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INTRODUCTION 

Although the plates have been studied from various aspects such as vibration, stability, etc., they are still a 

controversial topic for new studies [1]. The sandwich structures have been broadly used in many engineering fields such 

as transport, civil construction, marine and aerospace because these structures contain advantageous features (e.g. high 

strength to weight ratio and low maintenance cost). Given this, studying the behavior of these structures is very important 

to predict accurately critical loads and natural frequencies [2, 3]. In addition, they play a key role in controlling the 

vibration of structures. Since it is vital to achieving a way to control the vibration with higher efficiency and short time 

response, some of the researches notice the use of multilayer structures with smart fluids layer or flexible core or a 

combination of them. The smart fluids such as electro-rheological (ER) and magneto-rheological (MR) fluids have 

controllable rheology [4, 5].  

The excellence of MR fluids on ER fluids is that they have more significant changes in their characteristics. Magneto-

rheological fluids are a mixture of tiny magnetic particles in a carrier liquid. They alter rapidly from a liquid to a nearly 

solid state when in presence of  a magnetic field [6] because magnetic particles are arranged in the direction of the 

magnetic field and give rise to a chain-like structure [7, 8]. Therefore, their yield stress changes over a few milliseconds 

as the magnetic field intensity changes [9, 10]. Sandwich structures coupled with controllable magnetic field yield 

continually vary stiffness and damping properties, and thereby could provide enhanced vibration isolation in a wide 

frequency range. Due to its outstanding features, various high-performance MR fluid devices have been designed and 

tested [11-17].  

According to reported researches, it is found that the sandwich structures have been studied from different aspects 

which illustrate the following. Yeh and Shih [18] analyzed the dynamic features and instability of  the structures 

containing magneto-rheological fluid under buckling loads. Rajamohan et al. [19] derived the formulations for a sandwich 

beam with a magneto-rheological fluid layer, and  presented their validity via experiments on a cantilever sandwich beam. 

It was indicated that the natural frequencies rise with an increase in the magnetic field. Mohammadi and Sedaghati [20], 

investigated the nonlinear vibration behavior of sandwich shell structures with a constrained ER fluid. 

Yeh [21]  studied the vibration of  the sandwich plate with a magneto-rheological fluid core by the FEM method.   

Rajamohan et al.[10] studied the dynamic features of a sandwich beam with the magneto-rheological fluid internal core 

between the two layers of the continuous elastic structure. Yeh [22], investigated the vibration features of an orthotropic 

sandwich plate with a rectangular shape and  magneto-rheological fluid core and constraining layer. 

ABSTRACT – Magneto-rheological (MR) fluids viscosity can be varied by changing the magnetic 
field intensity. Therefore, they can improve structural rigidity and damping property. The current 
study presents a free vibration analysis of a multilayer rectangular plate with two layers of MR fluid  
and a flexible core layer, rested on a Winkler-Pasternak foundation based on exponential shear 
deformation theory (ESDT). In this theory, the exponential functions are applied in terms of 
thickness coordinates to include the effect of transverse and inertial rotational shear deformation. 
The flexible core displacement is modeled via the second-order Frostig model. The Hamilton’s 
principle is used to derive the equations of motion. These equations are solved using the Navier 
method to obtain the natural frequencies of the plate. The accuracy of the derived equations is 
validated, and the obtained results are compared with a specific case. Finally, the results show that 
by applying and increasing the magnetic field intensity, the natural frequencies and loss factor 
increase. With the increase in the mode number for each specific magnetic field intensity, the 
natural frequency increases and the loss factor decreases. The natural frequencies and loss factor 
decrease with the increase of the MR layer thickness to overall thickness ratio and the flexible core 
layer thickness to overall thickness ratio. The natural frequencies increase when the parameters 
of the foundation increase. 
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Hoseinzadeh and Rezaeepazhand [23], studied the dynamic behavior of composite laminated plates under the 

influence of external ER dampers. Eshaghi et al. [24], studied analytical and experimental free vibration of sandwich 

annular circular plates comprising the magneto-rheological fluid core. Payganeh et al. [25] studied the free vibration of 

sandwich panels with flexible core and  magneto-rheological fluid layers. Eshaghi et al. [26], investigated the free 

vibration of a cantilevered sandwich plate partially treated with a magneto-rheological fluid core. Arani and  Soleymani 

[27], studied  a size-dependent vibration analysis of a rotating MR doubly-tapered sandwich beam in supersonic airflow.   

The analysis of elastic foundations is required in applications such as, roads, airports, building foundations, docks, 

tanks and more structures. Winkler presented a linear one-parameter model for the force and energy of an elastic 

foundation for the first time. In this model, the foundation reaction force is assumed to be a proportional relationship 

between pressure and deflection of the foundation. Winkler model is simulated with the normal springs and does not 

consider shear deformations [28]. Pasternak presented a two-parameter model to describe the foundation behavior. This 

model consider shear deformation in addition to normal deformation [29]. It is widely accepted to describe the mechanical 

behavior of the foundations.  

Huang et al. [30], investigated the exact solution of FGM thick plate resting on the winkler-pasternak foundation. 

Atman et al. [31], studied the vibration of FGM plates resting on the winkler-pasternak foundation using new shear 

deformation theory. 

Here, the free vibration of a sandwich panel with a flexible core and magneto-rheological fluid layers is studied. The 

displacement of the core is modeled using Frostig’s second-order model. In this model, the displacement is thought to be 

in the form of a polynomial with unknown coefficients. The displacement of the sheets is modeled via ESDT. In this 

theory, as in theory used by Benferhat et al.[32], there is no need for shear correction factors compared to first-order shear 

deformation theory. The studied plate is rested on a Winkler-Pasternak foundation. Hamilton’s principle is used to obtain 

motion equations. The simple support for all edges are considered as boundary conditions. Derived equations are solved 

via the Navier method.  

 

THEORETICAL FORMULATION 

The studied sandwich panel is shown in Figure 1. It is a rectangular panel that it’s length, width and thickness are 

named with 𝑎, 𝑏 and ℎ, respectively. It has a flexible foam core that is denoted by ‘c’ index in this text. There are two 

sets at both top and bottom of the flexible core. Each set contains an enclosed MR layer by two composite sheets. The ‘t’ 

and ‘b’ indices are used for upper and lower layers, respectively. Additionally, the ‘1’ index is used for face composite 

sheets, similarly ‘2’ for MR layers and ‘3’ for the nearest layers to the flexible core.  

 

 
Figure 1. Schematics of the sandwich plate with two MR fluid layers and a flexible core resting on elastic foundation  

 

 Displacement and Strain Fields 

The displacement field of the face sheets is modeled by exponential shear deformation theory shown below [33]: 

 

𝑢𝑖(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0
𝑖 (𝑥, 𝑦, 𝑡) − 𝑧

𝜕𝑤0
𝑖 (𝑥, 𝑦, 𝑡)

𝜕𝑥
+ 𝑓(𝑧𝑖)𝜑𝑖(𝑥, 𝑦, 𝑡) 

 

(1a) 
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𝑣𝑖(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣0
𝑖 (𝑥, 𝑦, 𝑡) − 𝑧

𝜕𝑤0
𝑖 (𝑥, 𝑦, 𝑡)

𝜕𝑦
+ 𝑓(𝑧𝑖)𝜓𝑖(𝑥, 𝑦, 𝑡) (1b) 

  

𝑤𝑖(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤0
𝑖 (𝑥, 𝑦, 𝑡) (1c) 

 

Where 𝑖 = 1𝑡, 3𝑡, 3𝑏, 1𝑏   and  𝑓(𝑧𝑖) = 𝑧𝑖 (𝑒
−2(

𝑧𝑖
ℎ𝑖

)
2

). Also, 𝑢𝑖, 𝑣𝑖 and 𝑤𝑖  are displacements in the 𝑥, 𝑦 and 𝑧 

directions, respectively. The mid-plane displacements are shown by  𝑢0
𝑖 , 𝑣0

𝑖  and 𝑤0
𝑖 . 𝜑𝑖 and 𝜓𝑖  are the rotation functions 

along the 𝑥 and 𝑦 axes, respectively. Unlike the FSDT method, this theory does not require the use of shear correction 

factors, similarly the used theory in [32]. According to the Frostig’s second model, the displacement field for the flexible 

core is as below [34]:    

 

𝑢𝑐(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0
𝑐(𝑥, 𝑦, 𝑡) + 𝑧𝑐𝑢1

𝑐(𝑥, 𝑦, 𝑡) + 𝑧𝑐
2𝑢2

𝑐(𝑥, 𝑦, 𝑡) + 𝑧𝑐
3𝑢3

𝑐(𝑥, 𝑦, 𝑡) (2a) 

  

𝑣𝑐(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣0
𝑐(𝑥, 𝑦, 𝑡) + 𝑧𝑐𝑣1

𝑐(𝑥, 𝑦, 𝑡) + 𝑧𝑐
2𝑣2

𝑐(𝑥, 𝑦, 𝑡) + 𝑧𝑐
3𝑣3

𝑐(𝑥, 𝑦, 𝑡) (2b) 

  

𝑤𝑐(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤0
𝑐(𝑥, 𝑦, 𝑡) + 𝑧𝑐𝑤1

𝑐(𝑥, 𝑦, 𝑡) + 𝑧𝑐
2𝑤2

𝑐(𝑥, 𝑦, 𝑡 (2c) 

 

The linear strains in the upper and lower sheets (𝑖 = 1𝑡, 3𝑡, 3𝑏, 1𝑏) based on Von-Karman strain assumptions are as 

below [35]: 

 

𝜀𝑥𝑥
𝑖 = 𝑢0,𝑥

𝑖 − 𝑧𝑖𝑤0,𝑥𝑥
𝑖 + 𝑓(𝑧𝑖)𝜑,𝑥

𝑖  (3a) 

  

𝜀𝑦𝑦
𝑖 = 𝑣0,𝑦

𝑖 − 𝑧𝑖𝑤0,𝑦𝑦
𝑖 + 𝑓(𝑧𝑖)𝜓,𝑦

𝑖  (3b) 

  

𝛾𝑥𝑦
𝑖 = 2𝜀𝑥𝑦

𝑖 = 𝑢0,𝑦
𝑖 + 𝑣0,𝑥

𝑖 − 2𝑧𝑖𝑤0,𝑥𝑦
𝑖 + 𝑓(𝑧𝑖)𝜑,𝑦

𝑖 + 𝑓(𝑧𝑖)𝜓,𝑥
𝑖  (3c) 

  

𝛾𝑥𝑧
𝑖 = 2𝜀𝑥𝑧

𝑖 =
𝑑𝑓(𝑧𝑖)

𝑑𝑧
𝜑𝑖 (3d) 

  

𝛾𝑦𝑧
𝑖 = 2𝜀𝑦𝑧

𝑖 =
𝑑𝑓(𝑧𝑖)

𝑑𝑧
𝜓𝑖  (3e) 

 

Also the linear strains in the core layer based on Von-Karman strain assumptions are as below [35]: 

 

𝜀𝑥𝑥
𝑐 = 𝑢0,𝑥 + 𝑧𝑐𝑢1,𝑥 + 𝑧𝑐

2𝑢2,𝑥 + 𝑧𝑐
3𝑢3,𝑥 (4a) 

  

𝜀𝑦𝑦
𝑐 = 𝑣0,𝑦 + 𝑧𝑐𝑣1,𝑦 + 𝑧𝑐

2𝑣2,𝑦 + 𝑧𝑐
3𝑣3,𝑦 (4b) 

  

𝜀𝑧𝑧
𝑐 = 𝑤1 + 2𝑧𝑐𝑤2 (4c) 

  

𝛾𝑥𝑦
𝑐 = 𝑢0,𝑦 + 𝑧𝑐𝑢1,𝑦 + 𝑧𝑐

2𝑢2,𝑦 + 𝑧𝑐
3𝑢3,𝑦 + 𝑣0,𝑥 + 𝑧𝑐𝑣1,𝑥 + 𝑧𝑐

2𝑣2,𝑥 + 𝑧𝑐
3𝑣3,𝑥 (4d) 

  

𝛾𝑥𝑧
𝑐 = 𝑢1 + 2𝑧𝑐𝑢2 + 3𝑧𝑐

2𝑢3 + 𝑤0,𝑥 + 𝑧𝑐𝑤1,𝑥 + 𝑧𝑐
2𝑤2,𝑥 (4e) 

  

𝛾𝑦𝑧
𝑐 = 𝑣1 + 2𝑧𝑐𝑣2 + 3𝑧𝑐

2𝑣3 + 𝑤0,𝑦 + 𝑧𝑐𝑤1,𝑦 + 𝑧𝑐
2𝑤2,𝑦 (4f) 

 

Relations of Magnetorheological Layer 

The relationship between transverse strains and stresses in MR layers can be expressed as: 

 

 𝜏𝑥𝑧
2𝑗

= 𝐺∗𝛾𝑥𝑧
2𝑗

         (𝑗 = 𝑡, 𝑏) (5a) 

  

 𝜏𝑦𝑧
2𝑗

= 𝐺∗𝛾𝑦𝑧
2𝑗

         (𝑗 = 𝑡, 𝑏) (5b) 

 

According to the geometrical relationships between displacement components and rotation functions in layers 1 and 

3, and also the assumption that a no-slip condition exists between sheet layers and magnetorheological fluid layers, the 

components of strain in MR layers can be given as: 
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𝛾𝑥𝑧
2𝑗

=
𝜕𝑤�̇�

𝜕𝑥
+

𝑢0
1𝑗

− 𝑢0
3𝑗

ℎ2𝑗

+
𝜕𝑤�̇�

𝜕𝑥

ℎ1𝑗 + ℎ3𝑗

2ℎ2𝑗

+
𝜑𝑗

2ℎ2𝑗

(ℎ2𝑗𝑒
−2(

ℎ1𝑗

2ℎ2𝑗
)

2

− ℎ2𝑗𝑒
−2(

ℎ3𝑗

2ℎ2𝑗
)

2

) (6a) 

  

𝛾𝑦𝑧
2𝑗

=
𝜕𝑤�̇�

𝜕𝑦
+

𝑣0
1𝑗

− 𝑣0
3𝑗

ℎ2𝑗

+
𝜕𝑤�̇�

𝜕𝑦

ℎ1𝑗 + ℎ3𝑗

2ℎ2𝑗

+
𝜓𝑗

2ℎ2𝑗

(ℎ2𝑗𝑒
−2(

ℎ1𝑗

2ℎ2𝑗
)

2

− ℎ2𝑗𝑒
−2(

ℎ3𝑗

2ℎ2𝑗
)

2

)   (6b) 

 

The magnetorheological fluid shows the viscoelastic behavior in the pre-yield range, that is described in terms of the 

complex modulus 𝐺∗. 

𝐺∗ = 𝐺′ + 𝑖𝐺′′ (7) 

 

Here,  𝐺′ and 𝐺′′ are the storage modulus and the loss modulus, respectively. They are described as [25]:  

 
𝐺′ = −3.3691𝐵2 + 4.9975 × 103𝐵 + 𝑂. 893 × 106 (8a) 

  

𝐺′′ = −0.9𝐵2 + 0.8124 × 103𝐵 + 𝑂. 1855 × 106   (8b) 

 

Here, 𝐵 represents the magnetic field intensity in Gauss.  

 

Relations of the Foundation 

The two parameter Winkler-Pasternak model is used to model the elastic foundation. This model considers transvers 

shear deformations in addition to vertical deformations. In this model, the elastic foundation reaction force per unit of 

area is introduced as: 

𝑓𝑒 = 𝑘𝑤𝑤 − 𝑘𝑔𝑥

𝜕2𝑤

𝜕𝑥2
− 𝑘𝑔𝑦

𝜕2𝑤

𝜕𝑦2
 (9) 

 

Where  𝑘𝑤 , 𝑘𝑔𝑥 and 𝑘𝑔𝑦  are dimensionless parameters of the elastic foundation which in isotropic foundations,  

𝑘𝑔𝑥 = 𝑘𝑔𝑦 .  Since the foundation is in contact with the bottom layer, the vertical displacement of this layer affects the 

foundation. So, the strain energy of the elastic foundation is considered as: 

 

𝑈𝑓 = ∫ 𝑓𝑒𝑤𝑏𝑑𝑠 (10) 

 

 EQUATIONS OF MOTION 

To extract the equations of  motion, the Hamilton’s principle is employed as below: 

 

∫ (𝛿𝑈 + 𝛿𝑉 − 𝛿𝑇 + 𝑈𝑓) = 0
𝑡2

𝑡1

 (11) 

 

Where  𝛿, 𝑈, 𝑉, 𝑇 and 𝑈𝑓 are the variation operator, the strain energy, the work done by external forces, the kinetic 

energy and the elastic foundation energy, respectively. In the current research, 𝑉 is zero, and: 

 

𝛿𝑈 = ∑ {

i

i i i i i i i i i i
xx xx yy yy xy xy xz xz yz yz i

v

( σ δε σ δε τ δγ τ δγ τ δγ )dv+ + + + }

𝑖=1𝑡,3𝑡,3𝑏,1𝑏

 

+ ∑ {

i

i i i i
xz xz yz yz i

v

(τ δγ τ δγ )dv+ }

𝑖=2𝑡,2𝑏

 

+

c

c c c c c c c c c c c c
zz zz xz xz yz yz xx xx yy yy xy xy c

v

( σ δε τ δγ τ δγ σ δε σ δε τ δγ )dv+ + + + +  

(12) 
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𝛿𝑇 = − ∑ {∫ ∫ 𝜌𝑖

𝑏

0

𝑎

0

ℎ𝑖(�̇�𝑖𝛿�̇�𝑖 + �̇�𝑖𝛿�̇�𝑖 + �̇�𝑖𝛿�̇�𝑖)𝑑𝑥𝑑𝑦}

𝑖=1𝑡,3𝑡,3𝑏,1𝑏

 

         − ∑ {∫ ∫ (𝜌𝑗ℎ𝑗�̇�𝑗𝛿�̇�𝑗 + 𝐼𝑀𝑅(�̇�𝑥𝑧
𝑗

𝛿�̇�𝑥𝑧
𝑗

+ �̇�𝑦𝑧
𝑗

𝛿�̇�𝑦𝑧
𝑗

))
𝑏

0

𝑎

0

𝑑𝑥𝑑𝑦}

𝑖=2𝑡,2𝑏

 

         − ∫ ∫ 𝜌𝑐

𝑏

0

𝑎

0

ℎ𝑐(�̇�𝑐𝛿�̇�𝑐 + �̇�𝑐𝛿�̇�𝑐 + �̇�𝑐𝛿�̇�𝑐)𝑑𝑥𝑑𝑦 

(13) 

Where, 𝜌 is the mass density, dot-over script convention index illustrates the derivation of variables over time. Also, 

it is assumed that there is no normal stress in MR layers (2𝑡 and 2𝑏). By using Eq. (11) and considering the stress 

resultants, forces and momentums which are defined in Eqs. (14a)-(14i), the equations of motion are derived.  

 

{𝑁𝑥𝑥
𝑖 , 𝑁𝑦𝑦

𝑖 , 𝑁𝑥𝑦
𝑖 , 𝑄𝑥𝑧

𝑖 , 𝑄𝑦𝑧
𝑖 } = ∫ {𝜎𝑥𝑥

𝑖 , 𝜎𝑦𝑦
𝑖 , 𝜏𝑥𝑦

𝑖 , 𝜏𝑥𝑧
𝑖 , 𝜏𝑦𝑧

𝑖 }𝑑𝑧𝑖

ℎ𝑖
2

−
ℎ𝑖
2

             (𝑖 = 1𝑡, 3𝑡, 1𝑏, 3𝑏, 𝑐) (14a) 

  

{𝑀𝑥𝑥
𝑖 , 𝑀𝑦𝑦

𝑖 , 𝑀𝑥𝑦
𝑖 } = ∫ 𝑧𝑖{𝜎𝑥𝑥

𝑖 , 𝜎𝑦𝑦
𝑖 , 𝜏𝑥𝑦

𝑖 }𝑑𝑧𝑖

ℎ𝑖
2

−
ℎ𝑖
2

                 (𝑖 = 1𝑡, 3𝑡, 1𝑏, 3𝑏) (14b) 

  

{𝑀𝑛𝑥𝑥
𝑐 , 𝑀𝑛𝑦𝑦

𝑐 , 𝑀𝑛𝑥𝑦
𝑐 , 𝑀𝑄𝑛𝑥𝑧

𝑐 , 𝑀𝑄𝑛𝑦𝑧
𝑐 } = ∫ 𝑧𝑐

𝑛{𝜎𝑥𝑥
𝑐 , 𝜎𝑦𝑦

𝑐 , 𝜏𝑥𝑦
𝑐 , 𝜏𝑥𝑧

𝑐 , 𝜏𝑦𝑧
𝑐 }𝑑𝑧𝑐

ℎ𝑖
2

−
ℎ𝑖
2

 (14c) 

  

{𝑅𝑧
𝑐 , 𝑀𝑧

𝑐} = ∫ {1, 𝑧𝑐}𝜎𝑧𝑧
𝑐 𝑑𝑧𝑐

ℎ𝑖
2

−
ℎ𝑖
2

 (14d) 

  

{𝑄𝑥𝑧
𝑖 , 𝑄𝑦𝑧

𝑖 } = ∫ {𝜏𝑥𝑧
𝑖 , 𝜏𝑦𝑧

𝑖 }𝑑𝑧𝑖

ℎ𝑖
2

−
ℎ𝑖
2

             (𝑖 = 2𝑡, 2𝑏) (14e) 

  

𝐼𝑛
𝑖 = ∫ 𝑧𝑖

𝑛𝜌𝑖𝑑𝑧𝑖                    𝑖 = 𝑐, 1𝑡, 3𝑡, 1𝑏, 3𝑏                𝑛 = 0,1,2, … 

ℎ𝑖
2

−
ℎ𝑖
2

 (14f) 

  

{𝐽0
𝑖 , 𝐽1

𝑖  , 𝐽2
𝑖 } = ∫ 𝜌𝑖{𝑓(𝑧𝑖), 𝑧𝑖𝑓(𝑧𝑖), (𝑓(𝑧𝑖))

2
}𝑑𝑧𝑖             

ℎ𝑖
2

−
ℎ𝑖
2

   𝑖 = 1𝑡, 3𝑡, 1𝑏, 3𝑏 (14g) 

  

{𝑅𝑥𝑥
𝑖 , 𝑅𝑦𝑦

𝑖  , 𝑅𝑥𝑦
𝑖 } = ∫ {𝜎𝑥𝑥

𝑖 , 𝜎𝑦𝑦
𝑖 , 𝜏𝑥𝑦

𝑖 }𝑓(𝑧𝑖)𝑑𝑧𝑖             

ℎ𝑖
2

−
ℎ𝑖
2

   𝑖 = 1𝑡, 3𝑡, 1𝑏, 3𝑏 (14h) 

  

{𝑃𝑥
𝑖 , 𝑃𝑦

𝑖} = ∫ {𝜏𝑥𝑧
𝑖 , 𝜏𝑦𝑧

𝑖 }
𝑑𝑓(𝑧𝑖)

𝑑𝑧𝑖

ℎ𝑖
2

−
ℎ𝑖
2

 𝑑𝑧𝑖                                 𝑖 = 1𝑡, 3𝑡, 1𝑏, 3𝑏 (14i) 
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Since the derived equations of motion are too long, they are presented only for layer “1t” in Eqs. (15a)-(15c). The 

other layers have the same equations approximately, that aren’t presented here.  

 
𝛿𝑢𝑜

1𝑡: 

𝑁𝑥𝑥,𝑥
1𝑡 + 𝑁𝑥𝑦,𝑦

1𝑡 +
1

ℎ2𝑡
𝑄𝑥𝑧

2𝑡 − 𝐼𝑜
1𝑡�̈�0

1𝑡 + 𝐼1
1𝑡�̈�0,𝑥

𝑡 − 𝐽0
1𝑡�̈�𝑡 +

ℎ1𝑡 + ℎ3𝑡

2ℎ2𝑡
2 𝐼𝑜

2𝑡�̈�𝑡 −
1

ℎ2𝑡
2 𝐼𝑜

2𝑡�̈�0
1𝑡 +

1

ℎ2𝑡
2 𝐼𝑜

2𝑡�̈�0
3𝑡 −

1

ℎ2𝑡
𝐼𝑜

2𝑡�̈�0,𝑥
𝑡 = 0 

(15a) 

  
𝛿𝑣𝑜

1𝑡: 

𝑁𝑦𝑦,𝑦
1𝑡 +𝑁𝑥𝑦,𝑥

1𝑡 + 
1

ℎ2𝑡
𝑄𝑦𝑧

2𝑡 − 𝐼0
1𝑡�̈�0

1𝑡 + 𝐼1
1𝑡�̈�0,𝑦

𝑡 − 𝐽0
1𝑡�̈�𝑡 +

ℎ1𝑡+ℎ3𝑡

2ℎ2𝑡
2 𝐼𝑜

2𝑡�̈�𝑡 −
1

ℎ2𝑡
2 𝐼𝑜

2𝑡 �̈�0
1𝑡 +

1

ℎ2𝑡
2 𝐼𝑜

2𝑡 �̈�0
3𝑡 −

1

ℎ2𝑡
𝐼𝑜

2𝑡�̈�0,𝑦
𝑡 = 0 (15b) 

  
𝛿𝑤0

1𝑡: 

𝑀𝑥𝑥,𝑥𝑥
1𝑡 + 𝑀𝑥𝑥,𝑥𝑥

3𝑡 + 𝑀𝑥𝑦,𝑥𝑦
1𝑡 + 𝑀𝑥𝑦,𝑥𝑥

3𝑡 + +𝑀𝑦𝑦,𝑦𝑦
1𝑡 + +𝑀𝑦𝑦,𝑦𝑦

3𝑡 −
ℎ3𝑡

ℎ𝑐
2 𝑀2𝑥𝑥,𝑥𝑥

𝑐 −
2ℎ3𝑡

ℎ𝑐
3 𝑀3𝑥𝑥,𝑥𝑥

𝑐 −
ℎ3𝑡

ℎ𝑐
2 𝑀2𝑦𝑦,𝑦𝑦

𝑐 −
2ℎ3𝑡

ℎ𝑐
3 𝑀3𝑦𝑦,𝑦𝑦

𝑐 +

1

ℎ𝑐
𝑅𝑧

𝑐 +
4

ℎ𝑐
2 𝑀𝑧

𝑐 −
4ℎ3𝑡

ℎ𝑐
3 𝑀3𝑥𝑦,𝑥𝑦

𝑐 + (
2ℎ3𝑡

ℎ𝑐
2 +

1

ℎ𝑐
)𝑀𝑄1𝑥𝑧,𝑥

𝑐 + (
6ℎ3𝑡

ℎ𝑐
3 +

2

ℎ𝑐
2)𝑀𝑄2𝑥𝑧,𝑥

𝑐 + (
2ℎ3𝑡

ℎ𝑐
2 +

1

ℎ𝑐
)𝑀𝑄1𝑦𝑧,𝑦

𝑐 + (
6ℎ3𝑡

ℎ𝑐
3 +

2

ℎ𝑐
2)𝑀𝑄2𝑦𝑧,𝑦

𝑐 +

𝑄𝑥𝑧,𝑥
2𝑡 + 𝑄𝑦𝑧,𝑦

2𝑡 +𝐼1
1𝑡�̈�0,𝑥

1𝑡 +(𝐼1
3𝑡 −

8ℎ3𝑡𝐼6
𝑐

ℎ𝑐
6 −

8ℎ3𝑡𝐼5
𝑐

ℎ𝑐
5 −

2ℎ3𝑡𝐼4
𝑐

ℎ𝑐
4 ) �̈�0,𝑥

3𝑡 + (
8ℎ3𝑡𝐼6

𝑐

ℎ𝑐
6 −

2ℎ3𝑡𝐼4
𝑐

ℎ𝑐
4 ) (�̈�0,𝑥

3𝑏 + �̈�0,𝑦
3𝑏 ) + (−𝐼2

1𝑡 − 𝐼2
3𝑡 −

4ℎ3𝑡
2 𝐼6

𝑐

ℎ𝑐
6 −

4ℎ3𝑡
2 𝐼5

𝑐

ℎ𝑐
5 +

ℎ3𝑡ℎ3𝑏𝐼4
𝑐

ℎ𝑐
4 −

ℎ3𝑡
2 𝐼4

𝑐

ℎ𝑐
4 ) �̈�0,𝑥𝑥

𝑡 + (−
4ℎ3𝑡ℎ3𝑏𝐼6

𝑐

ℎ𝑐
6 +

ℎ3𝑡ℎ3𝑏𝐼4
𝑐

ℎ𝑐
4 ) (�̈�0,𝑥𝑥

𝑏 + �̈�0,𝑦𝑦
𝑏 ) + (−𝐼2

1𝑡 − 𝐼2
3𝑡 −

4ℎ3𝑡
2 𝐼6

𝑐

ℎ𝑐
6 −

4ℎ3𝑡
2 𝐼5

𝑐

ℎ𝑐
5 −

ℎ3𝑡
2 𝐼4

𝑐

ℎ𝑐
4 ) �̈�0,𝑦𝑦

𝑡 +

(𝐽1
1𝑡 + 𝐽1

3𝑡 +
4ℎ3𝑡

2 𝐼6
𝑐

ℎ𝑐
6 𝑒−

1

2 +
4ℎ3𝑡

2 𝐼5
𝑐

ℎ𝑐
5 𝑒−

1

2 +
ℎ3𝑡

2 𝐼4
𝑐

ℎ𝑐
4 𝑒−

1

2) (�̈�,𝑥
𝑡 + �̈�,𝑦

𝑡 ) + (
4ℎ3𝑡ℎ3𝑏𝐼6

𝑐

ℎ𝑐
6 𝑒−

1

2 −
ℎ3𝑡ℎ3𝑏𝐼4

𝑐

ℎ𝑐
4 𝑒−

1

2) (�̈�,𝑥
𝑏 + �̈�,𝑦

𝑏 ) +

(−𝐼0
1𝑡 − 𝐼0

3𝑡)�̈�0
𝑡 + 𝐼1

1𝑡�̈�0,𝑦
1𝑡 + (𝐼1

3𝑡 −
8ℎ3𝑡𝐼6

𝑐

ℎ𝑐
6 −

8ℎ3𝑡𝐼5
𝑐

ℎ𝑐
5 −

2ℎ3𝑡𝐼4
𝑐

ℎ𝑐
4 ) �̈�0,𝑦

3𝑡 + (
8ℎ3𝑡𝐼5

𝑐

ℎ𝑐
5 +

4ℎ3𝑡𝐼4
𝑐

ℎ𝑐
4 −

2ℎ3𝑡𝐼3
𝑐

ℎ𝑐
3 −

ℎ3𝑡𝐼2
𝑐

ℎ𝑐
2 ) (�̈�0,𝑥

𝑐 + �̈�0,𝑦
𝑐 ) +

(
8ℎ3𝑡𝐼6

𝑐

ℎ𝑐
5 +

4ℎ3𝑡𝐼5
𝑐

ℎ𝑐
4 −

2ℎ3𝑡𝐼4
𝑐

ℎ𝑐
3 −

ℎ3𝑡𝐼3
𝑐

ℎ𝑐
2 ) (�̈�1,𝑥

𝑐 + �̈�1,𝑦
𝑐 ) + (−

4𝐼4
𝑐

ℎ𝑐
4 +

𝐼2
𝑐

ℎ𝑐
2) �̈�0

𝑏 + (−
4𝐼4

𝑐

ℎ𝑐
4 +

4𝐼3
𝑐

ℎ𝑐
3 −

𝐼2
𝑐

ℎ𝑐
2) �̈�0

𝑡 + (
8𝐼4

𝑐

ℎ𝑐
4 +

4𝐼3
𝑐

ℎ𝑐
3 −

2𝐼2
𝑐

ℎ𝑐
2 −

𝐼1
𝑐

ℎ𝑐
) �̈�0

𝑐 −

𝐼0
2𝑡�̈�0

𝑡 + (
ℎ1𝑡+ℎ3𝑡

2ℎ2𝑡
) (𝐼0

2𝑡�̈�,𝑥
𝑡 + 𝐼0

2𝑡�̈�,𝑦
𝑡 ) −

1

ℎ2𝑡
𝐼0

2𝑡�̈�0,𝑥
1𝑡 +

1

ℎ2𝑡
𝐼0

2𝑡�̈�0,𝑥
3𝑡 − 𝐼0

2𝑡�̈�0,𝑥𝑥
𝑡 − 𝐼0

2𝑡�̈�0,𝑦𝑦
𝑡 −

1

ℎ2𝑡
𝐼0

2𝑡�̈�0,𝑦
1𝑡 +

1

ℎ2𝑡
𝐼0

2𝑡 �̈�0,𝑥
3𝑡 = 0 

(15c) 

 

 SOLUTION METHOD 

The Navier technique has been used to solve the derived equations as below, considering simply supported boundary 

condition for all edges, [33]: 
 

{
𝑢0

𝑖𝑗

𝑢0
𝑐

𝑢1
𝑐

} = ∑ ∑ {
𝑢𝑚𝑛

𝑖𝑗

𝑢0𝑚𝑛
𝑐

𝑢1𝑚𝑛
𝑐

} cos 𝛼𝑥

∞

𝑚=1

∞

𝑛=1

 sin 𝛽𝑦  𝑒𝐽𝜔𝑡 (16a) 

  

{
𝑣0

𝑖𝑗

𝑣0
𝑐

𝑣1
𝑐

} = ∑ ∑ {
𝑣𝑚𝑛

𝑖𝑗

𝑣0𝑚𝑛
𝑐

𝑣1𝑚𝑛
𝑐

} sin 𝛼𝑥

∞

𝑚=1

∞

𝑛=1

 cos 𝛽𝑦 𝑒𝐽𝜔𝑡  (16b) 

  

{
𝑤0

𝑗

𝑤0
𝑐
} = ∑ ∑ {

𝑤𝑚𝑛
𝑗

𝑤𝑚𝑛
𝑐

} sin 𝛼𝑥

∞

𝑚=1

∞

𝑛=1

 sin 𝛽𝑦 𝑒𝐽𝜔𝑡 (16c) 

  

{𝜑𝑗} = ∑ ∑ {

∞

𝑚=1

∞

𝑛=1

𝜑𝑚𝑛
𝑗

} cos 𝛼𝑥 sin 𝛽𝑦 𝑒𝐽𝜔𝑡 (16d) 

  

{𝜓𝑗} = ∑ ∑ {

∞

𝑚=1

∞

𝑛=1

𝜓𝑚𝑛
𝑗

} sin 𝛼𝑥 cos 𝛽𝑦 𝑒𝐽𝜔𝑡 (16e) 

 

In the Eqs. (16a) to (16e), 𝑖 = 1,3 ,  𝑗 = 𝑡, 𝑏, 𝛼 =
𝑛𝜋

𝑎
  and  𝛽 =

𝑚𝜋

𝑏
 . By substituting Eqs. (16a)-(16e) in derived 

equations of motion, the simplified equation of motion can be provided as follow: 

 
{[𝐾] − [𝑀]𝜔2}[𝛥] = 0 (17) 

 

Where 𝐾, 𝑀 and 𝛥 are the stiffness matrix, mass matrix and displacement vector, respectively and 𝛥 can be defined 

as: 

{𝛥} = {𝑢𝑚𝑛
1𝑡 , 𝑢𝑚𝑛

1𝑏 , 𝑢𝑚𝑛
3𝑡 , 𝑢𝑚𝑛

3𝑏 , 𝑣𝑚𝑛
1𝑡 , 𝑣𝑚𝑛

1𝑏 , 𝑣𝑚𝑛
3𝑡 , 𝑣𝑚𝑛

3𝑏 , 𝑤𝑚𝑛
𝑡 , 𝑤𝑚𝑛

𝑏 , 𝜑𝑚𝑛
𝑡 , 𝜑𝑚𝑛

𝑏 , 𝜓𝑚𝑛
𝑡 , 𝜓𝑚𝑛

𝑏 , 𝑢0𝑚𝑛
𝑐 , 𝑢1𝑚𝑛

𝑐 , 𝑣0𝑚𝑛
𝑐 , 𝑣1𝑚𝑛

𝑐 , 𝑤0𝑚𝑛
𝑐 }𝑇  (18) 

 

To solve Eqs. (18), the determinant of ([𝐾] − 𝜔2[𝑀]) must be zero. The calculated eigenvalues of this equation are 

in the complex form. So, the natural frequencies, 𝜔∗ and modal loss factor, 𝜂, are calculated as follow: 
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𝜔∗ = √(𝑅𝑒(𝜔))2 + (𝐼𝑚(𝜔))2 (19) 

  

𝜂 =
𝐼𝑚(𝜔)

𝑅𝑒(𝜔)
 (20) 

 

RESULTS  AND DISCUSSION 

The accuracy verification of the current approach relies on the comparison of the obtained natural frequencies of the 

panel in the present study with the results of reference [25]. For this purpose, the foundation is neglected and the 

mechanical and geometric properties of the panel are designated as Table 1 and Table 2. 

 

Table 1. Mechanical properties of the sandwich panel [25] 

Property 𝑬𝟏 (𝑮𝒑𝒂) 𝑬𝟐 (𝑮𝒑𝒂) 𝑬𝟑 (𝑮𝒑𝒂) 𝑮𝟏𝟐 (𝑮𝒑𝒂) 𝑮𝟏𝟑 (𝑮𝒑𝒂) 𝑮𝟐𝟑 (𝑮𝒑𝒂) 𝝑𝟏𝟐 𝝑𝟏𝟑 𝝑𝟐𝟑 𝝆 (𝒌𝒈 𝒎𝟑⁄ ) 

Face Sheets 24.51 7.77 7.77 3.34 3.34 1.34 0.078 0.078 0.49 1800 

Flexible 

Coree 
0.1036 0.1036 0.1036 0.05 0.05 0.05 0.036 0.036 0.036 130 

 

Table 2. Geometric properties of the sandwich panel [25] 

𝒉𝟏𝒕 (𝒎𝒎) 𝒉𝟏𝒃 (𝒎𝒎) 𝒉𝟐𝒕 (𝒎𝒎) 𝒉𝟐𝒃 (𝒎𝒎) 𝒉𝟑𝒕 (𝒎𝒎) 𝒉𝟑𝒃 (𝒎𝒎) 𝒉𝒄 𝒉⁄  𝒉 𝒂⁄  

1 1 1 1 2 2 0.88 0.1 

 

  To compare results of this method with reference [25], the density of used material in MR layer for a square sandwich 

panel, the magnetic field intensity and the arrangement of layers are considered as 𝜌 = 3500 𝑘𝑔 𝑚3⁄  , B=150 Gauss and 

(0/90/MR/0/core/0/MR/90/0) respectively. Also four dimensionless frequencies are derived based on: 

 

𝜔 =
𝜔𝑎2

ℎ
√

𝜌𝑐

𝐸𝑐

 

 

(21) 

 

The results shown in Table 3 are close to the results of reference [25]. The reason for the difference between the results 

of the present study and reference [25] is the transverse shear stresses at the top and bottom surfaces of the plate are zero 

in ESDT while in FSDT, the correction factor is necessary because of the lack of control of shear stresses at the top and 

bottom surfaces of the plate. Therefore, it is concluded that the used theory can simulate the vibrational behavior of the 

plate better than FSDT. 

 

Table 3. Comparison of dimensionless frequencies 𝝎 between present study and reference [25] 

Mode number (1,1) (1,2) (2,1) (2,2) 

Reference [25] 20.54 13.72 33.22 23.31 

Present study 18.75 12.69 32.55 20.51 

 

Effect of the Magnetic Field Intensity Variations on the Natural Frequency and Loss Factor 

To examine the influence of the magnetic field intensity on the natural frequency and loss factor, a plate with presented 

properties in Tables 1 and 2, is considered. Also, the foundation parameters are; 𝑘𝑤 = 105  and  𝑘𝑔 = 1015 . The results, 

in four modes of vibration, using Eqs. (19) and (20), are shown in Figure 2 and Figure 3. The increase in the magnetic 

field intensity causes the complex shear modulus of the magnetorhelogical fluid increases. Thus, the structure stiffness 

will increase. For this reason, it is observed from the results in Figure 2 that, the natural frequencies increase by applying 

and increasing the magnetic field intensity. Also, the results show that the larger mode number, the higher natural 

frequencies of the sandwich plate for each specific magnetic field intensity. 
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Figure 2. Effect of variations in the magnetic field intensity on the natural frequency 

 

The variations in the loss factors for different magnetic field intensities are shown in Figure 3. It can be concluded 

that the loss factors increase with the increase in the magnetic field intensity. But this increase is greater at first, and as 

the magnetic field intensity increases, the increase in the loss factor will be smaller especially in the fundamental mode. 

Also, the loss factor decreases with the increase in the mode number for each specific magnetic field intensity.  

 

 
Figure 3. Effect of variations in the magnetic field intensity on the loss factor  

 

 Effect of the Magnetorheological Fluid Layer Thickness on the Natural Frequency and Loss Factor 

In Figure 4, the effect of the magnetorheological fluid layer thickness on the natural frequencies can be observed. The 

analysis conditions are similar to before section, except that the magnetic field intensity is considered 400 Guass. It is 

found when the MR layer thickness to overall thickness ratio increases, the natural frequencies decrease. It is attributed 

that the mass and stiffness of the structure both increase when the thickness of the MR layer increases, but increasing the 

mass of the structure is more than increasing the stiffness of the structure. Also it is observed the reduction in the natural 

frequencies is more significant in higher modes.  

 

 
Figure 4. Effect of variations in the MR layer thickness to overall thickness ratio on the natural frequency 
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The effect of the magneto-rheological fluid layer thickness on the loss factors is shown in Figure 5. It is illustrated 

that the loss factors decrease with the increase of the MR layer thickness to overall thickness ratio. Also, the variations 

of the loss factors in higher modes are less than those compared to the lower modes.  

 

 
Figure 5. Effect of variations in the MR layer thickness to overall thickness ratio on the loss factor 

 

Effect of the Flexible Core Layer Thickness on the Natural Frequency and Loss Factor 

The effect of the flexible core layer thickness on the natural frequencies is investigated at a magnetic field intensity 

of 400 Guass in Figure 6. The other analysis conditions are similar before section.  

 

 
Figure 6. Effect of variations in the core layer thickness to overall thickness ratio on the natural frequency 

 

It is observed that the natural frequencies decrease when the flexible core layer thickness to overall thickness ratio 

increases, but the range of this decrease in not large. It is attributed that the mass and stiffness of the structure both increase 

when the thickness of the flexible core layer increases, but increasing the mass of the structure is more than increasing 

the stiffness of the structure. 

The variations of the loss factor with the increase of the flexible core layer thickness to overall thickness ratio are 

presented in Figure 7. According to Figure 7, the loss factors decrease with the increase of the flexible core layer thickness 

to overall thickness ratio. Also, the variations of the loss factors in higher modes are less than those compared to the lower 

modes.  
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Figure 7. Effect of variations in the core layer thickness to overall thickness ratio on the loss factor 

 

Effect of the Foundation Parameters on the Natural Frequency  

The effect of variations in the foundation parameters on the natural frequencies is presented in Table 4. The magnetic 

field intensity is considered 400 Guass and the other analysis conditions are similar to before. It can be realized from the 

results that the natural frequencies increase when 𝐾𝑤 and 𝐾𝑔 increase in each mode. The reason of these observations is 

that increasing the foundation parameters increases the foundation stiffness. Also, when the mode number increases, the 

increase in the natural frequency is obtained. 

 

Table 4. Effect of the foundation parameters on the natural frequency and loss factor 

𝑲𝒘 𝑲𝒈 = 𝟎 𝑲𝒈 = 𝟏𝟎𝟏𝟓 

 𝜔(1,1) 𝜔(1,2) 𝜔(2,1) 𝜔(2,2) 𝜔(1,1) 𝜔(1,2) 𝜔(2,1) 𝜔(2,2) 

0 2400.38 4595.79 5485.26 8287.99 2574.39 4754.35 5935.94 8509.13 

𝟏𝟎𝟓 2400.41 4596.79 5486.36 8302.99 2839.24 4909.14 6014.21 8536.11 

𝟏𝟎𝟏𝟎 2532.36 4715.91 5493.33 8473.06 2934.39 5022.31 6135.94 8609.14 

𝟏𝟎𝟏𝟓 2615.88 4755.40 5589.65 8644.03 3135.40 5254.37 6496.94 8699.86 

𝟏𝟎𝟐𝟎 2775.44 4856.02 5635.39 8719.18 3212.41 5356.02 6527.18 8769.34 

𝟏𝟎𝟐𝟓 2864.45 4856.02 5835.43 8749.22 3375.36 5521.12 6644.48 8821.51 

 

CONCLUSIONS 

The free vibration analysis of a multi-layer rectangular plate with both MR fluid layers and a flexible core was 

presented while the plate was rested on a winkler-pasternak foundation. The applied theories for displacement fields in 

sheet layers and flexible core layer were exponential shear deformation theory and Frostig’s second model, respectively. 

Hamilton’s principle was used to solve the equations of motion and the Navier technique was used to solve them. It can 

be concluded from the obtained numerical results that the natural frequencies and loss factor increase with increasing 

magnetic field intensity. The increase in the MR layer thickness to overall thickness ratio causes the natural frequencies 

and loss factor decrease. Similarly, the increase in the core layer thickness to overall thickness ratio conduces the decrease 

in the natural frequencies and loss factors. The increase in the foundation parameters leads the increase in the natural 

frequencies.  
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NOMENCLATURE 

Parameter Definition 

B Magnetic field intensity 

𝐸1, 𝐸2, 𝐸3              Young’s modulus in directions of layer material 

𝐺12, 𝐺1,3, 𝐺2,3        Shear modulus in directions of layer material 

𝐺′ and 𝐺′′ Storage modulus and loss modulus, respectively 

h Thickness of the plate 

𝑀𝑥𝑥
𝑖 , 𝑀𝑦𝑦

𝑖 , 𝑀𝑥𝑦
𝑖  Moment resultant for the 𝑖𝑡ℎ layer 

𝑀𝑛𝑥𝑥
𝑐 , 𝑀𝑛𝑦𝑦

𝑐 , 𝑀𝑛𝑥𝑦
𝑐 , 𝑀𝑄𝑛𝑥𝑧

𝑐 , 𝑀𝑄𝑛𝑦𝑧
𝑐 , 𝑀𝑧

𝑐 Moment resultant for the flexible core layer 

𝑁𝑥𝑥
𝑖 , 𝑁𝑦𝑦

𝑖 , 𝑁𝑥𝑦
𝑖 , 𝑄𝑥𝑧

𝑖 , 𝑄𝑦𝑧
𝑖  Force resultant for the 𝑖𝑡ℎ layer 

𝑅𝑧
𝑐 Force resultant for the flexible core layer 

𝑢, 𝑣, 𝑤 Displacement component in the x-, y-, and z-direction, respectively                                                                                                                                                                                                                                            

 

GREEK SYMBOLS 

Parameter Definition 

𝜀𝑖𝑗 Strain on i-j plane 

𝛾𝑖𝑗                   Shearing strain on i-j plane 

𝜂 Loss factor 

𝜈12, 𝜈1,3, 𝜈2,3 Poisson’s ratio in directions of layer material 

𝜌 Mass density per unit volume 

𝜑, 𝜓                       Rotation components about the x-  and y-direction, respectively 

𝜔 Natural frequency 

 

 


