “Second-moment closure: present... and future?,” Int J Heat Fluid Fl., vol. 10, no. 4, pp. 282–300, 1989, doi: 

10.1016/0142-727X(89)90017-9. 

[49] Y. G. Lai, R. M. C. So, M. Anwer, and B. C. Hwang, “Calculations of a curved pipe flow using Reynolds stress closure,” Proc. 

Inst. Mech. Eng. Pt. C J. Mech. Eng. Sci., vol. 205, no. 4, pp. 231–244, 1991, doi: 10.1243/PIME_PROC_1991_205_115_02. 

[50] W. J. Richard, “Modeling strategies for unsteady turbulent flows in the lower plenum of the VHTR,” Nucl. Eng. Des., vol. 238, 

no. 3, pp. 482–491, 2008, doi: 10.1016/j.nucengdes.2007.02.049. 

[51] L. Belhoucine, M. Deville, A. R. Elazehari, and M. O. Bensalah, “Explicit algebraic Reynolds stress model of incompressible 

turbulent flow in rotating square duct,” Comput Fluids., vol. 33, no. 2, pp. 179–199, 2004, doi: 10.1016/S0045-7930(03)00055-

0. 

[52] F. S. Lien and M. A. Leschziner, “Assessment of turbulence-transport models including non-linear RNG eddy-viscosity 

formulation and second-moment closure for flow over a backward-facing step,” Comput Fluids., vol. 23, no. 8, pp. 983–1004, 

1994, doi: 10.1016/0045-7930(94)90001-9. 

[53] M. M. Gibson and B. E. Launder, “Ground effects on pressure fluctuations in the atmospheric boundary layer,” J. Fluid Mech., 

vol. 86, no. 3, pp. 491–511, 1978, doi: 10.1017/S0022112078001251. 

[54] S. Fu, B. E. Launder, and M. A. Leschziner, “Modeling strongly swirling recirculating jet flow with Reynolds-stress transport 

closures,” in 6th International Symposium on Turbulent Shear Flows, Toulouse, France, 7-9 September, 1987, pp.17-6-1–17-

6-6. 

[55] S. Sarkar and L. Balakrishnan, “Application of a Reynolds stress turbulence model to the compressible shear layer,” AIAA 

Journal., vol. 29, no. 5, pp. 743–752, 1991, doi: 10.2514/3.10649. 

[56] M. R. Nematollahi and M. Nazifi, “Enhancement of heat transfer in a typical pressurized water reactor by different mixing 

vanes on spacer grids,” Energy Convers. Manag., vol. 49, no. 7, pp. 1981–1988, 2008, doi: 10.1016/j.enconman.2007.12.016. 

[57] A. R. Al-Obaidi, “Influence of guide vanes on the flow fields and performance of axial pump under unsteady flow conditions: 

Numerical study,” J. Mech. Eng. Sci., vol. 14, no. 2, pp. 6570–6593, 2019, doi: 10.15282/jmes.14.2.2020.04.0516. 

[58] H. K. Versteeg and W. Malalasekera, An introduction to computational fluid dynamics-the finite volume method. Harlow: 

Pearson Education Limited, 2007. 

[59] H. M. Quamrul, “CFD Analysis of single and multiphase flow characteristics in elbow,” Sci. Res., vol. 4, no. 4, pp. 210–214, 

2012, doi: 10.4236/eng.2012.44028. 

[60] A. Sherikar and P. J. Disimile, “RANS  study of very high Reynolds- number plane turbulent Couette flow,” J. Mech. Eng. 

Sci., vol. 14, no. 2, pp. 6663–6678, 2020, doi: 10.15282/jmes.14.2.2020.10.0522. 

[61] ANSYS Meshing User's Guide, ANSYS Inc., Southpointe 2600 ANSYS Drive Canonsburg, PA 15317, 2018. 

[62] K. S. Choi and J. L. Lumley, “The return to isotropy of homogenous turbulence,” J. Fluid Mech., vol. 436, pp. 59–84, 2001, 

doi: 10.1017/S002211200100386X. 

[63] H. S. Shafi and R. A. Antonia, “Anisotropy of the Reynolds stresses in a turbulent boundary layer on a rough wall,” Exp. 

Fluids., vol. 18, pp. 213–215, 1995, doi: 10.1007/BF00230269.  

[64] R. A. Antonia and P. Å. Krogstad, “Turbulence  structure  in  boundary  layers  over different types of surface roughness,” 

Fluid Dyn. Res., vol. 28, no. 2, pp. 139–157, 2001, doi: 10.1016/S0169-5983(00)00025-3. 

[65] R. Smalley, S. Leonardi, R. Antonia, L. Djenidi, and P. Orlandi, “Reynolds stress anisotropy of turbulent rough wall layers,” 

Exp. Fluids., vol. 33, pp. 31–37, 2002, doi: 10.1007/s00348-002-0466-z. 

 

 

 

https://www.sciencedirect.com/science/article/pii/S0142727X18300110#!
https://www.sciencedirect.com/science/journal/0142727X
https://www.sciencedirect.com/science/journal/0142727X
https://doi.org/10.1016/j.ijheatfluidflow.2018.08.003
https://doi.org/10.1017/S0022112077000585
https://doi.org/10.1016/0142-727X(89)90017-9
https://doi.org/10.1243%2FPIME_PROC_1991_205_115_02
https://doi.org/10.1016/j.nucengdes.2007.02.049
https://doi.org/10.1016/S0045-7930(03)00055-0
https://doi.org/10.1016/S0045-7930(03)00055-0
https://doi.org/10.1016/0045-7930(94)90001-9
https://doi.org/10.1017/S0022112078001251
https://doi.org/10.1016/j.enconman.2007.12.016
https://doi.org/10.1017/S002211200100386X
https://doi.org/10.1016/S0169-5983(00)00025-3

