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INTRODUCTION 

Many engineering problems can be idealized as a beam on foundation. Winkler, Kerr, Pasternak, Viscoelastic, Vlasov 

and Hetenyi models are different types of foundation that can be used in modelling foundation in these problems [1]. The 

most common model is Winkler foundation. However, the Winkler model is inadequate for modelling of soil in various 

problems [2]. The quintic B-spline collocation method is used to numerical solution of free vibration of tapered damped 

Euler-Bernoulli (EB) beam on foundation in this paper. A spline function is a piecewise polynomial function in a variable 

x. The spline function is the composite of several internal point that number points must greater than or equal to ( )1k +  

degree. The B-spline functions of ( )1k +  degree is used to solve the differential equation with ( )k  degree [3]. Also, 

highest grade of B-spline function recursively comes of B-spline functions with lower grade. 

Over the years, collocation method is applied to solve differential equations with different boundary conditions. An 

overview of the formulation, analysis and implementation of orthogonal spline collocation is provided for numerical 

solution of differential equations in two space variables by Bialecki and Fairweather [4]. The sextic B-spline function for 

numerical solution of a system of second-order boundary value problems is presented by Rashidinia et al. [5]. In this 

paper, the results are compared with the finite difference method (FDM) and it is demonstrated the results using the sextic 

B-spline collocation method are better than the FDM. The quartic B-spline collocation method is applied for numerical 

solution of Burgers’ equation by Saka and Dağ [6]. Also, two-parameter singularly perturbed boundary value problem is 

solved using the B-spline method by Kadalbajoo and Yadaw [7]. In this paper, it is shown that the convergence analysis 

is a uniform convergence of second order. Quintic nonpolynomial B-spline collocation for a fourth-order boundary value 

problem is investigated by Ramadan et al. [8]. The results are shown that the quintic nonpolynomial B-spline collocation 

method presents better approximations. On the other hand, the presented method generalized all existing polynomial B-

spline methods up to fourth-order.  

Hsu applied B-spline collocation method for estimated the free vibration of non-uniform EB with typical boundary 

conditions on a uniform foundation [9]. The boundary conditions that accompanied the spline collocation method are 

used to convert the partial differential equations of non-uniform EB vibration problem into a discrete eigenvalue problem. 

Aziz and Šarler proposed the uniform Haar wavelets for the second-order boundary-value problems [10]. The 

isogeometric collocation method is presented for analysis of Timoshenko beam by Da Veiga et al. [11]. Zarebnia and 

Parvaz solved the Kuramoto-Sivashinsky equation using septic B-spline collocation method [12]. A linear combination 

of these functions is used to approximate solution. In this paper, using the Von-Neumann stability analysis technique, it 

is shown that the septic B-spline collocation method is unconditionally stable. Also, cubic B-spline collocation method 

is used to find the solution of the problem arising from chemical reactor theory [13]. The sextic B-spline collocation 

method is applied to find the numerical solution of the problem with the partial differential equation by Mohammadi [14]. 

The convergence analysis for present approximation is explored in details for EB with cantilever and fixed boundary 

conditions. The isogeometric collocation method is applied to solution of thin structural problems that describe using the 

EB and Kirchhoff plate models by Reali and Gomez [15]. Also, the isogeometric method is used for numerical solution 

ABSTRACT – The collocation method is the method for the numerical solution of integral equations 
and partial and ordinary differential equations. The main idea of this method is to choose a number 
of points in the domain and a finite-dimensional space of candidate solutions. So, that solution 
satisfies the governing equation at the collocation points. The current paper involves developing, 
and a comprehensive, step-by step procedure for applying the collocation method to the numerical 
solution of free vibration of tapered Euler-Bernoulli beam. In this stusy, it is assumed the beam 
rested on variable Winkler foundation. The simplicity of this approximation method makes it an 
ideal candidate for computer implementation. Finally, the numerical examples are introduced to 
show efficiency and applicability of quintic B-spline collocation method. Numerical results are 
demonstrated that quintic B-spline collocation method is very competitive for numerical solution of 
frequency analysis of tapered beam on variable elastic foundation. 
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of plate problems that describe using Reissner–Mindlin plate model by Kiendl et al. [16]. On the other hand, Akram 

applied the sextic B-spline collocation method for solving of boundary value problems with fifth-order [17]. The 

numerical results are shown that the presented method developed is better than quartic spline method. The isogeometric 

collocation method is used to analysis of spatial rods by Auricchio et al. [18]. The convergence and stability analysis are 

shown using the theoretical analysis in this paper. Liu and Li applied the energetic boundary functions collocation method 

for composite beams [19]. Also, the approximate solution based on collocation method is presented for the boundary 

value problem [20]. Chebyshev wavelet collocation method is used by Çelik for the  non-uniform Euler–Bernoulli beam 

[21]. In this study, the beam is assumed with various supporting conditions. Kiendl et al. develop the isogeometric 

collocation method for the Timoshenko beam [22]. Also, frequancy analysis of graded tapered beam is presented using 

chebyshev collocation method by Chen [23].   

In this study, analysis of elastically restrained tapered EB on variable Winkler foundation is presented using quintic 

B-spline collocation method. In the other hand, a damped EB on variable Winkler foundation is presented in a general 

form. In this paper, the main objective is to introduce a practical numerical solution based on quintic B-spline collocation 

method for elastically restrained tapered damped EB rested on variable Winkler foundation. For this propose, in section 

2, the quintic B-spline collocation method outlines. Then, the presented method is applied to the frequancy analysis of 

tapered damped EB rested on the variable Winkler foundation in section 3. So, section 4 explains various numerical 

examples to display applicability and efficiency of presented method. Finally, conclusions are introduced in section 5, 

briefly.  

 

QUINTIC B-SPLINE COLLOCATION METHOD 

Let ( )0 1, ,..., Nx x x x=  be knot vector. The k  degree B-spline function can be given as follows [24]: 

 

( 1)

, ( 1), ( 1),( 1)

( ) ( 1) ( 1)

( ) ( ) ( )
i ki

k i k i k i

i k i i k i

x xx x
B x B x B x

x x x x

+ +

- - +

+ + + +

--
= +

- -
 (1) 

 

and for 0k = , the B-spline function is determined as follow: 

 

𝐵0,𝑖 =   {
1          𝑓𝑜𝑟   𝑥 ∈ [𝑥𝑖, 𝑥(𝑖+1))

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         
 (2) 

 

where 0 1i N k£ £ - -  and 1 1k N£ £ - . Therefore, the quintic B-spline function can be given using Eq. (1). The 

quintic B-spline function, 
5, ( )iB x  is as follows: 

 

𝐵𝑖(𝑥)

=
1

120ℎ5

{
 
 
 
 

 
 
 
 
(𝑥 − 𝑥𝑖 + 3ℎ)

5                                                                                             𝑥 ∈ [𝑥(𝑖−3), 𝑥(𝑖−2))

(𝑥 − 𝑥𝑖 + 3ℎ)
5 − 6(𝑥 − 𝑥𝑖 + 2ℎ)

5                                                         𝑥 ∈ [𝑥(𝑖−2), 𝑥(𝑖−1))

(𝑥 − 𝑥𝑖 + 3ℎ)
5 − 6(𝑥 − 𝑥𝑖 + 2ℎ)

5 + 15(𝑥 − 𝑥𝑖 + ℎ)
5                     𝑥 ∈ [𝑥(𝑖−1), 𝑥𝑖)        

(−𝑥 + 𝑥𝑖 + 3ℎ)
5 − 6(−𝑥 + 𝑥𝑖 + 2ℎ)

5 + 15(−𝑥 + 𝑥𝑖 + ℎ)
5           𝑥 ∈ [𝑥𝑖, 𝑥(𝑖+1))         

(−𝑥 + 𝑥𝑖 + 3ℎ)
5 − 6(−𝑥 + 𝑥𝑖 + 2ℎ)

5                                                  𝑥 ∈ [𝑥(𝑖+1), 𝑥(𝑖+2)) 

(−𝑥 + 𝑥𝑖 + 3ℎ)
5                                                                                          𝑥 ∈ [𝑥(𝑖+2), 𝑥(𝑖+3))  

0                                                                                                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                

 
(3) 

 

The solution domain is 0 x L£ £  in this paper. This domain is divided into N segments with length h L N= , by 

the knots ix  where 0,1,...,i N=  and 0 10 ... Nx x x L= < < < = . In quintic B-spline collocation method, basic function 

is defined as follows: 

 

𝑦(𝑥) = ∑ 𝑐𝑖𝐵𝑖(𝑥)

𝑁+2

𝑖=−2

 (4) 

 

where 
2 2( ),..., ( )NB x B x- +

 are the quintic B-spline functions at knots. Also, 
2 2,..., Nc c- +

 are unknown coefficients 

that can be determined using the collocation form of the governing differential equation of the tapered damped EB rested 

on variable Winkler foundation and boundary conditions at each end of the beam. On the other hand, 1st, 2nd, 3rd and 4td 
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derivatives of ( )iB x  respect to variable x  may be used in the governing differential equation of the EB. Table 1 is 

presented the values of ( )iB x  and its derivatives at the nodal points. 

 

MODELLING OF TAPERED DAMPED EB ON FOUNDATION 

A tapered damped EB on variable Winkler foundation is considered in this paper. This beam is restrained against 

rotation and translation at its ends, as shown in Figure 1. KRL and KRR are rotational coefficients at left and right edges, 

respectively. Also, KTL and KTR are transverse coefficients at left and right edges, respectively. For the free vibration of 

the tapered damped EB on variable Winkler foundation, the governing differential equation can be given by: 

 

( ) ( ),, , ,, , , , , , ,,2 2 0xxxx xxx xx xxxxt xx tx xx i i xx ti xx x tx e ft tE W WI W W W KW WI E EI r r AWr r W+ + + + + ++ =+  (5) 

 

where W is transverse deflection of EB, ( )A x  and ( )I x  denote the cross section function and moment of inertia 

function (at x  position), respectively. Also, E , 
ir , 

er  and   present the Young’s modulus, internal damping coefficient 

of damped EB, it is generally very small [25], the external damping coefficient of damped EB, and material density, 

respectively. In this paper, it is assumed that the Winkler foundation modulus ( ( )fK x ) through the EB length can vary 

constantly or linearly. Therefore, the ( )fK x  is given below:   

 

( ) ( )0 1f fK x K x= −  (6) 

 

where 0fK  is the foundation modulus at 0x =  and   is the variation parameters. The damping effects are assumed 

to be proportional to the stiffness properties of beam for internal damping and mass of beam for external damping in this 

study, respectively. Therefore, these damping can be considered as [26]: 

 

( ) ( )i ir x E I x=  (7) 

  

( ) ( )e er x A x =  (8) 

 

where in these equation, 
i  and 

e  are proportionality constants. On the other hand, the dimensionless damping 

ratio of damped EB with internal and external damping can be represented as (for nth mode): 

 

Table 1. ( )iB x  and its derivatives at nodal points 

 3ix -  2ix -  1ix -  ix  1ix +  2ix +  3ix +  

iB  
0  

1

120  

26

120  

66

120  

26

120  

1

120  
0  

ℎ𝐵𝑖
′ 0  

5

120  

50

120  
0  

50

120
-

 

5

120
-

 
0  

ℎ2𝐵𝑖
′′ 0  

20

120  

40

120  
1-  

40

120  

20

120  
0  

ℎ3𝐵𝑖
′′′ 0  

60

120  
1-  0  1  

60

120
-

 
0  

5 (4)

ih B
 

0  1  4-  6  4-  1  0  
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L 

Figure 1. Tapered damped EB with general boundary conditions resting on Winkler foundation 

 

1

2
i i n  =  (9) 

  

1

2

e

e

n





=  (10) 

 

The transverse deflection of EB can be considered as: 

 

( ) ( ) ( ),W x t w x Exp i t=  (11) 

 

where   is circular frequency of tapered EB. In addition, ( )w x  is deflection amplitude of the beam. So, by 

substituting Eq. (11) into Eq. (5), the governing differential equation result as:  

 

( )( ) ( )( ), ,,, , 01 i 2 ix x fi xxxx xxx xxx eEI EI EI KW WW W A    + + −++ =−  (12) 

 

Based on EB theory, general boundary conditions are given below [22]: 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0, 0, 0, 0,

, , , ,

RL TL

RR TR

M t K t V t K W t

M L t K L t V L t K W L t





= = −

= − =
 (13) 

 

where M , V  and   are the bending moment (
2

2

W
M EI

x


=


), the shear force (

2

2

W
EI

x x


  
=  
  

), and the slope (

W

x



=


), respectively. Standard boundary conditions for EB theory are presented in Table 2. For this study, quintic B-

spline collocation method is used to analyze tarped damped EB. By applying quintic B-spline function, Eq. (12) can be 

written as the following for 0,1,...,j N= : 

 

( )

( )( )

)
2 2

)
2

(4 (3 (2)

2 2 2

2

2

1

0

i ( ) ( ) ( ) ( ) ( ) ( )

( ) i ( ) ( )

2
N N N

i j i i j j i i j i i j

i i i

N

j e j if i j

i

x c B x x c B x x c B x

x A x c B x

E I EI EI

K

 

  

+ + +

=− =− =−

+

=−

 
 ++ + + 

 

− =−

  



 (14) 

 

From Table 1 and Eq. (4), iy , 𝑦
𝑖
′ , 𝑦

𝑖
′′, 𝑦

𝑖
′′′, and (4)

iy  at node points are obtained as follows: 
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Table 2. Standard boundary conditions for EB theory 

Support  Boundary conditions 

Free 

2 2

2 2
0

W W
EI

xx x

   
= = 
  

 

Simply supported 
2

2
0

W
W

x


= =


 

Sliding 

2

2
0

W W
EI

x x x

   
= = 

   
 

Clamped 0
W

W
x


= =


 

 

 

𝑦
𝑖
=

1

120
(𝑐𝑖−2 + 26𝑐𝑖−1 + 66𝑐𝑖 + 26𝑐𝑖+1 + 𝑐𝑖+2) 

𝑦
𝑖
′ =

1

120ℎ
(5𝑐𝑖−2 + 50𝑐𝑖−1 − 50𝑐𝑖+1 − 5𝑐𝑖+2) 

𝑦
𝑖
′′ =

1

120ℎ2
(20𝑐𝑖−2 + 40𝑐𝑖−1 − 120𝑐𝑖 + 40𝑐𝑖+1 + 20𝑐𝑖+2) 

𝑦
𝑖
′′′ =

1

120ℎ3
(60𝑐𝑖−2 − 120𝑐𝑖−1 + 120𝑐𝑖+1 − 60𝑐𝑖+2) 

𝑦
𝑖
(4) =

1

120ℎ4
(120𝑐𝑖−2 − 480𝑐𝑖−1 + 720𝑐𝑖 − 480𝑐𝑖+1 + 120𝑐𝑖+2) 

(15) 

 

Therefore, Eq. (14) can be stated as for 0,1,...,j N= : 

 

( ) ( )( )

( ) ( )( )

( ) ( )( )

( ) ( )( )

2

1 2

1 2

2

2

2

1

2

2

1 2

1 2 2

2

2 6 ( ) ( ) ( ) ( ) ( )

12 ( ) 6 ( ) ( ) 26 ( ) ( )

6 ( ) ( ) 66 ( ) ( )

12 ( 6

0

) 6 ( ) ( ) 2 (

21

)

4

(

6

0

4 )

0

0

j j j j j i

j j j j j i

fj j j j i

j

f

f

fj j j j i

x h x h x x A x c

x h x h x x A x c

x h x x A x c

x h x h x K x

I

A x

I I I K

I I K

I I K

I I cI

 

  

  

  

−

−

+

+ + + −

− − + + −

− +

+

 

+

 +

 

 −

− +

 +

−

 +

 

( ) ( )( )2

1 2 2

1

220 06 ( ) 6 ( ) ( ) ( ) ( )j j j jfj ix h x h x x AI I x cI K   +

+

 +− + − =

 (16) 

 

where: 

( )

( )

41

2

1 i

i

i

e

E

h
 

   =

+

−

=
 

 

The system in Eq. (16) is the set of 1N +  equations with 5N +  unknowns. The boundary conditions at each end 

present four extra equations. Thus, these equations depend on end support. For example, these equations for simply 

supported condition can be given as: 

 

2 1 0 1 226 66 26 0c c c c c- -+ + + =+  (17a) 

  

2 1 0 1 22 6 2 0c c c c c- -+ + + =-  (17b) 

  

2 1 1 22 6 2 0N N N N Nc c c c c- - + ++ + + =-  (17c) 

  

2 1 1 226 66 26 0N N N N Nc c c c c- - + ++ + + =+  (17d) 
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Finally, N+5 algebraic equations are obtained. 
2 1 1 2, ,..., ,N Nc c c c- - + +

 and   are the unknown variables in these 

algebraic equations. Therefore, the matrix equation is given as: 

 

[
 
 
 
 
 
𝐴−2,−2     𝐴−2,−1     𝐴−2,0     .      .      𝐴−2,𝑁+2
𝐴−1,−2     𝐴−1,−1     𝐴−1,0     .      .      𝐴−1,𝑁+2
𝐴   0,−2     𝐴   0,−1     𝐴   0,0     .      .      𝐴   0,𝑁+2
  .                .                 .         .      .           .       

  .                .                 .         .      .           .       

𝐴𝑁+2,−2   𝐴𝑁+2,−1   𝐴𝑁+2,0  .     .     𝐴𝑁+2,𝑁+2]
 
 
 
 
 

[
 
 
 
 
 
𝑐−2
𝑐−1
𝑐0
.

.

𝑐𝑁+2]
 
 
 
 
 

=

[
 
 
 
 
 
0

0

0

.

.

0]
 
 
 
 
 

 (18) 

 

In matrix Eq. (18), the nontrivial solution, when determinant of coefficients is equal to zero, is acquired. The 

coefficients matrix determinant is the associated frequency equation. In this paper, the numerical solution for frequency 

analysis of tapered damped EB that is generated using proposed method has a general form.  

 

NUMERICAL RESULTS 

To evaluate efficiency of proposed method, it is applied for solving the some examples. Also, the numerical 

computations are performed by the WOLFRAM MATHEMATICA software. 

 

Uniform EB with Standard Boundary Conditions 

To demonstrate accuracy of presented solution, an uniform EB is assumed with standard boundary conditions. The 

frequency parameters (
4AL EI  = ) of the uniform EBs using the presented method along with the power series 

method [27] and the exact solution [28] and are compared in Table 3. Results are presented that the maximum difference 

is 1.74% for N=25 and 0.44% for N=50, hence, they are fairly close. Convergence of first five frequencies are 

demonstrated in Figure 2. The first natural frequancy of the uniform EB is less sensitive to number of terms. In addition, 

the maximum difference of the frequency parameter for clamped-free EB is approximately 12.41% for N=5 and 0.19% 

for N=60. 

 

Cantilever Tapered EB on Uniform Winkler Foundation 

In this example, effect of elastic Winkler foundation on frequency parameters of the cantilever tapered EB is presented. 

The tapered beam characteristics is considered as:  

 

( ) ( )
3

0 01 0.5 1 0.5
x x

A x A I x I
L L

   
= − = −   

   
 (19) 

 

 

Table 3. First five frequency parameters for uniform EB 

Supported 

M
o

d
e Exact 

Solution 

[28] 

Power Series 

Method [27] 

(N=25) 

N=25 N=50 

Present 

Study 

Error 

(%) 

Present 

Study 

Error 

(%) 

Simply 

supported – 

simply 

supported 

(S-S) 

1 9.8696 9.8696 9.8761 0.066 9.8712 0.016 

2 39.4784 39.4785 39.5825 0.263 39.5044 0.066 

3 88.8264 87.8912 89.3546 0.591 88.9581 0.148 

4 157.9137 - 159.5884 1.049 158.3300 0.263 

5 246.7401 - 250.8457 1.637 247.7577 0.411 

Clamped – 

simply 

supported 

(C-S) 

1 15.4182 15.4182 15.4300 0.076 15.4212 0.019 

2 49.9649 49.9623 50.1079 0.285 50.0006 0.071 

3 104.2477 102.3893 104.9033 0.625 104.4112 0.157 

4 178.2697 - 180.2417 1.094 178.76057 0.275 

5 272.0310 - 276.7112 1.691 273.1925 0.425 
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Table 3. First five frequency parameters for uniform EB (cont.) 

Supported 

M
o

d
e Exact 

Solution 

[28] 

Power Series 

Method [27] 

(N=25) 

N=25 N=50 

Present 

Study 

Error 

(%) 

Present 

Study 

Error 

(%) 

Clamped – 

clamped 

(C-C) 

1 22.3733 22.3733 22.3916 0.082 22.3779 0.021 

2 61.6728 61.6611 61.8622 0.306 61.7202 0.077 

3 120.9034 112.0120 121.7020 0.656 121.1028 0.165 

4 199.8594 - 202.1557 1.136 200.4317 0.286 

5 298.5555 - 303.8512 1.743 299.8719 0.439 

Clamped – 

free 

(C-F) 

1 3.5160 3.5160 3.5158 0.006 3.5160 0.000 

2 22.0345 22.0345 22.0540 0.088 22.0394 0.022 

3 61.6972 61.8060 61.8860 0.305 61.7444 0.076 

4 120.9019 - 121.7006 0.656 121.1013 0.165 

5 199.8595 - 202.1558 1.136 200.4317 0.285 

 

 

 

 

 

a) Mode 1 b) Mode 2 

  

  

c) Mode 3 d) Mode 4 

Figure 2. Convergence of frequencies parameters ( ) of the uniform EB with N 

 

 

where 
0I  and 

0A  are characteristics of EB at the left end. Table 4 shows the frequency parameters  

(
4

0AL EI  = ) of cantilever tapered EB rested on an uniform Winkler foundation using LCM [29] and this method. 

The calculated results using B-spline function are fairly close to LCM.  
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Table 4. Frequency parameters of cantilever tapered EB on uniform foundation (N=30) 

fK
 

Mode 1 Mode 2 Mode 3 

LCM [29] 
Present 

study 
LCM [29] 

Present 

study 
LCM [29] 

Present 

study 

0  3.8238 3.8167 18.3173 18.2867 47.2651 47.2513 

0

2
5

EI

L
 4.8064 4.8018 18.5214 18.4914 47.3418 47.3281 

0

2
50

EI

L
 9.9574 9.9594 20.2721 20.2468 48.0273 48.0146 

0

2
100

EI

L
 - 13.5333 - 22.0455 - 48.7668 

0

2
500

EI

L
 - 28.7503 - 33.4436 - 54.4391 

0

2
1000

EI

L
 39.5692 39.5729 44.2772 44.2988 60.8515 60.8569 

 

Influence of Elastically Restrained Edges on Frequency Parameter Tapered EB on Variable Winkler Foundation 
As an interesting application, the influence of variable Winkler foundation and elastically restrained edges on the 

frequency parameter of tapered EB is evaluated. In this example, the frequency parameter of tapered EB is presented for 

different values of spring supported at end edges. For this purpose, the tapered EB is considered with general boundary 

conditions, TK
and RK

. On the other hand, it is considered the tapered EB with linearly varying height and constant 

width. Also, it is assumed that EB is supported on the variable Winkler foundation (Figure 3). The EB beam characteristics 

are assumed as follows: 

 

( ) ( )

3

0 0

3

0 0

1 0.5 1 0.5
2 2

1 10.5 , 0.5 ,
2 2 2

0, 0

2

,
x L x L

A I
L L

A x I x

x x

x
x L x LA L I L

L
x

L

        
− −       

         
= = 

        + +        



    



  

 

 (20) 

  

( ) ( )0

2
50 1 0.5f

EI
K x x

L
= −  (21) 

  

                                             TL TR T RL RR RK K K K K K= = = =  (22) 

 

where 
0A  and 

0I  are cross-sectional area and second area moment of tarped EB at the right and the left ends. Figure 

4 displays 2D contour graph of first frequency parameter of tapered EB on variable Winkler foundation for different 

spring supporting. Table 5 demonstrates the frequency parameters (
4

0AL EI  = ) of the tapered EB rested on 

Winkler foundation with linear modulus. It is seen from results that tarped EB on variable foundation can be assumed as 

clamped beam when values of 
0TK EI  and 

0RK EI  are greater than 10000.  

 

 

Figure 3. Tapered EB with elastic boundary conditions on variable Winkler foundation 
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Figure 4. Variation of first frequency parameter of tapered EB on variable Winkler foundation for different spring 

supporting 

 

Table 5. Frequency parameter for tapered EB with elastic boundary conditions on variable Winkler foundation (N=35) 

3

0TK L EI  Mode 
0RK L EI  

0 1 10 100 1000 10000 100000 

0 1 5.6905 6.2348 6.4316 6.4546 6.4569 6.4571 6.4571 

 2 7.0497 7.9426 10.1909 10.9964 11.0977 11.1081 11.1091 

 3 20.8784 24.4574 33.2389 37.3793 37.9525 38.0121 38.0180 

1 1 6.0999 6.4888 6.6318 6.6481 6.6497 6.6499 6.6499 

 2 7.3676 8.2772 10.4158 11.1860 11.2830 11.2930 11.2940 

 3 21.0554 24.5980 33.3126 37.4298 38.0001 38.0594 38.0653 

10 1 8.1181 8.1320 8.1414 8.1427 8.1428 8.1428 8.1428 

 2 10.1862 10.8595 12.2345 12.7548 12.8215 12.8284 12.8291 

 3 22.6731 25.8746 33.9811 37.8878 38.4322 38.4888 38.4945 

100 1 11.4107 12.3026 14.3031 15.3121 15.2414 15.2527 15.2538 

 2 22.4807 22.4978 22.5407 22.5606 22.5634 22.5637 22.5637 

 3 36.1380 37.2213 40.6551 42.6753 42.9767 43.0084 43.0115 

1000 1 12.3567 13.9381 19.0201 22.3865 22.9319 22.9898 22.9957 

 2 33.1822 34.6709 40.5439 45.4176 46.2910 46.3853 46.3948 

 3 69.5546 70.0591 72.2519 74.2917 74.6755 74.7173 74.7215 

10000 1 12.4638 14.1362 19.7325 23.6331 24.2779 24.3466 24.3535 

 2 34.7832 36.7397 45.2571 53.4607 55.0463 55.2196 55.2371 

 3 79.3806 81.1417 90.5526 102.895 105.735 106.055 106.088 

100000 1 12.4746 14.1564 19.8061 23.7617 24.4164 24.4862 24.4932 

 2 34.9447 36.9507 45.7556 54.3116 55.9670 56.1478 56.1661 

 3 80.3417 82.2578 92.6405 106.440 109.602 109.958 109.994 
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From results are shown in Table 5, it illustrates that in the tapered EB with 3

0 0 10000T RL EI LK EIK= = , 1st, 2nd 

and 3rd frequency parameter are 24.3466, 55.2196 and 106.055, respectively. In comparison with the tapered EB with 
3

0 0 10000T RL EI LK EIK= = , maximum difference of 1st, 2nd and 3rd frequency parameter for tapered EB with 

3

0 10000TK L EI =  and 
0 0RK L EI =  are approximately 48.81%, 37.01% and 25.15%, respectively. Also, it illustrates 

that values of 1st frequency parameters of tapered EB on variable Winkler foundation are almost the same when the 

0RK L EI  is larger than 100 .  

 

Double Tapered EB on Variable Winkler Foundation 

As an interesting application, the influence of the double taper of the beam shape on the frequency parameter is 

evaluated. In this example, it is assumed that EB is supported on the variable Winkler foundation (Figure 5). The EB 

beam characteristics are assumed as follows: 

 

( ) ( )
2 4

0 01 1
x x

A x A I x I
L L

 
   

= − = −   
   

 (23) 

  

( ) ( )0

1 22
50 1 0  .1 0  0f e i

EI
K x x

L
L L L = − == − =  (24) 

 

where 
0I  and 

0A  are the characteristics of the EB at the left end. Table 6 demonstrates the frequency parameters  

(
4

0AL EI  = ) of the double tapered EB on Winkler foundation with linear modulus for different values of  .  

 

 

Figure 5. Double tapered EB with elastic boundary conditions on variable Winkler foundation 

 

 

Table 6. Frequency parameter of tapered EB with elastic boundary conditions on variable Winkler foundation (N=30) 

Mode 0 =  0.25 =  0.50 =  0.75 =  

1 4.6556 5.4434 6.7167 9.2514 

2 22.3924 21.2963 20.2310 19.5247 

3 61.7062 55.3777 48.6353 41.2963 

4 120.9467 106.8945 91.6538 74.2248 

5 200.5029 176.0969 149.4431 118.4254 

 

CONCLUSION 

This paper introduces a numerical solution approach of free vibration analysis of tapered damped EB rested on a 

variable Winkler foundation. For this proposed, quintic B-spline collocation method is applied to solve governing 

differential equation. The presented method yields the semi-closed solutions. Therefore, it is more efficient for complex 

systems. Also, the tapered EB with general boundary conditions can be embedded in this method. The numerical examples 

are presented to show efficiency and applicability of the presented method. Finally, it efficiency and reliability of the 

quintic B-spline collocation method are demonstrated from obtained results. Therefore, it can be seen that algorithm 

converge is increased with the number of terms. 
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