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INTRODUCTION 

In recent years, global warming has worsened. The excess use of mechanical ventilation to maintain thermal comfort 

has become one of the causes of global warming [1] due to high energy consumption to power the mechanical ventilation 

systems. Rapid economic and population growth in Southeast Asia countries have significantly increase the demand for 

electricity. About 154.2% of primary energy consumption was predicted from 2012 to 2030 in ASEAN contributing to 

5.7% increment of carbon dioxide emission annually [1,2].  An alternative energy supply is therefore required to overcome 

the high dependency on fossil fuel [3]. According to Agrawal, mechanical ventilation appliances such as fans and air 

conditioners in HVAC system consume high amount of energy for buildings [4]. Based on the report of World Business 

Council for Sustainable Development (WBCSD), buildings consume a total of 40% of the world’s energy use. Compare 

a natural ventilated house to air-conditioned house, the carbon released and the energy consumption is about 67% higher 

for air-conditioned house. In view of this, WBSCD has advised the building sector to fuse innovative designs, 

technological innovation, and public policies to incorporate natural ventilation in order to obtain better energy efficiency 

[5].  

Previous studies on natural cross ventilation were done using experimental studies, empirical studies and numerical 

studies.  Among these methods, wind tunnel experiments and CFD are the most widely used by researchers to study 

natural cross ventilation [6–8]. Karava [9] performed a study on cross ventilation with operable façade elements. The 

study was done using both uniform and different wall porosity which ranged from 2.5 - 20%. The study analyzed a 4-

storey building using a 1:200 scale-model building which undergoes experiment with a Boundary Layer Wind Tunnel 

(BLWT). Results of aligned openings showed opening near the roof generates higher velocities which then contributes to 

higher airflow rate compare to openings located at center and near the ground.  This study was then used by Meroney [6] 

as a validation reference to study natural cross ventilation under different opening configurations using CFD. This study 

also outlined the effect of different turbulence models on cross ventilation simulation study. The building model used in 

the study was similar to Karava and Ramponi [9, 10]. However, the computational domain in the simulation was slightly 

smaller compared to Ramponi [10].  Results of airflow rates showed similar trend as Karava [9] where higher flow rates 

were observed for openings near the roof.  

Kosutova [7] studied cross ventilation in an isolated building with two batches of simulation cases - building openings 

equipped with louvers and openings without louvers. The building model was simulated under four different opening 

configurations using three 3D Reynolds-averaged Navier-Stokes (RANS) turbulence models. The result of dimensionless 

volume flow rate (DFR) showed opening configuration with openings placed near the roof has higher volume flow rate. 

A study by Tominaga [8] also showed similar result whereby the effect of opening positions on cross-ventilated isolated 

building was studied using atmospheric boundary layer wind tunnel analysis. Five opening configurations were studied 
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and tracer gas method was used to determine the airflow rate through the building. In terms of the airflow rate, cases with 

openings near the roof had higher flow rate than cases with openings near the ground. 

However, opening configuration mentioned in these studies involved only aligned openings and diagonally placed 

openings which both having the shortest and longest distance between the two openings respectively. In order to fully 

understand the effect of opening configurations on the indoor airflow pattern and ventilation rate, more opening 

configurations should be considered. Therefore, this study includes both aligned and diagonally placed openings, with 

addition of two non-aligned opening configurations that have medium distance between the two openings. The main 

objective of this study is to investigates the effect of opening position on the indoor airflow of a natural ventilated isolated 

building model. Furthermore, the opening configuration which brings about the highest ventilation rate can be determined. 

Numerical study using CFD was carried out using seven different opening configurations to analyze the internal airflow 

pattern and ventilation rate. Section 2 presents the methodology which includes computational domain, solver setting, 

grid sensitivity analysis, and model validation study. Then in Section 3, the result from simulations is analyzed and 

discussed before presenting the conclusion in Section 4. 

 

METHODOLOGY 

Model Geometry, Computational Domain, and Building Configuration 

Figure 1 shows the dimension of the building model and the symmetry plane, based on the reference from Ramponi 

[10] which is an isolated building. This building was scaled down from its original dimension of 20 m x 20 m x 16 m (W 

x L x H) to the building model using a scale of 1:200. The building model was equipped with two aligned and opposite 

opening where the openings have the same dimension of 0.046 m x 0.018 m (W x H) and were placed at the center of the 

wall. The whole building model has a thickness of 2 mm at the ceiling, ground, and four sidewalls.  

 

 

 

(a) (b) 

Figure 1. (a) Model dimensions and (b) Symmetry plane of the model [10] 

 

Computational domain used in this study was based on the reference from Ramponi [10]. As shown in Figure 2, the 

upstream length from the inlet plane to the model windward wall was set to be 3H (0.24 m) which is three times the model 

height where H=0.08 m, to restrict the chances of unintended streamwise gradients to develop. The downstream length 

from the model leeward wall to the outlet plane was set to be 15H (1.2 m) while 5H (0.4 m) was set at the lateral side and 

top of the domain. This results in the computational domain to have a dimension of 0.9 m x 1.54 m x 0.48 m (W x L x 

H).  

 

 

 

(a) (b) 

Figure 2. Dimension of computational domain (a) Top view and (b) Front view 
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In this study, different opening positions were considered. A total of seven configurations were applied onto the model 

for simulation which all have a constant wall porosity of 10% [9]. Position of openings were varied using heights of 0.015 

m, 0.04 m, and 0.065 m on the center axis of the model from windward and leeward walls. Based on Table 1, Cases 1, 2, 

3 have aligned openings at both windward and leeward walls while Cases 4, 5, 6, and 7 have non-aligned openings. 

Meshing process was done using the ANSYS 2019 R3 software. A small domain, known as Body of Influence (BoI), 

with dimension of 0.625H was created to encapsulate the building geometry to yield more accurate results obtained with 

lower calculation time. Meshing process was done by varying the global and local sizing. The total cell count generated 

for all cases was about 494000 cell count which was determined through grid sensitivity analysis. Polyhexacore mesh 

was used for more accurate results. [11,12] and uniform prism layer was applied to the building model shown in Figure 

3. Using the y+ value of 200, the first cell height was calculated to be 0.01 mm. 

 

 

 

(a) (b) 

Figure 3. (a) Final mesh around the model and (b) Inflation layer on the model. 

 

Table 1.  Seven opening configurations for simulation 

Case Opening Configuration 
Inlet opening 

height (m) 

Outlet opening 

height (m) 

Case 1 

 

0.065 0.065 

Case 2 

 

0.040 0.040 

Case 3 

 

0.015 0.015 

Case 4 

 

0.065 0.040 
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Table 1.  Seven opening configurations for simulation (cont.) 

Case Opening Configuration 
Inlet opening 

height (m) 

Outlet opening 

height (m) 

Case 5 

 

0.065 0.015 

Case 6 

 

0.015 0.065 

Case 7 

 

0.015 0.040 

 

Atmospheric Boundary Layer (ABL) condition 

An ABL file was interpreted to create the velocity profile from the inlet. Eqs. (1) to (5) were applied to determine the 

key input boundary conditions. By using Eq. (1), ABL friction velocity 𝑈𝐴𝐵𝐿
∗   was calculated with reference velocity, 

𝑈𝑅𝑒𝑓 of  6.97 m/s, reference height, 𝑍𝑅𝑒𝑓 of 0.08 m, Von Karman constant, 𝜅 of 0.4, and the aerodynamic roughness 

height 𝑍𝑜of 0.00003 m [13]. Then, the inlet velocity profile was determined using Eq. (2) with ABL friction velocity 

𝑈𝐴𝐵𝐿
∗ . Turbulence kinetic energy, k was obtained from Eq. (3) with empirical constant 𝐶𝑀𝑈= 0.09 and turbulence 

dissipation rate was calculated from Eq. (4). The top and side walls were set to have zero specific shear stress while the 

outlet was set as pressure-outlet. The inlet was set as velocity inlet with values of velocity magnitude, turbulent kinetic 

energy, and turbulent dissipation rate generated by the ABL file. For the ground sand grain roughness height 𝑘𝑠, 0.0006 

m was obtained from Eq. (5) by substituting the value of aerodynamic roughness height 𝑍𝑜= 0.00003 m. 

 

𝑈𝐴𝐵𝐿
∗ =

𝑈𝑅𝑒𝑓 × 𝜅

log (
𝑍𝑅𝑒𝑓

𝑍𝑜
+ 1)

 
(1) 

  

𝑈 =
𝑈𝐴𝐵𝐿

∗

κ
 log (

𝑍𝑅𝑒𝑓

𝑍𝑜

+ 1) (2) 

  

𝑘 =
(𝑈𝐴𝐵𝐿

∗ )2

√𝐶𝑀𝑈

 (3) 

  

𝜀 =
(𝑈𝐴𝐵𝐿

∗ )3

𝑘( 𝑍𝑅𝑒𝑓 + 𝑍𝑜)
 (4) 

  

𝑘𝑠 =  
9.793𝑍𝑜

𝐶𝑠

 =  20𝑍𝑜 (5) 

 

Solver Settings 

In this study, CFD simulation was done using ANSYS 2019 R3. Shear Stress Transport (SST) k-ω turbulence model 

from the 3D steady-state Reynolds-averaged Navier-Stokes (RANS) equation was applied.  SIMPLE scheme was chosen 

at the Pressure-Velocity Coupling while for the spatial discretization, Green-Gauss Node Based gradient was chosen. 
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Second order was chosen for all four pressure, momentum, turbulent kinetic energy, and turbulent dissipation rate [14] to 

yield more accurate results [10]. Standard Initialization was used and convergence criteria was set to 1 × 10−4 for x, y, 

z-velocities, k, omega and continuity residuals, while 1 × 10−6 for energy. 

 

Grid Sensitivity Analysis 

In this study, grid resolution analysis was done using 3 different grids on the building model which including coarse 

grid with 281990 cells, medium grid with 412483 cells and fine grid with 493981 cells. Simulation was done using the 

three grids above and a graph of mean streamline velocity ratio (𝑈/𝑈𝑅𝑒𝑓) was plotted. Comparison was done with the 

reference to wind tunnel experiment results conducted by Karava [9]. Figure 4 shows the mean streamwise wind speed 

(𝑈/𝑈𝑅𝑒𝑓) along the centerline connecting between the inlet and outlet opening. Grid A, B, and C represent the coarse, 

medium, and fine grid, respectively. The analysis shows that grid C is the closest to the results obtained by wind tunnel 

experiment by Karava [9]. Table 2 shows the value of percentage difference between grids became smaller as the grid 

became finer. Hence, Grid C with the cell count of 493981 was chosen to be applied to all models for this study. 

 

 
Figure 4. Result of CFD simulation for three grid type and experimental results [9] 

 

Table 2. Percentage difference between different grids 

Grid type Number of cells Percentage Difference  (%) 

Coarse 281990 - 

Medium 412483 1.48776 

Fine 493981 1.18624 

 

Model Validation 

In order to ensure the better accuracy of study, validation was done by comparing CFD simulation results with 

numerical results from previous study [10]. Case 2 with both openings located at the center of windward and leeward 

wall was simulated using SST k-ω turbulence model and the comparison with previous study was done on the velocity 

vector of the indoor flow. The comparison shows good agreement between two contours where a similar trend of airflow 

was observed in Figure 5. Hence, this model validation study can be said to be successful and the same solver settings 

will be applied to all cases in this study. 
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(a) (b) 

Figure 5. Velocity contour (a) Case 2 simulation results and (b) Numerical simulation result [10] 

 

RESULTS AND DISCUSSION 

Velocity Vector 

Based on the velocity vector from all seven cases shown in Figure 6, there is a small standing vortex formed at the 

bottom part outside of the building due to the no-slip condition on the ground. The vortex formation affects the windward 

flow direction for openings located at 0.015 m and 0.04 m above ground which directs the flow downwards as it enters 

the building. For windward opening located at 0.065 m above ground, the inlet flow was directed upwards due to the air 

at the lower half of the building deflects towards the top after hitting the building wall which creates an upward forces at 

the windward opening. 

For Case 2, air enters the building with a downward flow. As airflow through the building, recirculation vortex was 

formed at both above and below the flow stream. However, the vortex formed above the flow was bigger which leads to 

the flow exiting the building to flow upwards. For Case 1 and Case 3, a similar but opposite flow pattern was observed. 

Flow in Case 1 enters the building with an upward trend and travels along the ceiling wall before exits with a downward 

trend. Flow in Case 3 enters with a downward trend and exits with a upward trend. However, the inlet flow velocity for 

Case 1 is higher than Case 3 since the incoming flow is not affected by the vortex formation at the bottom part in front of 

the building. 

For Case 4 and Case 5, the pattern of flow leaving at the leeward opening shows an upward trend when the windward 

opening was placed lower than the leeward opening. On the other hand, an upward trend was observed leaving the leeward 

opening when the windward opening was placed higher than the leeward openings for Case 6 and Case 7. Both upward 

and downward flow pattern at the leeward openings can be explained by observing the formation of recirculation vortex 

zone outside and within the building. The direction and force of the vortex formed affects the airflow pattern when it exits 

through the leeward openings. 

 

 

 

 

Case 1 Case 2 

Figure 6. Velocity vector for different opening positions 
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Case 3 Case 4 

  

 

 

Case 5 Case 6 

  

 

Case 7 

Figure 6. Velocity vector for different opening positions (cont.) 

 

Mean Velocity Profile 

Figure 7 shows the wind speed ratio (𝑈/𝑈𝑅𝑒𝑓) against distance ratio (X/D) for seven cases. The figure was generated 

using data obtain from the horizontal line placed between two windward and leeward openings. Common trend of airflow 

can be observed whereby when air with high velocity enters the building through inlet opening, the velocity decreases as 

it flows toward the middle of building which regains velocity as it approaches the outlet opening.  

For the case with aligned openings, the graph of mean streamwise wind speed ratio (𝑈/𝑈𝑅𝑒𝑓) against distance ratio 

(X/D) shows that Case 1, with both windward and leeward openings placed on 0.065 m above ground, has the highest 

velocity, followed by Case 2 and Case 3. This result shows good agreement with PIV experiments by Karava [9] which 

indicates aligned openings near the roof have higher velocities compared to aligned openings located at the middle and 

bottom of the model. Comparison was made at three different location which is the inlet opening (X/D = 0.00), middle of 

the building (X/D = 0.50), and the outlet opening (X/D = 1.00). Case 1 has 13% and 20% higher velocity at the inlet 

opening while having 16.6% and 28.8% higher velocity at the outlet opening compared to Case 2 and Case 3, respectively. 

For the velocity at the middle of building (X/D = 0.50), Case 2 ranked last with the lowest velocity which has 13% lower 

velocity compared to Case 3 which ranked second. This can be explained by observing the velocity contour of Case 2 in 

Figure 8 which indicates the downward trend at X/D = 0.50 location.  

For non-aligned opening cases, Case 4 with inlet opening at 0.065 m height has 12.04% and 19.69% higher air 

velocities at both openings compared to Case 7 with inlet opening at 0.015 m height. For Case 5 and 6, result shows inlet 

opening placed near the roof generates higher air velocity at both openings compared to outlet opening placed near the 
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roof. Case 5 with inlet opening at 0.065 m and outlet opening at 0.015 m have 8.19% and 16.62% higher air velocity 

compared to Case 6  with opening height at 0.015 m and 0.065 m respectively. 

 

 

Figure 7. Mean streamwise wind speed ratio (U/UREF) against distance ratio (X/D) for seven cases 

 

Velocity and Pressure Contour 

Figure 8 shows the indoor airflow pattern and pressure distribution for all seven cases. The contours show good 

agreement with the Bernoulli’s equation whereby the equation states that fluid velocity is inversely proportional to fluid 

pressure. As seen in the contour, all seven cases have the highest pressure occurred on the windward wall of 13 Pa to 

22.25 Pa due to the impact of air colliding to the windward wall while having the lowest pressure value of 0.8 Pa to 9.1 

Pa at the leeward side of the model. The different pressure values obtained process that changing the position of openings 

can significantly affect the opening pressure as well as the indoor pressure. This difference in pressure between inlet and 

outlet opening is the driving force for the wind-induced ventilation where the higher the pressure difference, the higher 

the air velocity [15]. Comparing the cases with aligned openings, Case 3 has the lowest opening pressure compared to 

Case 1 and Case 2 for about 31.92% and 71.15% at inlet opening. However, Case 3 has the lowest pressure difference 

between the two openings of 12.2 Pa followed by Case 2 with 13.65 Pa and Case 1 with 15.3 Pa. Hence, the velocity at 

openings at Case 1 will be the highest among these 3 cases. Comparing the non-aligned cases, Case 4 and Case 5 with 

same inlet opening height at 0.065 m, pressure value of 21.56 Pa and 22.41 Pa was obtained which is higher than cases 

with opening height at 0.015 m, Case 6 and Case 7 with the value of 17.53 Pa and 21 Pa respectively. 

 

 

Velocity Contour Pressure Contour 

  

  

Case 1 

Figure 8. Velocity and pressure contour for different opening position 
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Velocity Contour Pressure Contour 

  

 

 

Case 2 

 

 
 

Case 3 

 

 
 

Case 4 

 

  

Case 5 

Figure 8. Velocity and pressure contour for different opening position (cont.) 
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Velocity Contour Pressure Contour 

  

 

 

Case 6 

 

 

 

Case 7 

Figure 8. Velocity and pressure contour for different opening position (cont.) 

 

Pressure Coefficient and Ventilation Rate 

Table 3 shows the pressure coefficient obtained from the inlet and outlet openings. Calculations were done to 

determine the pressure difference between inlet and outlet opening. A common trend was observed which the case with 

higher air velocity generates high pressure coefficient difference compare to the case with low air velocity. Based on the 

study by Meroney [6], for low rise building with windows on two walls, the cross ventilation flow rate can be calculated 

using the equations below: 

 

𝐶𝑝𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = (𝐶𝑝𝑖𝑛 + 𝐶𝑝𝑜𝑢𝑡)/2 (6) 

  

𝑄 = 𝐶𝐷𝑖𝑛𝐴𝑈𝑅𝐸𝐹  √𝐶𝑝𝑖𝑛 − 𝐶𝑝𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙  (7) 

 

where, 

 𝑄  = Cross-ventilation rate (m3/s) 

 𝐶𝐷,𝑖𝑛  = Discharge Coefficient 

 A = Opening area (m2) 

 𝑈𝑅𝐸𝐹   = Reference velocity at building height (m2/s) 

 𝐶𝑝𝑖𝑛  = Pressure coefficient at inlet opening 

𝐶𝑝𝑜𝑢𝑡  = Pressure coefficient at outlet opening 

 

 

The values are then substituded into Eq. (6) to calculate the internal pressure coefficient, 𝐶𝑝𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙. Then, the cross 

ventilation rate for each case can be determined by using Eq. (7) with discharge coefficient  𝐶𝐷,𝑖𝑛= 0.67, opening 

area A= 8.28 × 10−4 𝑚2, reference velocity 𝑈𝑅𝐸𝐹  = 6.97m/s, and pressure coefficients for each cases respectively. The 

ventilation rate for all seven cases was shown in Figure 9. 
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Table 3. Opening pressure coefficient and the difference between both pressure coefficient 

Opening Case 
Inlet Pressure 

Coefficient, 𝐶𝑃,𝑖𝑛  

Outlet Pressure 

Coefficient, 𝐶𝑃,𝑜𝑢𝑡  

Case 1 0.543617 0.020568 

Case 2 0.670806 0.182939 

Case 3 0.477500 0.016617 

Case 4 0.663078 0.144191 

Case 5 0.668487 0.158918 

Case 6 0.565787 0.067485 

Case 7 0.580102 0.094241 

 

 

 Based on Figure 9, it is seen that the ventilation rate is the highest in Case 1 while lowest in Case 3. The huge 

difference in ventilation rate between Case 1 and Case 3 is due to the difference in pressure difference between openings. 

For the cases of aligned openings, Case 1 with both openings at the top has 3.51% and 6.52% higher ventilation rate 

compared to Case 2 and 3 with openings at center and bottom respectively. For non-aligned opening cases, Case 4 and 5 

have with inlet opening near the roof have 2.07% and 1.14% higher ventilation rate respectively compared to Case 6 with 

inlet opening placed at bottom and outlet placed near the roof. Case 7 with inlet opening at the bottom and outlet opening 

at the middle has 3.25% and 2.36% lower ventilation rate compared to Case 4 and 5. Hence, the result proves that 

ventilation rate depends highly on pressure difference agrees well with Kleiven [15] which states that pressure difference 

is the main driving force for wind-induced cross ventilation. Furthermore, the results in terms of ventilation rate show 

good agreement with study done by Meroney [6] and Karava [9] which states that higher ventilation rate occurs when 

openings were placed near the roof.  

 

 

Figure 9. Ventilation rate for seven opening configurations 

 

CONCLUSION 

In this study, the effect of opening position on natural ventilation in an isolated building has been investigated. CFD 

simulation was done using seven different opening configurations on the building model whereby the inlet and outlet 

opening was varied on the windward and leeward wall. Computational domain was generated based on the study by 

Ramponi [10] and the simulation was done by interpreting an Atmospheric Boundary Layer (ABL) code which produces 

the velocity profile at the windward side of the model. Simulation was done using the 3D-RANS equation SST k-ω. 

Results for reference case, Case 2 was used to perform grid sensitivity analysis as well as validation study with numerical 

simulation results by Ramponi. Both grid sensitivity analysis and validation study show great agreement between both 

simulation results. Result for all seven opening configurations was discussed in terms of velocity vector, contours, airflow 

mean streamwise speed, pressure coefficient, and ventilation rate. Based on the mean streamwise speed along the 

centerline between inlet and outlet opening, a common airflow trend was observed in all seven opening configurations in 
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which the airflow with high velocity enters the building through inlet opening, the velocity decreases as it flow towards 

the middle of the building which then regains velocity as it approaches the outlet opening. In all seven cases, the pressure 

in front of the windward walls is high due to the impact of air onto the wall whilst the leeward side has relatively low 

pressure. Result shows both inlet and outlet openings placed near the roof generates highest ventilation rate with 6.52% 

higher compared to both openings placed near the ground. A higher ventilation rate is observed when inlet opening was 

placed near the roof rather than the outlet opening. Hence, it can be concluded that opening position significantly affects 

the natural cross ventilation across an isolated building. For future studies, it is recommended to include different wind 

incidence angle, different wind speed, and opening size to further investigate the parameters that affect the natural cross 

ventilation.  
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