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INTRODUCTION 

A primary study of convection stimulated by selective absorption of radiation in a stably stratified fluid layer was 

conducted experimentally by Krishnamurti [1]. The author considers a stably stratified fluid layer of water, which was 

assumed to be heated from below or above under the presence of a pH indicator called thymol blue. She performed both 

linear instability analysis and weakly nonlinear stability analysis in order to observe the form of convection patterns. The 

convection mechanism reported in her study was a penetrative one which generates due to the presence of an internal heat 

source through the absorption of radiation. The mechanism of penetrative convectionoccurs due to the penetration of 

buoyancy-driven motion into stably stratified layers [2]. Straughan [3] conducted a detailed investigation of the 

convection model developed by Krishnamurti [1]. He considered the bounding surfaces being fixed and analyzed the 

convective instability by applying linear and nonlinear stability analysis. The author reported that his results endorse the 

Krishnamurti's work, and the model suggested by Krishnamurti is very impressive.Using Krishnamurti's model, Hill [4] 

performed a linear and nonlinear instability analysis to investigate the onset of convective instability stimulated by 

selective absorption of radiation in a fluid-saturated porous layer. Later, following Krishnamurti's work, Chang [5] studied 

the convective instability in a two-layer system by employing the linear stability theory. The author used the Chebyshev 

method and derived the results for the two cases, viz., when the system is heated from below and when the system is 

heated from above. For more interesting related studies, the reader may refer to [2, 6, 7].  

Nanofluids are the solid-liquid composite materials in which a large number of solid nanofibers or nanoparticles of 

the dimension of the order 1-100 nm are dispersed in a base liquid. A comprehensive study of convective transport in 

nanofluid was conducted by Buongiorno [8]. He developed a new model which incorporates the effects of two significant 

mechanisms, viz., Brownian diffusion, and thermophoresis. A foremost study of convective instability in a nanofluid 

layer was conducted by Tzou [9]. The author used the model suggested by Buongiorno and reported that nanofluids are 

less stable as compared to regular fluids. Later, the same problem was re-investigated by Nield and Kuznetsov [10], where 

the authors consider different types of parameters (non-dimensional).They reported that oscillatory instability may exist 

for a bottom-heavy nanoparticle distribution. Later, the authors re-examined this problem for more realistic boundary 

conditions and reported that the non-stationary convection can no longer occur with the change in boundary conditions 

[11]. Since then, many interesting studies have been conducted in the area of nanofluid convection [12-24]. Recently, 

Mahian et al. [25] conducted a comprehensive review of the latest development in the modeling of nanofluid flows and 

heat transfer.In another part of the review [26], the authors discussed the important computational methods (such as the 

finite difference method, finite element method, finite volume method, etc.) for solving the equations related to nanofluid 

flow.The effect of the magnetic field at the onset of convective instability in a nanofluid layer has its importance in several 

physical phenomena concerned with astrophysics and geophysics, biochemical engineering, and chemical engineering 

ABSTRACT – This article reports a linear stability analysis of the onset of convection stimulated 
by selective absorption of radiation in a horizontal layer of magnetic nanofluid (MNF) under the 
impact of an external magnetic field. The Chebyshev pseudospectral method is utilized to obtain 
the numerical solution for water-based magnetic nanofluids (MNFs). The confining boundaries of 
the magnetic nanofluid layer are considered to be rigid–rigid, rigid–free, and free–free. The results 
are derived for two different conditions, viz., when the system is heated from the below and when 
the system is heated from the above. It is observed that an increase in the value of the Langevin 

parameter L


, diffusivity ratio 


 and a decrease in the value of nanofluid Lewis number Le , the 

parameter Y  which represents the impact of selective absorption of radiation and modified 

diffusivity ratio A
N

 delays the onset of MNF convection for both the two configurations. Moreover, 

as the value of concentration Rayleigh number n
R

 increases, the convection commences easily 
when the system is heated from the below, whereas the onset of MNF convection gets delayed as 
the system is heated from the above. 
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[27]. Gupta et al. [27] examined the thermal instability in a layer of nanofluid under the appearance of an external 

magnetic field by applying the linear stability analysis. Yadav et al. [28]studied the effect of an external magnetic field 

on the onset of natural convection in a nanofluid layer which was assumed to be electrically conducting.Recently, Yadav 

[29]studied the combined effect of both magnetic field and pulsating throughflow on convective instability in a nanofluid, 

and analyzed the impact of various significant parameters.Kolsi et al. [30] investigated the effect of an applied magnetic 

field on the production of entropy in the case of the natural convection of a low Prandtl liquid metal in a cubic 

cavity.Maatki et al. [31] examined the double diffusion convection in a cubic cavity teemed with the binary mixture 

subject to a magnetic field.Another interesting phenomena, known as mixed convection have its significance in various 

industrial applications like coating or continuous reheating furnaces, solidification of ingots, and float glass 

manufacturing [32]. A numerical investigation of the impact of an external magnetic field at the onset of nanofluid mixed 

convection heat transfer was conducted by Rashidi et al. [33]. Over the past few years, the impact of an external magnetic 

field at the onset of nanofluid convection and nanofluid mixed convection has been studied by several researchers under 

various aspects[34-36].  

Magnetic nanofluids, i.e. nanofluids consisting of magnetic nanoparticles like cobalt, iron, nickel, and their oxides 

suspended in a non-magnetic carrier liquid, have both fluids as well as magnetic properties [37]. A foremost investigation 

of convective instability for a layer of ferromagnetic fluid under the existence of an applied external magnetic field was 

organized by Finlayson [38]. He introduced a new mode of thermo-mechanical interaction and analyzed the convective 

instability problem in two different cases, viz., in the presence of vertical body force and in the absence of vertical body 

force. Following Finlayson's work, several kinds of research in the area ferrofluid convection have been performed in 

recent years. Mahajan et al. [39] performed a linear instability analysis to examine the convective stability in a magnetic 

nanofluid (MNF) layer under the existence of an external magnetic field. The impact of the three significant mechanisms, 

namely, (i) Brownian motion, (ii) thermophoresis, and (iii) magnetophoresis were considered in their study. Mahajan and 

Sharma [40] further investigated the onset of convective instability in a MNF-saturated porous medium layer by 

employing the linear stability theory.Sheikholeslami et al. [41] employed CVFEM (known as Control Volume-based 

Finite Element Method) to study the impact of magnetic field dependent viscosity on MHD nanofluid heat 

transfer.Sheikholeslami [42] examined the free convection of a MNF in a porous curved cavity under the influence of a 

magnetic source (external). The reader may refer to [43-47] for more related studies in the literature. 

The present work extends the study of Mahajan and Sharma [48], where the authors investigated the convective 

instability because of the selective absorption of radiation in a magnetic nanofluid saturated porous medium.The authors 

assumed that the fluid flow follows Darcy’s law with permeability .K However, no such an assumption for the fluid flow 

is considered in the present work. The main objective of this work is therefore to examine the onset of convection 

stimulated because of the selective absorption of radiation in a horizontal layer of MNF subject to the influence of an 

external applied magnetic field. Due to the existence of thymol blue, a motion, known as penetrative convection occurs 

in the MNF layer because of the internal heating through the incorporation of radiation. The internal heat source generates 

a temperature gradient (non-uniform) which in turn regulates the onset of convection. This type of variation in temperature 

gradient gives rise to a variation in nanoparticles and magnetic field. These variations have significant importance in 

controlling the convection in various practical applications (e.g., continuous operation refrigerators). To understand the 

requirements of these applications, the study of penetrative convection in a MNF layer is compulsory. In the present work, 

we solved the eigenvalue problem for Rigid-Rigid (R-R), Rigid-Free (R-F), and Free-Free (F-F) boundary conditions for 

water based MNF by selecting the Chebyshev pseudospectral method. The preparation of water based MNFs is of renewed 

interest nowadays because of its importance in biomedical applications. In the present study, physical properties of water 

based MNF are considered as: density 1180,
f

 =  thermal conductivity
1

0.59,k =  magnetic saturation 15,900,
s

M =  

viscosity 0.007, =  thermal expansion coefficient 5.2 4,e = − Prandtl number Pr 42.1.= These values are taken from 

the book by Rosensweig [49] and the article by Kaloni and Lou [50]. The effects of Langevin number ,
L

 the 

concentration Rayleigh number ,
n

R  diffusivity ratio ,  nanofluid Lewis number Le  , the parameter Y  (ratio of internal 

heating to boundary heating) and the modified diffusivity ratio 
A

N  are studied at the onset of MNF convection. Outcomes 

results are illustrated graphically and in tabular form for two different conditions, viz., when the system is heated from 

the below and when the system is heated from the above.  

 

FORMULATION OF THE PROBLEM 

The schematic of considered system is presented in Figure 1. Here, we consider a horizontal layer of incompressible 

MNF under the presence of a magnetic field (vertical) 
0

.extH=H k   
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Figure. 1. Schematic diagram of the system 

 

The MNF is assumed to be enclosed between two planes, viz., 0z = and 0.z = The term 
L

T  represents the 

temperature at the lower boundary, whereas 
U

T  stands for the temperature at the upper boundary. The nanoparticle flux 

is assumed to be zero on the boundaries. The system also contains an internal heat source with strength Q  which depends 

upon the quantity of radiation absorbed. 

The governing equations under the assumption of Boussinesq approximation are as follows[1, 11, 38, 45, 51].The 

continuity equation:  

0 =v  (1) 

The momentum equation: 

2

0f
p M H g

t
   

 
+  = − +  +  − 

 

v
v v v k  (2) 

The equation of nanoparticle: 

0

   · ·
B T H

L

T H
D D D

t T H


 

 
+ = + − 



 





 




v  (3) 

The equation of temperature: 

1
0

· ·
( ) · ·( ) · 

 
 

 
f p p B T H

L

T T T T H
c T k T c D T D D Q

t T H
  

   
   

  
+ = + + − +    

v  (4) 

The thymol blue concentration equation: 

2  ·
c

C
C k C

t



=


+ v  (5) 

In Eq. (2), the terms
0

, , , , , , ,
f

p t g M  v and k  represent the velocity vector, fluid density, pressure term, fluid 

viscosity, time, vacuum magnetic permeability, gravity, magnetization and vertically upward unit vector respectively. 

Moreover, the parameter   is the overall density defined as (1 ) (1 ( .))
p f L

T T    = + − − − Here, it is assumed that 

the density in the buoyancy force is independent from   (the thymol blue concentration) [3]. 

In addition, the terms 
1

, , , , , ( ) , , ,
B T L H f p p

D D T D c k c   and C  appearing in the Eqs. (3) to (5) stand for Brownian 

diffusion coefficient, magnetic nanoparticle volume fraction, thermophoretic diffusion coefficient, temperature at the 

lower boundary, magnetophoretic coefficient, MNF volumetric heat capacity, MNF thermal conductivity, magnetic 

nanoparticle density, nanoparticle specific heat, thymol blue diffusivity, and concentration respectively. Following the 

work of Krishnamurti [1], a relationship (linear) ( ) ,
f

Q c C =   is assumed between C and Q , where '  is a 

proportionality constant. 

To investigate the MNF convection under the impact of an external magnetic field, the Maxwell equations must be 

solved simultaneously with the Eqs. (1) to (5). In the magnetostatic limit, the Maxwell equations take the following form: 

· ,  0, 0 =  =B H  (6) 

where B stands for the magnetic induction. 
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Moreover, B is related with M and H as: 

0
( )  .= +B M H  (7) 

Thereafter, we linearized the magnetic equation of state about 
0
,

L
H T  and 

0
 as suggested by Finlayson [38], 

0 0 0
[ ( ) ( ) ( )],  

m h p
M H H K T T K

H
  = + − − − + −

H
M  (8) 

where
0

M represents the constant mean value of magnetization and  
0 0 0 0

/ , /
m p

K H T K H  = =  are the magnetic 

coefficients. 

For a specific value of the parameter 
L

 , the two parameters  and 
2

  (chord magnetic susceptibility) is evaluated 

as [49]: 

2
0

0
2

0 0 0

0
22

00

1, , ,
3

1, ( ), ( ),

1
1, , (1 .

 

)

s

B

s s
L L L

B B

s B s

L

M m

k T

mH M m M
L L

k T k T T

M k T M

HmH

  
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 



 = =




= = = =


 = = −



 

The boundary conditions are considered as [11, 52]: 

0

0

0, , 0, at 0,

0, , 0, 0 at ,

 

T H
L B L

L

T H
U B

L

D DT H
w T T D C C z

z T z H z

D DT H
w T T D C z d

z T z H z





  
= = + − = = = 

   


   = = + − = = =
   

 (9) 

with 0
w

z


=


 and 

2

2
0

w

z


=


on a rigid surface and stress-free surface respectively. 

In the above set of boundary conditions, it is considered that the temperature remains fixed at both the boundaries. 

Whereas, the magnetic nanoparticle flux which consist the impact of three significant mechanisms, namely Brownian 

motion, thermophoresis, and magnetophoresis is considered to be zero on the boundaries. This is so because, as reported 

by the researchers Nield and Kuznetsov [11], the considered boundaries are more realistic physically.   

 

The governing Eqs. (1) to (8) are made dimensionless as: 

* * * * * * * * 2

0

3

* 2 * * *

0 0

( , , ) ( , , ) / , , ( , , ) ( , , ) / , ( / ) ,

( / ) ,

 

 , / , / .
f

L U

u v w u v w d x y z x y z d t d t

g d
p d p T T H H H M M M

T T


  



 




= = = =

 
 

= = = =
 − 
 

∣ ∣

  

Here
( )

f

c
k

c



=  is the thermal diffusivity. Note that ( ),

L U L U
K T T T T− = −∣ ∣ where ( )sign T T .

L U
K = − The value of 

K depends on whether the layer is heated from below or above. For a layer which is heated from below, K  takes the 

value +1  and K  becomes -1 when the layer is heated from above. 

 

Thus, after abandon the asterisks *, we derive the following dimensionless form of Eqs. (1) to (8): 

· 0, =v  (10) 

( )2

1 1 2

1
· ,

n N
p M H R RT Ra T

Pr t
    





+ = − + + − − + − + 
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 

v
v v v k  (11) 
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2 2 2 
1

· ,A A
N N

T H
t Le Le Le


 


+ =  +  − 


v  (12) 

2· ( · ) ( · ) ( · ) ,B A B A B
N N N N NT

T T T T T H T YRC
t Le Le Le



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

v  (13) 

2· , 
C

C C
t




+ = 


v  (14) 

1 1 2

2 2 2

(1 )
,

1 1

M M
H T

H M M

  


  

  − + 
= − + +  

+ +  

H
M  (15) 

2
 · · 0  .  + =M H  (16) 

In Eqs. (11) to (16), 

3 3

0

0
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−
 = = =

++

∣ ∣
 

are the concentration Rayleigh number, Prandtl number, nanofluid Lewis number, square root of thermal Rayleigh 

number, modified diffusivity ratios ( ),  ,
A A

N N  modified particle-density increment, ratio of internal heating to boundary 

heating, diffusivity ratio, magnetic parameters ( )2 2 1 1
,  , ,  M M M M   respectively. Moreover, the parameters 

3

1 0
( ) / ( ),

f L
g d T    = 3

2
( (1 ) ) / ( ),

f L
T gd   = +

0N
Ra R=  and 

2

1 0 0 0
( ) / ( )M H d  =  represent some 

non-dimensional group. We would like to mention here that the thermal Rayleigh number for the present problem is 

defined as 2 .Ra R=  

The boundary conditions (9) become (in non-dimensional form): 

3

3

0, , 0, 1, at 0,

0, , 0, 0, at 1,
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T T z z z
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
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
   = = + − = = =
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
  
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

∣ ∣

∣ ∣

 (17) 

together with 0
w

z


=


and 

2

2
0

w

z


=


on a rigid surface and stress-free surface respectively 

 

BASIC SOLUTION 

The solution for the basic state has the following form: 

( ), 0, ( ), ( ), ( ), ( ), ( ). 
b b b b b b

p p z T T z z C C z M M z H H z = = = = = = =v  (18) 

Using (18), Eqs. (11) to (16) are simplified as follows: 

1 1 2
0,b b

b n b b N b b b

dp dH
M R RT Ra T

dz dz
    − + − + − + − =  (19) 
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Figure 2. Base flow profile of the parameters , ,

b b b
T H  and 

b
M for (a) 1K = +  and (b) 1.K = +  
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These Eqs. (19) to (24) are now solved subject to the boundary conditions (17). Thus, we obtained the basis state 

solution in the form: 

1
0
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1 1 1 1 1 1

2 2 2 2 2 2 2
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Based on the solution obtained in Eq. (25), the flow profiles (basic state) of , ,
b b b

T H and M
b

are presented in Figure 

2. Here, the figures are drawn for two different cases, viz., when the system is heated from below (i.e. 1K = + ) and heated 

from above (i.e. 1K = − ). It is clear from the figures that the base flow profiles of the parameters , ,
b b b

T H and  M
b

drawn for 1K = +  is completely different in qualitatively and quantitatively from the base flow profiles drawn for 

.1K = −  

 

PERTURBATION SOLUTION 

In this part, firstly, we perturbed the basic state solution as: 

  [ , , , , , , ] [ , , , , , , ],
b b b b b b

p T C H M p p T C C H H M M         = + + + + + +v v  (26) 

where , , , , ,p C H      v and M   represent the perturb variables which are assumed to be small. 

After utilizing Eq. (26) in Eqs. (11) to (16), linearizing after dropping primes, taking the curl (two times) the z -

component of resulting linearized momentum equation together with ,H =   the set of Eqs. (11) to (16) takes the form: 


2

4 21 2 1
1 0 1

2 2

1

2

1
1 2

2

2
22 1 1 1
1 2

2 2

1
( ) ( ) ( ) ( )

( ) ( ) ( ) ,

N N N

s n s

S M Sw
w M RA z R Ra Ra A z R A z Ra A z

M

M

M
M M

M

Pr t S S

M S S
R A z Ra A z R RM Ra A z

S S z

 




   
 =  − − + − +  − 

   

   
  − − +  + +      






 



 (27) 

2 2 21

2

1
( ) ,A A

S N N
A z w

t S Le Le Le z


  

 
= +  +  − 

 
 (28) 

1

2 1 1

2 2

2
1

2
22

2
( ) ( ) ( ) ( )

( ) ( ) ( ) ,

B A B B A

B A B B A

N S N N N N M
A z w A z A z A z

t Le S Le LeM

N N S N N N
A z A z A z

Le S z

M

M Le z Le z




  

  
   = − + − − +

 

   
  + + −

  





 (29) 
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2 ,
C

w C
t




= + 


 (30) 

2
21 2
12

1

22

1
.

1

M

M z zz

M

M

  








+  
= − − 

  +
 (31) 

Now, a transformation (coordinate) from z  to 2 1z − is applied to adjust the current domain from 
[0,1]

 to
[ 1,1].−

This 

is so because, to employ the Chebyshev pseudospectral method, the domain must be 
[ 1,1].−

Furthermore, the normal 

mode expansion is considered as: 

{ , , , , } { ( ), ( ), ( ), ( ), ( )} exp{ ( )},
x y

w C w z z z z C z t i k x k y      =  + +  (32) 

where 
x

k and 
y

k stands for the wave numbers in x and y  direction respectively. 

 

After using the above Eq. (32), the set of Eqs. (27) to (31) takes the following form 

1 1

2 2

1

2 2 2 2 2 1
1 1 0 1

2

22 1 2
1 1 1

2

2 21 1
1 2 1

2
2

2

(4 ) ( ) (4 ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) 2 ( ) ( ),

N N

N

s n s

S
D k w z D k w z M RA z R Ra Ra A z

Pr S

M S M
R A z k z R

M
a A z R A z

S

S S
Ra A z R

M

M M

M k z RM Ra A z k D z
S S

M






 


− = − + − + −



  
 + + − 

  

  
 − + − +   

  

 

 

 

 (33) 

2 2 2 2 2 21
1

2

1
( ) ( ) (4 ) (4 ) 2 (4 ) ,A A

S N N
z A z w D k D k D D k

S Le Le Le
   


= + − + − − −  (34) 

2 2 1 1
1 1 1

2 2

21
1 1 1 1

2

1

2

2
( ) ( ) (4 ) ( ) 2 ( ) ( )

( ) ( ) 2 ( ) 4 ( ) ,

B A B B A

B A B B A

N S N N N N M
z A z w D k z A z A z

Le S Le LeM

N N S N N N
A z A z D A z D A z D

Le S

M

M Le Le

 

  

 
  = − + − − − +



 
    + + −



 

 (35) 

2 2( ) (4 ) ( ),C z w D k C z = + −  (36) 

1

2

2 21 2

2

1
4 2 2 .

1

M
D D D k

M

MM


   



+ 
= − +  

+ 




 (37) 

 

The above set of Eqs. (33) to (37) is to be solved with the following boundary conditions: 

22 0 at 1,

2(1 ) 0 at 1,

2(1 ) 0 at

 

1,

A A
w D N D N D C z

D k z

D k z

   

  

  

= = + − = = = 


+ − = = − 
+ + = = +


 (38) 

with 0Dw =  at 1z =  for R-R boundaries, 0Dw = at  1z = − and 
2 0D w = at 1z = + for R-F boundaries, 

2 0D w =  at 

1z =  for F-F boundaries. 

 

NUMERICAL METHOD AND VALIDATION 

Equations (33) to (37) subject to the boundary conditions (38) constitute an eigenvalue problem which is now 

numerically solved by selecting the Chebyshev pseudospectral method.We remark here that the algorithm and procedure 

mentioned in the paper of Kaloni and Lou [51] are considerately followed in this study. In this procedure, firstly, for a 

specific value of , , , ,
L

k Le Y   and several different physical parameters, we employed the both QZ-algorithm as well as 
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EIG function in the software MATLAB to evaluate the major eigenvalue (say 
r i

i  = + ). Here 
r
 and 

i
 represent the 

real and imaginary part of the major eigenvalue respectively. Moreover, the major eigenvalue is considered to be the one 

which has the largest real part.Thereafter, by employing the Regula Falsi method, we determined that distinctive value of 

the parameter  corresponding to which 
r
   tends to zero. In this manner, we obtained a unique point in the neutral 

stability curve.To draw the required neutral curve, we repeat the above mentioned process for several other values of .k

From the neutral curves, 
c

 together with 
c

k can be described as: 

min ( , , ,Pr..........)
c k

Y Le  =  (39) 

where 
c

 and 
c

k are the critical temperature gradient and the critical wave number respectively. The Eq. (39) is 

minimized by utilizing the function FMINBND from MATLAB. 

The nature of the stability is also checked numerically by selecting the Chebyshev pseudospectral method. If 
i
  i.e. 

the imaginary part of the major eigenvalue converges to zero simultaneously when 
r
 (the real part) converges to zero, 

then the stability is called non-oscillatory (or stationary).On the contrary, if 
i
 does not tends to zero simultaneously when 

the real part 
r
 converges to zero, then the stability is known as oscillatory.To examine the nature of stability, the leading 

eigenvalue
r i

i  = + is determined for all the non-dimensional parameters and it is noticed that 
i
  always tends to zero 

at the same time when 
r
  tends to zero.In this way, it is observed that the stability for the considered problem is stationary 

for both the two considered configurations. 

 

Table 1. Value of 2

c
k  and .

c
Ra  

 

  Hill[2] Presentwork 

K  Y  
2

c
k  c

Ra  2

c
k  c

Ra  

+1 1 5.882 252.268 5.848 252.268 

 10 5.545 28.698 5.516 28.698 

-1 1 5.064 343.235 5.050 343.234 

 10 5.459 29.591 5.435 29.591 

 

To figure out the accuracy of the numerical method applied in the present work, we solved our problem in the 

nonappearance of the external magnetic field and nanoparticles for R--R boundaries using our code. The results are 

determined for 0.01. = From Table 1, it is clear that the results derived in the present study are in best agreement with 

the previously published results of Hill [2].  

 

RESULTS AND DISCUSSION 

We employed the linear stability theory and derived the results for R-R, R-F and F-F boundaries. The obtained results 

are presented graphically in Figs. 3-7 and also in tabular form in Table II for the two different cases, viz., when the system 

is heated from below (i.e. 1K = + ) and heated from above (i.e. 1K = − ). 

The values of the physical quantities utilized in the present work are considered as follows: density 1180,
f

 =   

thermal conductivity 
1

k 0.59,=   magnetic saturation M 15,900,
s
=  viscosity 0.007, =  thermal expansion coefficient

5.2 4,e = − Prandtl number Pr=42.1.   
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Figure 3. Locus of 
c

Ra and Le  for three various values of the parameter 
L

 for (a) 1K = +  and (b) 1K = −  for (1)   R-

R, (2) R-F and (3) F-F boundaries. 

 

The effect of both MNF Lewis number Le and Langevin parameter 
L

 on 
c

Ra (the critical Rayleigh number) is 

presented simultaneously in Figure 3 for two different cases, viz., when the layer is heated from below and heated from 

above. From the figure, it is seen that the value of the parameter
c

Ra  increases as 
L

 increases. This is due to the fact 

that the existence of an internal heat source gives rise to the forces that dominate the magnetic forces. As the value of 
L



increase, the influence of the magnetic field also increases in the system, which in turn decelerates the disturbance in the 

MNF layer. It is also evident from Figure 3 that with an increase in the value of the Lewis number Le , value of the 

parameter 
c

Ra decreases. Thus, 
L

 has a stabilizing impact on the system; on the contrary, the Lewis number Le  has a 

destabilizing impact on the considered system. These results are in agreement with those observed by Kaloni and Lou 

[50] and Nield and Kuznetsov [15].  
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Figure 4. Neutral curves for various values of the parameter Y  for (a) 1K = +  and (b) 1K = − for (1) R-R, (2) R-F and 

(3) F-F boundaries 

 

To examine the impact of the selective absorption of radiation on the stability of the system, the neutral curves for 

three different value of the parameter Y are illustrated in Figure 4. It can be seen from the figure that with an increase in 

the value of the parameter Y , the value of the parameter 
c

Ra decrease. The parameter Y  is the ratio of internal heating 

to boundary heating, and therefore as the value of the parameter Y  increases, the strength of the radiative heating 

increases, which in turn decreases the general stability of the system. In this way, the parameter Y  hasten the onset of 

MNF convection. 

.  
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Figure 5. Neutral curves for three various values of the parameter 

n
R  for (a) 1K = +  and (b) 1K = −  ; for (1) R-R, (2) 

R-F and (3) F-F boundaries 

 

Figure 5 represents the neutral stability curve for different value of .
n

R It is clear from the graphs that for ,1K = +

the curves move downward with an increment in the value of the parameter 
n

R and thus the value of 
c

Ra decreases. 

However, for the case when ,1K = − the value of the parameter 
c

Ra  increases as 
n

R increases. In this way, the parameter 

n
R expedites the convection process for 1K = + and decelerates the onset of convection for .1K = − The reason for such 

a qualitative change in the behavior of 
n

R is the pattern of magnetic nanoparticle distribution (that is, whether it is top-

heavy or bottom-heavy). It can be seen from  Figure 2 that the magnetic nanoparticle distribution is top-heavy for 1K = +  

and bottom-heavy when .1K = − Earlier Nield and Kuznetsov [12] observed a destabilizing behavior of 
n

R for the top-

heavy nanoparticle distribution, whereas, a stabilizing impact of the parameter 
n

R was reported in several studies 

including [27, 53].  
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Figure 6. Neutral curves for three various values of the parameter 

A
N for (a) 1K = +  and (b) 1K = −  for (1) R-R, (2) 

R-F and (3) F-F boundaries 

 

The effect of the parameter 
A

N  on the variation of the neutral stability curve is depicted in Figure 6. The impact of 

increasing the value of 
A

N is seen to expedites the onset of MNF convection. This is so because, thermophoretic 

diffusion, which is one of the principal forces related to the motion of magnetic nanoparticles promoted as the value of 

the parameter 
A

N increases. For a larger value of thermophoretic diffusivity, thermophoresis generates a kind of unrest 

in MNF layer, which in turn allowing convection to commence more easily. Thus the value of the parameter 
c

Ra

decreases with an increase in the value of the parameter .
A

N  

Figure 7 presents the variation of Ra  with k  for several values of the diffusivity ratio .  It is clearly seen from the 

figure that with an increase in the value of the parameter , the value of 
c

Ra increases. Such behavior of the parameter 

 remains the same for both the two configurations (that is for 1K = +  and 1K = − ). A larger value of   slows down 

the thermophoretic diffusion which in turn leads to a larger value of .
c

Ra In this way, the parameter   slows down the 
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onset of convection. An identical behavior was earlier noticed by Straughan [3] in the nonappearance of both the magnetic 

field as well as nanoparticles concentration.  

 

 
 

Figure 7. Neutral curves for three various values of the parameter   for (a) 1K = +  and (b) 1K = − ; for (1) R-R, (2) R-

F and (3) F-F boundaries 

 

The neutral stability curves for different values of the nanoparticle volume fraction 
0

 are shown in Figure 8. For the 

case when ,1K = + the figures show that the critical value of the parameter Ra  decreases when the value of 
0

 increasing. 

However, for ,1K = − it is noticed that the value of 
c

Ra  increases as the value of 
0

 increases. Thus the behavior of 
0



is different for both the cases i.e. when 1K = +  and when .1K = −  The reason behind such variation in the behavior of 

0
 is the change in its base flow profile of .

b
  It can be seen from Figure 2 that the magnetic nanoparticle distribution 

is top-heavy for 1K = +  and bottom-heavy when .1K = −  Thus 
0

 destabilize the system when ,1K = +  and stabilize 

the system when .1K = −  
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Figure 8. Neutral curves for various values of the parameter 0 for (a) 1K = + and (b) 1K = − ; for (1) R-R, (2) R-F 

and (3) F-F boundaries 

 

Table 2 illustrates the values of the parameters 
c

k and 
c

Ra for several values of   and Y  for water-based MNF. The 

primary reason for presenting this table is to investigate the impact of one significant parameter (i.e. selective absorption 

of radiation) on the onset of convection. For this purpose, the effect of several values of Y  on 
c

k  and 
c

Ra  is shown in 

Table 2 for R-R, R-F, and F-F boundaries. These values are calculated for both 1K = +  as well as for 1K = − for R-R, 

R-F, and F-F boundary conditions. It is clearly seen from the table 2 that for a specific value of  , as the value of the 

parameter Y increases, the value of 
c

Ra decreases for both the cases 1K = +  and .1K = − Thus the parameter Y  always 

hasten the onset of convection. Earlier, Hill [2] and Straughan [3] made a similar observation for the parameter Y  in the 

case when the magnetic field and nanoparticle concentration are not presented in the system. It can also be seen from the 

table that with an increase in the value of ,  the value of 
c

Ra always increases for both the two configurations (that is, 

1K = +  and 1K = − ). Thus the parameter   always delays the onset of MNF convection. 
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Table 2. Effect of , ,K   and Y  on 
c

k and .
c

Ra  

   R-R
 

R-F
 

F-F
 

K    Y  
c

k  
c

Ra  
c

k  
c

Ra  
c

k  
c

Ra  

+1 0.001 1 2.30 20.77 2.02 12.67 1.71 7.11 

  3 2.34 8.65 2.08 5.15 1.79 2.83 

  5 2.35 5.44 2.09 3.21 1.80 1.75 

  7 2.34 3.96 2.10 2.33 1.81 1.26 

  10 2.34 2.81 2.10 1.65 1.81 0.89 

 0.01 1 1.55 49.64 1.00 28.90 1.00 16.21 

  3 2.07 37.01 1.66 21.67 1.31 13.01 

  5 2.19 29.01 1.82 16.80 1.52 10.34 

  7 2.25 23.75 1.89 13.63 1.61 8.46 

  10 2.29 18.61 1.94 10.56 1.68 6.58 

-1 0.001 1 2.13 26.07 1.93 14.94 1.66 7.78 

  3 2.28 9.82 2.06 5.67 1.78 2.97 

  5 2.31 5.93 2.08 3.44 1.80 1.81 

  7 2.32 4.23 2.09 2.46 1.80 1.30 

  10 2.33 2.95 2.10 1.72 1.81 0.91 

 0.01 1 1.00 55.15 1.00 33.57 1.00 17.49 

  3 1.70 49.65 1.56 31.26 1.22 15.26 

  5 1.96 41.97 1.83 26.35 1.50 12.58 

  7 2.10 35.04 1.96 21.71 1.63 10.36 

  10 2.22 27.10 2.05 16.47 1.71 8.00 

 

CONCLUSIONS 

In this paper, the study of MNF convection stimulated by selective absorption of radiation is conducted by employing 

the linear stability analysis. An appropriate non-dimensional scaling is employed to derive a dimensionless set of 

governing equations. The obtained eigenvalue problem is solved by selecting the Chebyshev pseudospectral method for 

the R-R, R-F and F-F boundary conditions. The results are derived for two different types of configurations, viz., when 

the system is heated from the below and when the system is heated from the above. It is also assumed that the flux of 

nanoparticle remains zero at both the lower and upper boundaries. The results show that the effect of an increase in the 

value of the parameters 
L

 and   is to increase the value of ,
c

Ra and hence decelerate the onset of convection for all the 

three types of boundary conditions. On the contrary, an increment in the value of the parameters , ,
A

Le Y N  speed up the 

onset of MNF convection. In addition, the parameter 
n

R  expedite the onset of MNF convection in the case when the fluid 

layer is heated from the below, whereas decelerates the onset of MNF in the case when the fluid layer is heated from the 

above. The principle of exchange of stability is also found to be valid for the present problem.  
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