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INTRODUCTION 

In the rotating machinery system, gear status are required for monitoring and identifying its operations for 

maintenance. This implementation can avoid fatal system breakdowns and prevent economic losses and human safety 

concerns [1]. Therefore, a reliable diagnosis technique is important in industry applications for monitoring gear health 

conditions. Normally, the fault diagnosis technique includes the three main phases of data acquisition, feature extraction 

and pattern classification. 

The dimensionality reduction can extract features from the complex vibration data with the goal of improving the 

generalization performance of the classification phase. In particular, dimensional feature data can cause a computational 

burden, affect the efficiency of the classification phase due to its time-consumption, and reduce the diagnosis accuracy. 

The feature dimensional reduction of the original vibration signal can provide useful information for assessing the gear 

fault condition. The Principal Component Analysis (PCA) [2-4] and Linear Discriminate Analysis (LDA) [5-7] can be 

effectively used for linear data but not for complex nonlinear and nonstationary vibration data. Recently, deep learning 

algorithm [8] has attracted research attention for not only processing large scale and high-dimensional datasets [1, 9], but 

can also learn the feature representation of the nonlinear, nonstationary data [10, 11]. Therefore, in this study, we focus 

on an auto-encoder (AE) feature dimensional reduction (AE-FDR) method to use the feature dimensionality of the 

complex vibration data. A deep learning network-based AE architecture with the wise-trained layers is constructed to 

extract the low-dimensional feature set of the data. Crucially, the unsupervised self-learning algorithm is applied to use a 

bias/variance tradeoff to mitigate overfitting found in the complex vibration data of gear fault. Regularizing, the low-

dimensional obtained feature is a superior way to save space, reduce processing time, and improve diagnostic 

performance.  

Traditionally, classification methods are used to accomplish the diagnostic process in the last phase. These methods 

have been successfully applied to vibration data such as 𝑘-Nearest-Neighbour (k-NN) [12], Artificial Neural Network 

(ANN) [13-15] and Support Vector Machine (SVM) [4, 13, 16]. Especially, as an improvement of the SVM method, least 

squares support vector machine (LSSVM) is proposed by Suykens in 1999 [17]. LSSVM can be applied not only to the 

classification problem but also to cases of regression. LSSVM has been successfully applied in different fields of fault 

classification. For example, LSSVM is used to identify the fault statuses in gears [18, 19], faults of centrifugal pump [20] 

and multi-fault diagnosis for rotating machinery [21, 22]. In these case, LSSVM method solution transforms the quadratic 

programming into linear equations and selects the least square linear system as the loss function. The nonlinear kernel 

function is used for mapping the low-dimensional inseparable data into high-dimensional separable data. However, the 

parameters selection of kernel function directly affects the final classification result of LSSVM for solving the nonlinear 

problem. In this study, we use the backtracking search optimization algorithm (BSOA) to select optimally the parameters 

of LSSVM, named LSSVM-BSOA. BSOA is a meta-heuristic optimization algorithm and proposed by Civicioglu in 

2013 [23]. The BSOA is more efficient, and can solve complex problems [24, 25], especially in the fields of science and 

engineering [26, 27], and forecasting/ diagnosis [28, 29]. A gained LSSVM-BSOA classifier model takes advantage of 

regression analysis and generalization performance of the basic LSSVM classifier with the parameters optimized by 

BSOA. The LSSVM-BSOA model is then used to identify the vibration features of the target data. Finally, a proposed 

ABSTRACT – In the trend of Industry 4.0 development, the big data of system operation is 
significant for analyzing, predicting, or identifying any possible problem. This study proposes a new 
diagnosis technique for identifying the vibration signal, which combines the feature dimensional 
reduction method and optimized classifier. Firstly, an auto-encoder feature dimensional reduction 
(AE-FDR) method is constructed with the bottleneck hidden layer to extract the low-dimensional 
feature. Secondly, a supervised classifier is formed to carry out fine-turning and classification. The 
least square-support vector machine (LSSVM) classifier is used as basic with an optimized 
parameter exploited by the backtracking search optimisation algorithm (BSOA). This LSSVM-
BSOA is used to identify the gear fault based on the original vibration data. The proposed AE-FDR-
LSSVM-BSOA diagnosis technique shows good ability for identifying the gear fault. A helical gear 
is experimented with three fault status for evaluate this method. The diagnosis result achieves a 
high accuracy of 93.3%. 
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AE-FDR-LSSVM-BSOA method is formed in combination of AE-FDR and LSSVM-BSOA classifier model to identify 

the gear fault signal with high accuracy. 

The rest of this paper is organized as follows: the AE-FDR method for reducing the feature dimension is proposed. 

The optimized LSSVM-BSOA classifier model is presented in the next section, which is used to classify the feature 

pattern of faulty vibration signal. The proposed AE-FDR-LSSVM-BSOA diagnosis technique is applied to gear fault data 

and the obtained experimental results are analysed and discussed. The conclusion is presented in the last section.  

 

AUTOENCODER FEATURE DIMENSIONAL REDUCTION  

AE is a particular architecture of neural network which works as an unsupervised learning algorithm. Figure 1 shows 

a single AE, which consists of three layers, namely, input, hidden, and output. AE is divided into two stages of the encoder 

and decoder with the former accomplishing the feature representation from high-dimensional input 𝑥 = {𝑥1, 𝑥2, … , 𝑥𝑛} to 

low-dimensional data in the hidden layer, 𝑔 = {𝑔1, 𝑔2, … , 𝑔𝑚}(𝑚 ≪ 𝑛) while the latter reconstructs the input 𝑥. The input 

data ℎ back maps the output data �̆� = {�̆�1, �̆�2, … , �̆�𝑛} with high-level feature representation. In Figure 1, layer ℎ is the 

hidden layer, whereby the inputs are compressed into a small number of neurons. Activation of unit 𝑖 in layer 𝑘 is given 

by Eq. (1). 

ℎ𝑖
(𝑘)

= 𝑓 (∑ 𝑊𝑖𝑗
(𝑙−1)

𝑥𝑗
(𝑙−1)

𝑛

𝑗=1

+ 𝑏𝑖
(1)

) (1) 

 

where 𝑊 and 𝑏 denote weight and bias parameters, respectively. In the first layer, that is, the input layer, 𝑥(1) = 𝑥, 

and in the last layer, that is, the output layer, 𝑥(3) = �̆�. For the activated function 𝑓, we use sigmoid function in hidden 

layers, but in the output layer, we use linear function because we do not have pre-scale every input example to a specific 

interval such as [−1;  1].  

 
Figure 1. Singular autoencoding architecture 

 

During the training the reconstruction error at the output [8] is minimised using Eq. (2) that shows the objective 

function with respect to 𝑊 and 𝑏. The objective function includes the regularization term, and the parameter 𝜆 determines 

the strength of regularization.  
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where 𝑛𝑘 denotes number of layers in the network and 𝑠𝑘 denotes the number of units in the input layer. The idea is 

to learn an over-complete set of basis vectors to represent input vectors, such that our basis vectors can capture structures 

and patterns inherent in the input data better. At the same time, to avoid highly compressed encoding that is usually highly 

entangled, we can encode the input with a small subset of neurons. AE architecture is optimally trained as the data 

dimensional reduction in hidden layer 𝑔. The hidden layer nodes contain most of the important information of the input 

data that represent as the low- dimensional features.  
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Input 
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OPTIMIZED LSSVM-BSOA CLASSIFICATION MODEL 

This section presents the important stage of diagnosis. The LSSVM classification method is used as basic classifier 

with the parameters optimized by the BSOA, named LSSVM-BSOA and the LSSVM-BSOA uses the AE-FDR feature 

data to train and evaluate.  

 

LSSVM classifier 

LSSVM introduces least squares linear system into SVM, which is put forward by Suykens in 1999[17]. LSSVM 

solves the following convex optimization problems to find the optimal separating hyperplane. 

Suppose{(𝑥𝑖 , 𝑦𝑖)|𝑖 = 1,2, … , 𝑙} is a training set of 𝑙 sample numbers that corresponds to the category of 𝑦𝑖 ∈ (−1,1), the 

objective function and constraint condition are shown as follows:  

 

{
𝑚𝑖𝑛(𝐽𝐿𝑆) 𝑤𝑖𝑡ℎ  𝐽𝐿𝑆(𝑤, 𝑒) =

1

2
𝑤𝑇𝑤 +

1

2
𝛾 ∑ 𝑒𝑖

2

𝑙

𝑖=1

𝑠. 𝑡.  𝑦𝑖 = 𝑤𝑇𝜑(𝑥𝑖) + 𝑏 + 𝑒𝑖 ,   𝑖 = 1,2, … , 𝑙        

 (3) 

 

where 𝑒𝑖 are slack variables and 𝛾 ≥ 0 is a penalty factor/ regularization parameter.  

The values of 𝛾 influence the training result of the LSSVM model. The low 𝛾 value indicates a model with high 

training errors and the high 𝛾 value does not permit any slack variables and consequently increases model complexity. 

Therefore, finding the proper value for 𝛾 is critical and one of LSSVM tuning parameter that should be adjusted 

conscientiously. 

Define Lagrange function:  

𝐿(𝑤, 𝑏, 𝑒, 𝛼) =
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𝑙
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 (4) 

 

where 𝛼𝑖is Lagrange multiplier, which can be positive or negative.  

The classifying function of LSSVM classifier finally can be obtained as follows:  

 

𝑓(𝑥) = 𝑠𝑔𝑛 (∑ 𝛼𝑖𝑦𝑖𝐾(𝑥, 𝑥𝑖) + 𝑏

𝑙

𝑖=1

) (5) 

 

To obtain better performance and generalization for LSSVM, we use the Gauss radial basic function (RBF) 𝐾(𝑥, 𝑦) =
𝑒𝑥𝑝(− ‖𝑥 − 𝑦‖2 2𝜎2⁄ ) to map the samples into a higher dimension feature space. After the LSSVM structure is 

determined, the parameter pair (𝛾, 𝜎) that affects the learning performance requires appropriate selection.  

 

Backtracking Search Optimization Algorithm 

Backtracking search optimization algorithm (BSOA) is a new meta-heuristic algorithm in the evolutionary series [23]. 

Information obtained from past generations is used to search for better fitness solutions. Table 1 presents the general 

structure of BSOA. The bio-inspired philosophy of BSOA corresponds with a social group of living creatures, which 

relates to hunting areas for finding food at random movements.  

 
Figure 2. Constructing the optimized LSSVM-BSOA classification model  
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Table 1. Backtracking search optimization algorithm (BSOA) 

Initialization 

Repeat 

      Selection I 

      Generate new population: 

       Mutation 

       Crossover 

       End 

       Selection II 

Until the stop conditions are met  

 

In the initialization phase, the algorithm generates and evaluates the initial population 𝑃 and starts a historical 

population 𝑃𝑜 . The historical population constitutes the memory of BSOA. 

In the Selection I, the algorithm randomly determines whether the current population 𝑃 is recorded as the historical 

population 𝑃𝑜. The individuals of 𝑃𝑜 are then shuffled.  

The mutation operator creates 𝑃𝑚 , which forms an initial version of the new population 𝑃𝑛, according to Eq. (6). 

Therefore, 𝑃𝑚 is the result of the movement of individuals of 𝑃 in the directions set by (𝑃𝑜  −  𝑃). Then, 𝐹 defines the 

motion amplitude, and is given by Eq. (7).  

 

𝑃𝑚 = 𝑃𝑛 + 𝐹(𝑃𝑜 − 𝑃) (6) 

  

𝐹 = 𝑘 ∙ 𝑟𝑟𝑎𝑛𝑑 (7) 

 

where 𝑘 value is adjusted empirically during prior simulations; 𝑟𝑟𝑎𝑛𝑑~𝑁(0,1), 𝑁 is the standard normal distribution. 

The operator randomly crosses over elements from 𝑃𝑚 with elements of 𝑃, which generates the final version of 𝑃𝑛 

In the Selection-II, the algorithm selects elements from 𝑃𝑛 to have better fitness than elements of 𝑃. Then 𝑃𝑛 replaces 

them in 𝑃. Thus, 𝑃 only receives newly evolved individuals. After meeting the stopping conditions, the algorithm returns 

the best solution found.  

 

 
Figure 3. Flowchart of the proposed LSSVM-BSOA classifier 

 

Optimised LSSVM-BSOA Method 

The LSSVM parameters (𝛾, 𝜎) play a key role in constructing the model that can be obtained using an optimization 

algorithm. BSOA is used to explore the search space of the given LSSVM classification problem to find the parameters 
(𝛾, 𝜎) required to maximize the particular objective of accuracy [11]. The principled training phase of the optimal 

LSSVM-BSOA classifier model includes several main steps, which is implemented as follows:  

Step 1: Prepare the training feature data using the AE-FDR method. 

Step 2:  Initiate LSSVM with the random parameters 𝛾 and 𝜎. Set iterative variable 𝑡 = 0 and perform the training 

process for the next steps.  

Step 3:  Increasing iteration variable by set 𝑡 = 𝑡 + 1. 

Step 4:  Deterioration evaluation. The fitness function 𝑓 is used to evaluate the quality of every element, related to 

the Eq. (8)  

𝑓(%) =
𝑦𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

𝑁
100 (8) 
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where 𝑦𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑is the right classified samples, and 𝑁 is the summed samples in the testing data. The desirable 

absolute value is large and classification accuracy is high. 

Step 5: Stop criteria checking. The deterioration function satisfies Eq. (8) or iteration is maximal go to step 7. If not, 

go to the next step. 

Step 6:  Update the new 𝛾 and 𝜎 parameters, go to step 3. 

Step 7:  End of training, the trained LSSVM-BSOA classifier model is optimized. 

The efficient search capability of BSOA incorporates the generalization capability of LSSVM that can bring out the 

higher classification accuracy. Figure 2 shows the architecture for LSSVM-BSOA. Each reactant represents the candidate 

solution for the model that includes penalty parameter 𝛾 and the kernel function parameter 𝜎. 

 

PROPOSED FAULT DIAGNOSIS TECHNIQUE FOR GEARS 

Proposed Technique with AE-FDR- LSSVM-BSOA 

The AE-FDR- LSSVM-BSOA proposed technique is formed including two main stages: (1) AE-FDR dimensional 

reduction method extracts the feature of gear fault vibration data and (2) LSSVM-BSOA is the classification model. 

Firstly, AE-FDR exploits the features from the original vibration signal that means increasing the overall reliability and 

identification accuracy of the classification model. Secondly, a classifier LSSVM-BSOA model is optimized to accurately 

identify the fault statuses of health gear (HG), missed tooth (MT), and broken tooth (BT), respectively. This technique 

can be visualized by the flowchart in Figure 3, which can be described as follows:  

Step 1: Collect the vibration data of the gear box with tested opinion gear 

Step 2:  Use the FFT to pre-processing the data  

Step 3:  Reduce the feature dimension using AE-FDR method. Then, divide the feature data into training‐testing parts 

Step 4: Train and test the AE-FDR- LSSVM-BSOA technique to identify the actual gear fault. The gear fault 

diagnostic technique based on AE-FDR- LSSVM-BSOA demonstrate diagnostic accuracy and reliability in 

experiments.  

 

Experimental Analysis 

To evaluate the proposed diagnosis technique, we use a test rig shown in Figure 4 to generate the experimental 

vibration data. Three gear fault conditions on driving shaft are considered HG class, MT class, and BT class as shown in 

Figure 5. The main gear parameters are teeth number16, pressure angle 8o and module 2.5. An acceleration sensor of 

Triaxial Delta Tron 4525B-001 type (Bruel&Kjӕr) is fixed on the bearing house with sample frequency of 1024 Hz and 

rotating frequency of 35Hz. A group of 45 vibration signals is collected following three classes of gear fault status with 

15 signals from each tested gear condition, respectively.  Table 2 describes the acquired vibration data, in which 30 

samples are used for training the classification model and the rest of data is used to evaluate the diagnosis technique. 

Figure 6 shows a vibration signal sample in the time domain with three tested gear faults, which may imply that the 

vibration intensity is unclear and cannot be determined even though the loading parameter is unchanged.  

 

 
Figure 4. Schematic of the experimental setup  
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Figure 5. Testing gear conditions: a) Health gear (HG); b) Missed tooth (MT) andc) Broken tooth (BT)  

 

 
Figure 6. Sample of gear vibration data at statuses of (a) HG state; (b) MT state and (c) BT state 

 

Firstly, implementing, the obtained vibration data is pre-processing using the FFT method to present the frequency 

domain characteristics. Secondly, the AE-FDR is constructed with layer-wise training of bottleneck hidden layer to reduce 

the feature dimension as a fault feature extraction from the vibration data. For the auto-encoder, we constructed the 

network architecture of 1024 –  𝑑 –  1024 (𝑑 is the reduced feature dimension) and adjust the parameters in the objective 

function Eq. (3) as 𝜆 = 0.001, 𝛽 = 6. Thirdly, the sensitive fault feature matrix is used to train the optimal LSSVM-

BSOA classification model. Lastly, the sensitive fault features including five values of each testing data are extracted. 

The 15 sensitive values of fault feature are input to the trained LSSVM-BSOA model with the outputs of testing data. 

Table 3 shows the results of training time and the identification rates. 

 

Table 2. Collection of vibration signal samples 

Gear conditions Class 
Training data 

(sample) 

Testing data 

(sample) 

Health Gear (HG) 1 15 5 

Missed Tooth (MT) 2 15 5 

Broken Tooth (BT) 3 15 5 

 

Table 3.  AE-FDR-LSSVM-BSOA method diagnosis results 

Class Testing data d = 3 d = 4 d = 5 d = 6 d = 7 d = 8 

1 (𝑥16 − 𝑥20) 1(3)3(2) 1(5) 1(5) 1(3)3(2) 1(4)3(1) 1(3)3(2) 

2 (𝑥36 − 𝑥40) 2(4)3(1)* 2(1)1(1)3(1) 2(4)3(1) 2(3)1(1)3(1) 2(4)3(1) 2(4)3(1) 

3 (𝑥56 − 𝑥60) 3(5) 3(5) 3(5) 3(5) 3(4) 3(5) 

Diagnosis rate (%) 80.0 86.7 93.3 73.3 86.7 80.0 

Training time (s) 0.92 1.16 1.49 1.93 2.89 4.62 

* Represents that among the 5 testing sample, 4 are diagnosed as the 2th class and 1 is misclassified to 3rd class, others are similar to this 

a) b) c) 

a) 

b) 

c) 
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For comparison, the feature dimension (𝑑 =  3, 4, … , 8) reduced by AE-FDR is constructed as the sensitive fault 

feature vector. The obtained features are input to the LSSVM-BSOA classifier model with the same number of training 

and testing samples. Figure 7 presents the scatter of the feature dimension 𝑑𝑖. The implementation is the same as the 

output results of testing data, and the identification rates are given in Table 3. The results show that the proposed method 

with 𝑑 = 5 has a good classifying result for testing data with a high identification rate (93.3%), which is suitable to scatter 

in Figure 7 (c).  The feature values (𝑑 = 5) can clearly distinguish the mapping and accurately separate the gear fault 

status. 

The results in Table 3 also show that the input features influent directly to the fault diagnosis results. The fault feature 

dimensioning five values (𝑑 = 5) is much more suitable for diagnosing the gear fault. If the dimension of the input fault 

feature is low (𝑑 = 3, 4), the obtained features cannot entirely reflect the gear fault information as the MT of class 2 of 

an insensitive status and lastly cause a low efficiency (80% diagnosis rate  in 𝑑 = 3). If the feature dimension is high 

(𝑑 = 6, 7, 𝑎𝑛𝑑 8), the obtained features can contain the redundant information, and cause low classification accuracy. 

In addition, the high dimension consumes time for training, as the diagnosis rate 80% in 𝑑 = 8 consumes 4.62 (s). Thus, 

we recommend that 𝑑 = 5 may be more suitable to obtain the better result of classification accuracy. This is the key of 

the proposed diagnosis method.  

 
Figure 7. Scatter plot for the reduced feature set, (a) 𝑑 = 3; (b) 𝑑 = 4; (c) 𝑑 = 5; (d) 𝑑 = 6; (e) 𝑑 = 7; (f) 𝑑 = 8 

 

CONCLUSIONS 

In this study, we present an expert study at the gear fault identification based on the integrated AE-FDR method and 

LSSVM-BSOA classifier model. We explore the suitability of deep learning AE-FDR network architecture into the 

feature dimensional reduction. Based on the complex the vibration data, the low-dimensional crucial feature set with five 

values (𝑑 = 5) are extracted at the AE-FDR bottleneck layer. These features are the most important fault information 

closely related to the gear status, which effectively provides for fault diagnosis tasks. The optimized LSSVM-BSOA 

classifier model is formed to identify the gear fault status based on the obtained features, which confirms its superiority. 

The experimental vibration data of the three different gear faults are used to demonstrate that the proposed AE-FDR- 

LSSVM-BSOA technique has good ability and is highly effective in accurate fault diagnosis. Based on these 

achievements, we improve the AE-FDR- LSSVM-BSOA ability to recognize the sensitive faults in the rotating machinery 

part without the training data and apply the method to predict their remaining useful life. 

 

HG class MT class BT class 
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