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INTRODUCTION 

Kinematic singularity is one of the critical topics in the field of robotics but nonetheless no manipulator architecture 

does not suffer from the singularity problem. Kinematics singularities represent configurations in which the manipulator 

number of instantaneous degrees of freedom are reduced [1]. This reduction will limit the capabilities of the manipulator 

and won’t be possible to execute arbitrary motions of the end-effector. The presence of singularities in the manipulator’s 

workspace or joint space can profoundly affect the overall performance of the manipulator. Upon approaching a 

singularity configuration, small velocities in the Cartesian space may generate infinite velocities in the joint space. 

Resulting in illogical torques or forces on the links of the manipulator, loss of stiffness and rigidity, and malfunction of 

control algorithms. Therefore, the kinematic singularity is a vital problem that should be heavily considered in the 

designing and controlling process of robotic manipulators.  

Traditionally, the singularity analysis is addressed by checking the manipulability index of the system in question and 

was introduced by Yoshikawa [2]. The manipulability concept is to identify the linear dependencies in the Jacobian that 

may cause a singular configuration. The configuration is to be singular if the Jacobian matrix is out of rank. This method 

was initially used in control algorithms to avoid singular positions. Since then it has been used in a wide variety of 

applications, such as real-time end-pose planning in walking tasks [3], and planning of human-robot interaction 

workspaces [4]. The manipulability index has also been extended to include the joint twist limits, self-collision, and the 

ability to adapt to obstacles in the working area [5]. 

The singularity analysis could also be approached using the mathematical point-of-view [4]. The configuration is to 

be singular if the Jacobian matrix (6 × n) is out of rank (i.e. the configurations at which the Jacobian matrix is rank-

deficient). These configurations are named Kinematic Singularities [6]. Subsequently, the general solution of the 

determinant of the Jacobian should be obtained to identify the locus of the singular configurations. Those singular 

configurations have then been used to generate a singularity free path [1]. 

Another way to reduce the number of singular configurations is by introducing a shoulder joint. This was firstly 

introduced by Chiaverini [7]. He proposed to introduce a shoulder joint to the Puma configuration 5 degree-of-freedom 

(5 DOF) serial robot configuration) to increase the number of degrees of freedom (6 DOF). This helped in decreasing the 

number of singular configurations but it couldn’t eliminate the singularity problem. 

Another approach to singularity is the use of dynamic equations as presented in [8, 9] where the forward dynamics 

approach was used for task space control. The Singularity conditions were detected based on the estimation of the energy 

stored. Also in [10], the definitions of force polytope and force ellipsoid were studied with the static constraints for 

planner manipulators. 

The Monte Carlo method is a numerical method for solving mathematical problems by means of random sampling. 

The Monte-Carlo method does not require inverse Jacobian calculation and it is relatively simple to apply. It has been 

used by many researchers to generate workspace and the corresponding size, the accessibility of workspaces, and the 

effect of changes in geometric parameters on the workspace [11, 12, 13].  

ABSTRACT – This paper analyses the problem of the kinematic singularity of 6 DOF serial robots 
by extending the use of Monte-Carlo numerical methods to visualize singularity configurations. To 
achieve this goal, first, forward kinematics and D-H parameters have been derived for the 
manipulator. Second, the derived equations are used to generate and visualize a workspace that 
gives a good intuition of the motion shape of the manipulator. Third, the Jacobian matrix is 
computed using graphical methods, aiming to locate positions that cause singularity. Finally, the 
data obtained are processed in order to visualize the singularity and to design a trajectory free of 
singularity. MATLAB robotics toolbox, Symbolic toolbox, and curve fitting toolbox are the MATLAB 
toolboxes used in the calculations. The results of the surface and contour plots of the determinate 
of the Jacobian matrix behavior lead to design a manipulator’s trajectory free of singularity and 
show the parameters that affect the manipulator’s singularity and its behavior in the workspace. 
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The Monte-Carlo methods were only used to visualize the workspace not to figure out the singularity configurations. 

Therefore, this paper aims to use the Monte-Carlo methods to figure out the locations of the singular configurations in 

the whole workspace of the 6 DOF serial manipulator. This can be achieved through (a) construct the transformation 

matrices that describe the kinematic motion of the serial manipulator based on the D-H convention [14]; (b) simulate the 

workspace of the manipulator using the Monte-Carlo methods [11] depending on the Kinematic equations that were 

computed, (c) calculate the Jacobian matrix geometrically [6, 15] (hence the Jacobian matrix is available), (d) compute 

the determinate of the Jacobian matrix, (e) identify the locations of the singularity to simulate the behavior of the Jacobian 

matrix with the change in the variable affecting it and (f) use the Monte-Carlo methods again to simulate the shape of the 

singular workspace. The results show which of the joints values affect the singularity of the manipulator and how to 

generate the singularity-free workspace. Besides, the results give a map to the motion of the end-effector in the Cartesian 

space and the corresponding value of the Jacobian matrix determinate. This map gives a good intuition of how close the 

end-effector is to the region of singularity. Consequently, avoiding unreasonable velocities in the joint variable space.     

 

STRUCTURE OF THE AER-1 SERIAL ROBOT 

 The robotic arm architecture used in this work is a six-degree serial manipulator called the AER-1 robotic arm as 

shown in Figure 1(a). The configuration of the robot consists of the waist, shoulder, elbow, and wrist. Each of them has 

one degree of freedom, except for the wrist, which has a spherical configuration (Roll-Pitch-Yaw) that helps in the 

manipulation and handling of objects. The AER-1 manipulator is fully driven by high precision stepper motor equipped 

with incremental magnetic encoders to form a reliable closed-loop system.    

 

  

Figure 1. Robotic arm AER-1 architecture: (a) 3D model of the robotic arm and (b) distances between joint’s axis 

 

The architecture of the robot consists of six revolute joints as shown in Figure 1(b). In the calculations, the robot 

structure will be divided into two main parts (the waist, shoulder, and elbow) representing the first three links and the 

wrist consisting of the last three links as shown in Figure 2(a) and (b) for ease of the analysis [16, 17]. The wrist 

configuration is Roll-Pitch-Yaw as shown in Figure 2(b), which provides the shortest path to the desired target than the 

Roll-Pitch-Roll configuration as stated in [17, 18]. As a result, a shorter path generates a chance of having fewer points 

of singularity in the desired path, which reduces the probability of having a singular point in the generated trajectory.  

  

Figure 2. Robot configuration: (a) shoulder configuration and (b) wrist configuration (Roll-Pitch-Yaw 
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KINEMATIC MODELING 

D-H Parameters of the AER-1  

The kinematic model of the manipulator is the mathematical relationship between the orientation and position of the 

end effector and the parameters of the joint. There is more than one method for performing the kinematic problem, the 

most common methods are based on the Denavit–Hartenberg (DH) parameters and the successive screw displacements. 

Both methods have a systematic nature and are suitable for modeling serial manipulators.  

In this paper, the identification of the joints and the links are done through Denavit–Hartenberg method. The DH 

parameters are assigned to determine the position and orientation of the robotic arm end-effector [16] and also used to 

represent how each link reference frame is attached to the robotic arm as illustrated in Figure 3 [6].   

 

 

Figure 3. Illustration of D-H convention [19] 

 

 

Table 1. D-H parameters table 

Link a α d θ 

1 0 
π

2
 d1 θ1 

2 a2 0 0 θ2+ (
π

2
) 

3 a3 0 d3 θ3 

4 0 -
π

2
 d4 θ4+ (

π

2
) 

5 0 
π

2
 d5 θ5+ (

π

2
) 

6 0 0 d6 θ6 

 

Table 1 shows the DH parameters of the six joints of the AER-1 robotic arm shown in Figure 1(b), where: 

αi : the twist angle between �̂�i & �̂�i+1measured about �̂�i 

ai: it is the offset length of the common normal between each two  successive links  

θi : it is the value of the angle between �̂�i & �̂�i-1 along �̂�i 

di : offset distance between �̂�i & �̂�i-1 along �̂�i 

The main usage of the D-H table is to construct the kinematic equations in order to simulate the entire workspace of the 

manipulator.  

 

Forward Kinematic of the AER-1  

Forward kinematics refers to the process of obtaining the position of the end effector, given the known joint angles. 

Using parameters from the Denavit-Hartenberg (DH) table, the transformation matrix of each link is then computed where 

it has a rotation sub-matrix R(3×3), and a translation sub-matrix P(3×1), as in Eq. (1), where i is the link number.    

 

axis i-1 
axis i 

ŷ
i
 

ẑi 

x̂i  d
âi-1 ẑi-1 

x̂i-1 

ŷ
i-1

 

αi-1 

φi 
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Ti= 

i-1 [

cosθi -sinθicosαi sinθisinαi aicosαi

sinθi cosθicosαi -cosθisinαi aisinαi

0 sinαi cosαi di

0 0 0 1

] = [
R P

0 1
]  (1) 

 

By substituting in the general transformation matrix presented in Eq. (1), with the data presented in Table 1, and using 

the MATLAB Robotics toolbox [20] the transformation matrices of the six links of the AER-1 can be written as in Eqs. 

(2) to (7).  

T1 

0 = [

c1 0 s1 0

s1 0 -c1 0

0 1 0 d1

0 0 0 1

] (2) T2 

1 = [

c2 -s2 0 a2*c
2

s2 c1 0 a2*s2

0 1 0 0

0 0 0 1

] (3) 

T3 

2 = [

c3 -s3 0 a3*c
3

s3 c3 0 a3*s3

0 1 0 0

0 0 0 1

] (4)                                            T4 

3 = [

c4 0 s4 0

s4 0 -c4 0

0 1 0 d4

0 0 0 1

] (5) 

T5 

4 = [

c5 0 -s5 0

s5 0 c5 0

0 -1 0 d5

0 0 0 1

] (6)                                               T6 

5 = [

c6 0 s6 0

s6 0 -c6 0

0 1 0 d6

0 0 0 1

] (7) 

 

where, sin(θi) =si , cos(θi) =ci. 

Then the transformation matrix from the base to the end effector (on the left-hand side) is computed by multiplying 

all of the previous matrices presented above in order (on the right-hand side) as follows:  

 

Tn 

0 = T1 

0 ……… Tn 

n-1   (8) 

 

Upon segmenting the manipulator into two main segments as shown in Figure 2 the transformation matrix for each 

segment can be written as Eqs. (9) and (10). 

T3=Tshoulder 

0 = [

c23c1 -s23c1 -s1 c1(a3c23+a2c2)

c23s1 -s23s1 c1 s1(a3c23+a2c2)

s23 c23 0 d1+a3s23+a2s2

0 0 0 1

]  (9) 

T6=Twrist 

4 = [

c4c5c6-s4s6 -c6s4-c4c5s6 -c4s5 d5s4-d6c4s5

s4s6+c5c5s4 c4c6-c5s4s6 -s4s5 -d5c4-d6s4s5

s5c6 -s5s6 c5 d4+d6c5

0 0 0 1

]  (10) 

 

where, sin(θi+θj) =sij , cos(θi+θj) =cij, where 𝜃𝑖 and 𝜃𝑗 are two different joints values for two different links i and j. 

The resulting overall transformation matrix (rotation matrix 1R6 and translation matrix 1P6 from the multiplication of 

the previous matrices presented in Eqs. (9) and (10) will be Eqs. (11) and (12): 

 

R6=
 

1 [

nx ox ax

ny oy ay

nz oz az

0 0 0

] = [

c234c1c5c6-c6s1s5-s234c1s6 s1s5s6-s234c1c6-c234c1c5s6 c5s1+c234s5c1

c1c6s5-s234s1s6-c234s1c5c6 -(s234s1c6+c1s6s5+c234c5s1s6) c234s1s5-c1c5

c234s6-s234c5c6 c234c6-s234c5s6 s234s5

0 0 0

]  (11) 

P6=
 

1 [

p
x

p
y

p
z

1

] = [

a2c2c1+a3c1c23+s1(d2+d3+d4)+d6(s1c5+c234c1s5)-d5s234c1

a2c2s1-s1(d2+d3+d4)-d5c234s1+a3s1c23+d6(c
234

s1s5-c1c5)

d1+a3s23+a2s2+d5c234+d6c234s5

1

]  (12) 
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WORKSPACE OF THE AER-1  

Following the kinematics of the AER-1 robotic arm presented in the previous section, this section is intended to 

identify the entire workspace in which the robotic manipulator can operate. The workspace of the robot manipulator is 

defined as the set of points that can be reached by the end-effector of the robot [11]. The entire workspace will be obtained 

on the basis of numerical methods that have been developed in recent years. For this purpose, the Monte-Carlo numerical 

methods are used by applying random values for the joint values between the upper and lower bounds of the joint using 

the algorithm implemented in [12, 16]. One advantage of the Monte-Carlo method is that it does not require the inverse 

kinematics solution of the manipulator. The assumption that the manipulator singularity configurations are located upon 

approaching the boundaries of its workspace was validated in [21]. This emphasizes the importance of finding the 

workspace of the manipulator. 

 

Joints Limits and Variables Values 

The limits of the AER-1 robot are defined in such a way that the links do not collide from their motion in the workspace 

and also use the maximum space for the end effector to move within it. For the current manipulator design the limits of 

links 1, 2, 4, 5, and 6 are expressed in Eq. (13). On the other hand, the limits of link 3 are in Eq. (14).  

 

-180 ≤ q
1,2,4,5,6

≤ 180 (13) 

-140 ≤ q
3
≤ 140  (14) 

The values of links are chosen to achieve a workspace of a radius of 1m maintaining a reasonable payload on the 

account of the available driving system. The dimensions of the six links are therefore chosen as presented in Table 2.  

 

Table 2.  Dimensions of the six links 

Variable Value (m) 

d1 0.08 

a2 0.41 

a2 0.41 

d4 0.15 

d5 0.15 

d6 0.1 

 

Monte Carlo Algorithm  

After discussing the joint limits and variables of the AER-1 in the previous section, this section explains the use of 

the Monte-Carlo algorithm in this work. The Monte Carlo method is a numerical method for solving mathematical 

problems by means of random sampling. The Monte Carlo algorithm is used to generate random joint angles and then 

these angles are used as inputs for forwarding kinematics Eqs. (1) and (8) to calculate the position of the end-effector [11, 

12]. Each position represents a point in the workspace of the robotic arm. This is done multiple numbers of iterations (𝑛). 

A new position for the end effector is generated for each iteration. Those positions are then plotted together to form the 

workspace of the robotic manipulator. The Monte-Carlo’s randomly generated values must be within the bounds of the 

joints, specified in Eqs. (13) and (14). This is achieved by using Eq. (15), where each joint (𝑖), gets a random joint 

value(𝜃𝑖𝑛), and also the boundaries for the motion are through the MATLAB function Rand ( ), which generates a number 

between 0 and 1. This number is then multiplied by the difference between the upper and the lower limits of the joints 

variables this generates a random joint value of each iteration for each joint. 

 

θin
=θimin

+(θimax
-θimin

)*Rand( )  (15) 

 

The flowchart illustrated in Figure 4 explains the MATLAB code of the algorithm that was designed to generate the 

workspace. The algorithm starts by determining the numbers of the iterations to generate the workspace, and then the 

matrices are constructed to store the data. The next step is to generate a random value for each joint calling function Rand 

( ) as presented in Eq. (15). After that, the values of the joints variables for this iteration are used as inputs for Eq. (12) to 

calculate the position of the end effector. The values of the resulting computations are then saved to be used later to 

simulate/visualize the workspace. Previous procedures shall be repeated until the number of iterations set out in the first 

step has been reached. The last step is to show the scattered points representing the Cartesian coordinates of the end-
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effector resulting from all runs. The Monte Carlo methods define the workspace of the robot each iteration. The increase 

in the number of iterations can bring the simulated workspace as close as possible to the actual workspace [22]. The 

appropriate number of iterations is achieved by trial and error until the addition of more iterations is redundant. 

A set of 250,000 random numbers for each joint variable was generated from the boundaries of the joints variables 

intervals described in Eqs. (13) and (14) to generate the workspace as described in the above flowchart. Figure 5 represents 

the results of the robotic arm workspace simulation. Figure 5(a) describes the motion of the end-effector of the AER-1 6-

DOF manipulator in the Cartesian coordinate reference point formed in the workspace. Figures 5(b), (c), and (d) show 

the three Cartesian coordinates of the projection planes, x-y, x-z, y-z planes, respectively. 

 

 

Figure 4. Working space simulation flowchart based on Monte Carlo method 

 

False 
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start 

 
define the variables 
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 n   250,00 
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end 

 
initialize the graphics system 
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x
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y
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z
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 store the position for each iteration in array (n3) 
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Figure 5. Results of the workspace: (a) the workspace of the manipulator, (b) projection in x-y plane, (c) projection in 

x-z plane and (d) projection in y-z plane  

 

KINEMATIC SINGULARITY ANALYSIS OF THE MANIPULATOR 

In the previous section, the kinematic equations governing the manipulator motion could be obtained. The Jacobian 

matrix formulas are derived using geometric methods and solved by numerical methods in this section [6, 12]. After that, 

the determinant of the Jacobian matrix is then computed in order to find the parameters that affect the singularity of the 

manipulator, and also to further investigate the behavior of these variables in the entire workspace, and to obtain the 

location of the singular points in both the Cartesian spaces and the joint space variables.  

 

Jacobian Matrix 

The time derivative of the kinematics equations when calculated yields the Jacobian matrix of the manipulator. Since 

the Jacobian matrix is the link between the end-effector velocity in the Cartesian space 𝜈(6×1) and the velocity of the 

joints space �̇�(𝑛×1) as shown in Eq. (16) [6, 15].   

 

ν(6×1)=J(q)(6×n)×q̇(n×1)
  (16) 

 

The left-hand side of the Eq. (16) represents the velocity vector of the end effector in the Cartesian space. This vector 

has two main components, linear velocities (ve) and angular velocities (e) as follows: 

 

ν(6×1)= [
ve

ωe
] =[ẋ ẏ ż α̇ β̇ γ̇]T  (17) 

 

The right-hand side of the Eq. (16) is the cross product of two matrices; q̇(n×1)
 which represents the joint space 

velocities and  J(q)(6×n) which represents the Jacobian matrix of the manipulator. The Jacobian matrix consists of two 

main parts Jp and Jo, such that the one responsible for linear motion is Jp, while Jo is responsible for the angular motion 

as in the following equation. 

 

J(q)(6×n)= [
Jp

Jo

]
(6×n)

  (18) 

 

where: 

ν(6×1) represents the end effector's velocity matrix   

ve is a (3x1) matrix that represents the end effector linear velocity in Cartesian space 

ωe is a (3x1) matrix that represents the end effector angular velocity in Cartesian space 

ẋ,ẏ & ż are the components of the linear velocity in the Cartesian space 

(b) 
(a) 

(c) (d) 
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α̇,β ̇& γ ̇ are the components of the angular velocity in the Cartesian space 

Jp is a (3x1) Jacobian matrix that relates the end effector linear velocity to joints velocities 

Jo 
is a (3x1) Jacobian matrix that relates the end effector angular velocity to joints velocities 

 

 

Figure 6. Representation of vectors needed for the computation of the velocity contribution of a revolute joint to the 

end-effector linear velocity [23] 

 

where:  

zi-1 
represents the rotation around the Z-axis vector from the transformation matrix [ax ay az]T, 

as represented in Eq. (12) 

p
e
 represents the position vector of the end effector 

p
i-1

 represents the position vector of the ithframe relative to the base 

ri 
i-1  represents p

e
-p

i-1
 

 

Figure 6 shows the vectors needed to calculate the Jacobian matrix. It is deduced from the figure that the linear and 

angular velocities of the end-effector are analogous to that of the vector calculations of the linear and angular velocity of 

a point [23, 19].  It is therefore concluded that the contribution of each joint to the angular and linear velocity of the end 

effector can be described using the following Eqs. (19) and (20). 

 

ωi 
i-1 =θ̇i×ẑi-1  (19) 

 

The computing linear velocity using Eq. (19) is: 

 

νi= 
i-1 ωi 

i-1 × ri 
i-1   (20) 

 

Upon re-substituting in Eq. (16) using what was deduced in Eqs. (19) and (20), Eq. (16) can be rewritten as follows: 

 

J(q)
(6×n)

×q̇
(n×1)

= [
Jp

Jo

]
(6×n)

×q̇
(n×1)

= [
ve

ωe
] = [

ωi 
i-1 × ri 

i-1

ωi 
i-1

]                                     (21) 

 

Therefore, from the Eqs. (20) and (21), the following equation can be deduced: 

 

[
Jp

Jo

]
(6×n)

×q̇
(n×1)

= [
θ̇iẑi-1× ri 

i-1

θ̇iẑi-1

]
(6×1)

  (22) 

 

By eliminating the joint variables from both sides of the above equation, the relationship between 𝐽(6×𝑛) and the 

parameters of the manipulator can be determined as in the following equation:  

 

[
Jp

Jo

]
(6×n)

= [
ẑi-1× ri 

i-1

ẑi-1

]
(6×1)

  (23) 

 

Oi-o 

1 

zo 

xo yo 

ze 

zi-1 

pe 

pi-1 
ri-1,e 
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The resulting Jacobian matrix of the AER-1 calculated in Eq. (23) will be analyzed. Since the robot configuration can 

be divided into two main parts; one concerned with the shoulder of the manipulator and the other is concerned with that 

of the wrist Moreover, each part can be divided into two parts; one is concerned with linear velocity and the other is 

concerned with that of the angular velocity (𝐽𝑝 and 𝐽𝑜). Finally, the Jacobian matrix is divided into four matrices (3x3) 

[6, 16] as stated in Eq. (24). 

 

Je= [
Jpshoulder

Jpwrist

Joshoulder
Jowrist

]  (24) 

 

The four matrices are computed using the numerical method presented by Peter Corke in his Robotics Toolbox for 

MATLAB [20] as in the following equation: 

 

Jpshoulder,pwrist
=

[
 
 
 
 
 
 
∂Px

∂θ1

∂Px

∂θ2

∂Px

∂θ3

∂Py

∂θ1

∂Py

∂θ2

∂Py

∂θ3

∂Pz

∂θ1

∂Pz

∂θ2

∂Pz

∂θ3]
 
 
 
 
 
 

  (25) 

 

By using Eqs. (23) and (25), the Jacobian matrix responsible for the angular velocity of the manipulator as a vector 

multiplication can be deduced as presented in Eq. (26): 

 

Jpshoulder,pwrist
=JOshoulder,Owrist

× ri 
i-1   (26) 

 

The singularity is reached if the determinate of the Jacobian matrix equal to zero. The determinate is written as follows: 

 

det(Je) = det (Jpshoulder
) × det(Jowrist

) - det(Joshoulder
) × det (Jpwrist

)  (27) 

 

Using the MATLAB, the Jacobian matrix of the wrist positions, Eq. (25), can be obtained as follows:   

 

Jpwrist
= [

d5c4+d6s4s5 -d6c4c5 0

d5s4-d6c4s5 -d6c5s4 0

0 -d6s5 0

]  (28) 

 

Clear inspection of the above equation yields:  

 

det (Jpwrist
) =0  (29) 

 

Then 

det(Je) = det (Jpshoulder
) × det(Jowrist

)  (30) 

 

Since the singularity of the manipulator is reached when  det(Je) =0, it is clear from Eq. (30) that there are two 

conditions:  

1. det(JPshoulder) = 0, this leads to the shoulder’s singularity. 

2. det(Jowrist) = 0, this leads to the wrist’s singularity. 

Using the numerical methods, Eq. (25) and Eq. (26), the Jacobian matrices of the shoulder positions and wrists 

orientations can be obtained as in Eqs. (31) and (32): 

 

Jpshoulder
= [

-s2*(a3c23+a2c2) -c1*(a3s23+a2s2) -a3s23c1

c1*(a3c23+a2c2) -s1*(a3s23+a2s2) -a3s23s1

0 (a3c23+a2c2) a3c23

]  (31) 

  

Jowrist
= [

0 s4 -c4s5

0 -c4 -s4s5

1 0 c5

]  (32) 
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Finally, to study the singularity behavior of the end-effector, the determinate value of Je, Jpshoulder
, and Jowrist

can be 

deduced from Eqs. (31) and (32) as follows: 

 

det (Jpshoulder
) =-a2a3(c2s3(a2+a3c3)-a3s2s3

2)=-a2a3s3(c2a2+a3c23)  (33) 

  

det(Jowrist
) =-s5  (34) 

 

ANALYSIS OF THE RESULTS  

After determining the components of the Jacobian matrix, Eq. (30), and substituting with the results of Eqs. (33) and 

(34). It was found that the determinate is a function of q2, q3, and q5 where:   

 

det(Je) =f (q
2
,q

3
, q

5
) =a2a3s5s3(c2a2+a3c23)  (35) 

 

As can be seen from Eq. (35) that the determinate consists of three variable terms. These are 𝑠5, 𝑠3and (𝑐2𝑎2 + 𝑎3𝑐23). 

The determinate is directly proportional to the multiplication of  𝑠5 and 𝑠3. Therefore, if any of these terms are equal to 

zero, the manipulator will reach a singularity. Consequently, the manipulator will be in a singular position when s3 equals 

zero and this will happen when q
3
=0,π,2π,... etc. On the other hand,  the manipulator will be in a singular position when 

s5 equals zero which will occur when q
5
=0,π,2π,...etc.  

When it comes to the third term, the substitution method is used to find the values of q2 and q3 which make the term 

equals to zero. Substituting the joints limits specified in Eqs. (13) and (14), the absolute value of the determinant is tested 

to verify singularity.   

The determination of the values of the joints variable that singularity of the shoulder is done using MATLAB 

implementation of the Monte-Carlo algorithm. The use of the Monte-Carlo algorithm was previously limited for the 

construction of workspace only as it was presented in [12, 13, 22]. In this work, its use is further extended for the 

singularity analysis in order to get the values of the joint variables that lead to singular configurations. This extension is 

done by checking the randomly generated joint values to build the workspace of the manipulator. 

The extended use of the Monte-Carlo algorithm is explained in the following flowchart illustrated in Figure 7 through 

the following procedures. The algorithm starts by determining the numbers of the runs that the algorithm would repeat to 

construct data storage matrices. The next step would be to generate a random value for each joint using function Rand (). 
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Figure 7. Flowchart of the process to determine the shape of the workspace of singular configurations 

 

   The values of the joints variables for this iteration are then used as inputs for Eq. (33). Then the result of the previous 

step is compared to check if det (Jpshoulder
) <0 or not. If the det (Jpshoulder

) =0, the variables for this iteration are being 

saved. Previous procedures shall be repeated until the number of runs specified in the first step has been reached. The last 

step is to show the scattered points representing the Cartesian coordinates of the end-effector resulting from all runs 

The use of this process is done simultaneously with the process of generating the workspace as in Figure 4, to ensure 

that the randomly generated sample is the same for both simulations. Points that have been identified as singular 

configurations are stored and used as an input for Eq. (12) to construct the workspace of the singular positions of the end-

effector in the Cartesian space as shown in Figure 8. 
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Figure 8. Simulation results of the singularity points of the manipulator in the Cartesian space. (a) 3d projection of 

singularity points, (b) x-y projection on the singularity points, (c) x-z projection on the singularity points, (d) y-z 

projection on the singularity points 

 

The results presented in Figure 8 give a good indication of how the singular configurations affect the effective part of 

the entire workspace and also show the locations where the singularities are crammed. 

The expended Monte-Carlo method previously described is used to find the singular points in the Cartesian space. In 

order to solve the third term presented in Eq. (33) to find the angles by which the determinant is zero to develop a map of 

joint variables and the determinate value, a MATLAB code is constructed to calculate the determinant value discretely 

with a step of 1°. In the code, the angles which make the absolute value of the determinant less than 10-5 are considered 

to make the manipulator in singularity. The process of finding all the possible values for the determinant, Eq. (33), is 

described in the flow chart illustrated in Figure 9. This process uses 2 nested for loops to evaluate all the possible values. 

The data obtained from the previous process is used to visualize  the relationship between the joints variables and the 

det(Jshoulder)  presented in Figures 10 and 11 in both surface plot and contour plot. In the surface plot, the x and y axes 

represent the joint values of q2 and q3, where the z-axis represents the value of the determinant. On the other hand, in the 

contour plot the axes, x and y are the joint values of q2 and q3 where the value of the determinant is presented in the 

legend. The contour plot presented in Figure 11 is used to set a threshold value beyond which the value of the Jacobian 

matrix does not achieve reasonable controlling speed for the manipulator as in Eq. (21). Whereupon designing the 

trajectory, a spline curve would be generated on that contour, it has to be ensured this the spline curve doesn't approach 

the threshold value to avoid any damage to the manipulator. 

Figure 12 represents a map of the value of the determinant with respect to the location of the end effector in Cartesian 

coordinates. This data is obtained by combining the data resulting from the process presented in the flowcharts presented 

in Figures 4 and 7. This map gives a good intuition on how close the end-effector to the singularity configuration during 

its operation. This map helps to design a trajectory without any singularities, this to be done by assigning an absolute 

threshold value for the Jacobian determinate, below which the end-effector's trajectory wouldn’t be allowed to go. 

The results presented in this paper was able to locate the singularities of the manipulator in both the joint space and 

the operational space of the manipulator. The results are obtained based on a novel use of the Monte-Carlo algorithms. 

The results are obtained only using the kinematic equations which are not computationally expensive to be solved 

compared to what was done in [8, 9]. In [8, 9], the equations of motion were used to determine and locate the singularity 

of the manipulator. The equations are computationally exhausting and require a closed-loop system to perform these 

operations. It’s noteworthy that in this work the singularity was avoided by introducing a bandwidth around the value of 

the determinant of the Jacobian matrix rather than introducing an extra joint as was suggested in [7]. Adding extra joints 

leads to a complicated analysis and also makes the mechanical structure more expensive and more complex. Moreover, 

in this work, the exact locations of the singularities are being allocated by the novel use of Monte-Carlo algorithms. On 

the contrary, the use of manipulability ellipsoid was introduced in [10] where the velocity and force ellipsoid concepts 

were utilized to determine the manipulability which in turn determines the locations of the singularity. The manipulability 

measure has the advantage of being easily computed. However, this value does not give a good intuition on how close 

the manipulator is to the singularity as stated in [23]. 

(d) 

(a) 
(b) 

(c) 
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Figure 9. Flowchart of the process to determine the possible values of the shoulder determinant 
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Figure 10.  The shoulder determinate behaviour: (a) 3d surface plot of the shoulder determinant versus q
2
, q

3
;  

(b) surface plot of the shoulder determinant behaviour versus q
2
, q

3
 on x-y plane and (c) surface plot of the shoulder 

determinant behaviour  versus q
2
, q

3
 on  y-z plane 

 

 

Figure 11. Contour plot of the shoulder singularity versus  q2,q3  
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Figure 12. Contour plot linking the position of the end-effector and the value of the Jacobian determinant. 

 

CONCLUSION 

In this paper, complete modelling of the 6-DOF robotic manipulator was carried out. First, the robot’s kinematic was 

characterized and the mathematical model was derived and has been implemented using MATLAB Robotics Toolbox. 

Second, the entire workspace of the manipulator was presented using the numerical method of Monte-Carlo to provide a 

clear image of how does the manipulator behaves and to determine the boundaries of the manipulator’s workspace. Third, 

the Jacobian matrix and its determinant are calculated using MATLAB symbolic Toolbox to give a general solution of 

the determinant for the Jacobian matrix to test its rank to locate the singularities in the workspace. Finally, by extending 

the use of the Monte-Carlo method the singularities are simulated to visualize the singularity of the manipulator in the 

workspace. After performing the previous procedures, the following points are extracted:  

1. The singularity occurs if:  

a. s5=0, (leads to wrist singularity) 

b.  s3=0, (leads to shoulder singularity) 

c. a2c
2
=-a3c23, (leads to shoulder singularity) 

2. Extended use of the Monte-Carlo methods leads to ease of calculation and visualization of the singularities in 

Cartesian space. 

3. A contour plot is an easy way to figure out the values of the joints variables in order to design a trajectory free of 

a singularity. 

4. The singularities are accumulated around the boundaries of the workspace.  

5. The singularities are figured out by Monte Carlo Algorithm and showed in Figures 8, 11, and 12, They will  be 

used to design a path without singularity 

6. The manipulator's spherical configuration was easier to treat analytically. 

7. To design a manipulator trajectory free of singularity, a spline curve is fitted to the contour plot to ensure that the 

determinate value does not approach zero.   

8. The use of the numerical methods has been shown to be beneficial in this study, and therefore all configurations 

of the joints that cause the robot to be singular are obtained using them. 

9. The results presented in this work are simply achieved in comparison to other methodologies. 
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