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INTRODUCTION   

Microbubbles have been used as ultrasound contrast agents due to their ability to reflect the ultrasound waves in 

medical imaging hence impowering contrast [1-3]. These microbubbles have typical diameters in the range of 1-10 µm 

allowing it to flow through microvessels and capillaries. This is due to significant difference in echogenicity between the 

gas in the microbubbles and the soft tissue surroundings of the body.   

Recent studies have shown that microbubbles have the potential beyond contrasting agents. Microbubbles in 

conjunction with high intensity focused ultrasound transducer has great potential in the development of targeted imaging 

to characterize diseases at a molecular level in vivo [4, 5]. Furthermore, microbubbles also have the potential to the used 

in drug delivery, therapeutic agents, thrombolytic therapy [6], gene therapy, molecular imaging [7], anti-cancer therapy, 

and atherosclerotic therapy [4, 5]. One approach in drug delivery for example, is to incorporate drugs into microbubbles 

and selectively rupturing the bubbles to allow for local delivery into the feeder vessels of the lesion [4] thus increasing 

the efficacy of drug delivery. Though promising, many studies have shown particular interest with regards to if the agent 

has reached it’s intended target at the vessel. This question is the motivation for this paper where we will attempt to 

identify how the vessel wall influence the microbubble oscillation. 

It is interesting to note that most numerical work are based on the free gas bubble model i.e. bubbles that are not near 

any boundary, the Rayleigh model [8]. Over the years, the model was improved leading to other mathematical models 

governing microbubble oscillation such as the Rayleigh, Plesset, Noltingk, Neppiras, and Poristky (RPNNP) equation [9], 

Herring equation [10] and Keller-Miksis-Parlitz equation [11]. In recent years however, experimental studies have shown 

that the boundary have significant influence on microbubble oscillation. Garbin et al. [12] and Overvelde [13] for example 

have shown that the radial displacement can be higher in a bigger radius of vessels (≈100 µm) compared to smaller radius 

vessels (≈10 µm).  

Furthermore, shell encapsulation of microbubble has also been shown to alter the acoustic properties and more stable 

than the free bubble gas [14]. Without encapsulation, microbubbles will dissolve spontaneously and nearly 

instantaneously due to the surface tension at the gas-liquid interface which is a problem for therapeutic applications. An 

encapsulating shell is necessary to sustain the gas cavity. Due to its’ importance, there has been many studies over the 

years directed on modelling the shell encapsulation. For example, de Jong  et al. [15-17] modelled the shell by taking into 

account elasticity and viscous friction of the encapsulating shell by modifying the Rayleigh-Plesset equation, Church et 

al. [18] assumed that the behaviour of shell material as viscoelastic and Morgan et al. [19] modified the Herring equation 

[10] to account for the viscosity, elasticity and the thickness of the encapsulating shell [19]. These studies, however, did 

not consider any boundary near the encapsulated bubbles. In this research, we try to extend the development of the 

dynamical behaviour of microbubble.  

ABSTRACT – Microbubbles have the potential to be used for diagnostic imaging and therapeutic 
delivery. However, the transition from microbubbles currently being used as ultrasound contrast 
agents to achieve its’ potentials in the biomedical field requires more in depth understanding. Of 
particular importance is the influence of microbubble encapsulation of a microbubble near a vessel 
wall on the dynamical behaviour as it stabilizes the bubble. However, many bubble studies do not 
consider shell encapsulation in their studies. In this work, the dynamics of an encapsulated 
microbubble near a boundary was studied by numerically solving the governing equations for 
microbubble oscillation. In order to elucidate the effects of a boundary to the non-linear microbubble 
oscillation the separation distances between microbubble will be varied along with the acoustic 
driving. The complex nonlinear vibration response was studied in terms of bifurcation diagrams and 
the maximum radial expansion. It was found that the increase in distance between the boundary 
and the encapsulated bubble will increase the oscillation amplitude. When the value of pressure 
amplitude increased the single bubble is more likely to exhibit the chaotic behaviour and maximum 
radius also increase as the inter wall-bubble distance is gradually increased. While, with higher 
driving frequency the maximum radial expansion decreases and suppress the chaotic behaviour.   
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The objective of this paper is to investigate the effects of both; the boundary and the encapsulating shell, on the 

nonlinear microbubble response in an ultrasonic field will be studied which are closer to the scenario in clinical studies. 

 

METHODS AND MATERIALS 

In this section the mathematical modelling of the free gas bubble will be modified to include the effect of shell and 

encapsulation and boundary. The type of shell that will be used in this paper is a commercial microbubble, MP1950 

(Mallinckrodt, Inc., St. Louis, MO). It is a phospholipid type of shell and a decafluorobutane core commonly used for 

streak microscopy [19, 20] . 

Here we would like to investigate how the acoustic parameters and interbubble-wall distance influence the transition 

from periodic to chaotic oscillation. Since nonlinear oscillations are notorious for the significant changes in the overall 

dynamics given a small paramevter change, we shall limit the study to a manageable set of parameters as outlined below 

to achieve the objective of this study: 

 

Effects of ultrasound acoustic driving frequency: The bifurcation diagrams in Figure 4 were obtained with respect to 

ultrasound acoustic driving frequency, fext , as the control parameter and acoustic driving pressure, α = 150 kPa, as the 

constant parameter. 

 

Effects of ultrasound acoustic driving pressure: The bifurcation diagrams in Figure 5 were obtained with respect to 

ultrasound acoustic driving pressure, α, as the control parameter and driving frequency, fext = 1.5 MHz, as constant 

pressure. 

 

Effects of distances between boundary and encapsulated microbubble: The bifurcation diagrams labelled (a)-(d) in 

Figures 4-6 were plotted by varying separation distance between the bubble and boundary, d/R0 = 2.5, 5, 10 and 15 

respectively. 

 
Mathematical Modelling 

To model an encapsulated bubble near a boundary as shown in Figure 1, we first consider a free bubble model, the 

Keller-Miksis-Parlitz (KMP) equation which has the advantage over other models as it is suitable for large radial 

oscillations. The KMP equation is given by 

The variables and their associated parameter values are shown in Eq. (1) at 20oC. is given in Table 1. Here, Pꝏ(t) = P0 − 

Pv + α sin(ωt), represents the pressure in the liquid far from the bubble where ω is the angular frequency, ω = 2πfext, α is 

the acoustic pressure amplitude and fext is the acoustic frequency. The initial conditions R(0) = R0 and dR/dt(0)=0 were 

imposed indicating that at time t=0, the bubble has an initial radius of R0 and is motionless. 

 

Table 1. Parameters for the bubble model 

Symbol Description Value  

R0 Intial bubble radius 2.0 µm 

µ Dynamic viscosity of the liquid 0.001 kg/ms 

ρ Density of the liquid 998.2 kg/cm3 

κ Polytropic exponent for the gas bubble 1.07 

c Speed of sound in air 1484 m/s 

σ Surface tension of the bubble surface 0.051 N/m 

Pv Hydrostatic pressure outside bubble 2330 Pa 

P0 Pressure inside the bubble 100,000 Pa 
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The model assumes that the bubble will remain spherical throughout the oscillation. In this study, we will limit our scope 

to the parameter space in which the microbubble does not undergo collapse and remain spherical in shape. To incorporate 

the encapsulating shell of thickness ε as shown in Figure 1, the P(R,R ̇) term in Eq. (1) will be modified following Morgan 

et al. [19]. where χ is the shell elasticity, and µsh is the shell viscosity. Here, a commercially produced microbubble 

MP1950 will be used with the parameter values of ε = 1 nm, µsh = 1 Pa.s and χ = 0.5 N/m [19]. 

 

 

Figure 1. Schematic diagram of a single shell encapsulated bubble near solid boundary where d is the distance between 

the centre of the bubble with the boundary 

 

Up to this point, the equation we have derived is for a microbubble with a shell encapsulation in infinite medium. In 

order to include the effects of a wall as shown in Figure 1, the mirror image methods will be used following the derivation 

by Dzaharudin et al. [21] where the following term will be incorporated in Eq. (1),  

( )2 21
2

2
wP R R RR

d
= − +  (3) 

Here d is the distance between the wall and the bubble centre (see Figure 1). In this paper, the interbubble-wall distance 

will be varied as follows; d/ R0=2.5, 5, 10 and 15. Thus, the governing equation of an encapsulated microbubble near a 

boundary is given by, 

( ) ( )

23
1

2 3

1
, w

R R
RR R

c c

R R d
P R R P t P

c c dt


    
− +    

     

      = + − −          

; (4) 

where, P(R,R ̇) is given by Eq. (2) and Pw is given by Eq. (3). To ensure the validity of Eq. (3), the simulations will be 

stopped as soon as the bubble wall collides with the boundary. A typical solution of the ordinary differential equation in 

Eq. (4) will result in a time series as shown in Figure 2. 

 

Validation  

In this section, we will compare the results of our code with those in published literature  Li et al. [22] where they 

study the effect of a solid boundary on the dynamics of a small group of ultrasound driven microbubbles. This method is 

to ensure the validity of the numerical solving code. 
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Figure 2. Comparison between results obtained from code (line) with Figure 5 from Li et al. [22] (black dots) for a 

microbubble with size R0 = 2.0 µm positioned d/R0 =15 away from a solid wall subjected to an ultrasonic frequency of 1 

MHz and driving pressure of (a) 40 kPa and (b) 125 kPa 

 

We extract our result using in MATLAB ® ODE 15s as numerical solver. Figure 2 shows the comparison between 

the output of our code (represented by the solid line) and that from Figure 5 in the paper published by Li et al. [22] studied 

the (represented by the black dots). We set the parameter same as the as in the paper published by Li et al. [22] where a 

single bubble with initial radius R0 = 2.0 µm located d/R0 =15 from the wall was subjected to an ultrasound pressure 

amplitude of 40 kPa and 125 kPa. 

The plot good agreement between our output and with published results since the black dots fall exactly on the solid 

line as seen in Figure 2(a) and (b). This validation method has been use by several researchers [21]. 

 

RESULTS 

The dynamical response of a microbubble subjected to ultrasound is a complex nonlinear problem which belongs to 

a class of driven nonlinear oscillators. This class are deterministically chaotic systems with all their involved and complex 

dynamics. In order to study these types of oscillators, we shall employ a method from chaos theory to visualise the 

parameter dependence of the dynamics of the bubble via bifurcation diagrams. In theory, the driven bubble oscillation 

may be periodic and chaotic. 

Left column in Figure 3 shows the typical the radius-time after transients have decayed obtained numerically solving 

Eq. (4) for a R0 = 2 µm MP1950 microbubble located at d/R0 = 15 from the boundary subjected to a driving frequency of 1 

MHz. The right column is the phase space diagram representation of the radius-time response. The top to the bottom rows 

of Figure 3 corresponds to increasing pressure amplitude: 40 kPa, 125 kPa and 250 kPa. The dots represent points at the 

end of each acoustic cycle, T= 1/fext. Note that the axes range in Figure 3 are not the same and are chosen to clearly illustrate 

the outline of the trajectories. 

In Figure 3(a) and (c) the normalised radius, R/R0, at the end of each driving period, T, is the same; effectively 

repeating itself after every time interval length of T but with different maximum normalised radius. As for 40 and 125 

kPa, the maximum normalised radius is R/R0 = 1.12 and R/R0 = 1.5 respectively. These corresponds to a single period 

oscillation which is represented as one dot on the phase diagram in Figure 3 (b) and (d), where V = dR/dt is the bubble 

wall velocity. The phase diagram reveals a crossing trajectory with on dot as the bubble returns to its original state within 

a single period of driving, T. With increased driving pressure at 250 kPa, as shown in Figure 3(e), the dots no longer 

repeated itself after multiples of T and resulting to chaos phase. This observation corresponds to the spread of dots seen 

in the phase space diagram in Figure 3(f). 

Figure 4 below shows pressure bifurcation used in clinical studies [23] for a R0 = 2 µm MP1950 encapsulated 

microbubble subjected to fext = 1 MHz for varying inter bubble-wall distances for Figures 4(a) d/R0 = 2.5, 4(b) d/R0 = 5, 

4(c) d/R0 = 10 and 4(d) d/R0 = 15. 

The normalised radial response and phase diagram in Fig. 3 are represented as a bifurcation diagram in Fig. 4(d), 

where the coordinate value of the point in the phase space is plotted versus a parameter of the model, called control 

parameter. In Figure 4 the control parameter is the driving pressure amplitude, α as the constant parameter is the driving 

frequency, fext = 1 MHz.  

 

 

 

 

 

 

 

 

 



N. M. Ali et al. │ Journal of Mechanical Engineering and Sciences │ Vol. 14, Issue 3 (2020) 

7239   journal.ump.edu.my/jmes ◄ 

  

  

  

Figure 3. Left column shows the normalised radial response of a R0 = 2 µm gas bubble located at d/R0 = 15 from the 

boundary and insonated by a sinusoidal pressure wave of frequency, fext = 1 MHz. The driving pressure amplitude 

increases from top to bottom as 40 kPa, 125 kPa and 250 kPa. The right-hand column shows the phase space diagram 

representation of the radius-time response. Black dots represent points at the end of each acoustic cycle, T= 1/fext 

 

In Figure 4(d), the single period-1 solution obtained from the phase diagram for α = 40 (Figure 3(b)) and 125 kPa 

(Figure 3(d)) yields one point at the value of the control parameter, α = 40 and 125 kPa in Figure 4(d). Phase diagram in 

Figure 3(f) show a chaotic response, the projection of dots from the phase diagram on the bifurcation diagram in Figure 

4(d) corresponds to the large number of points spread along the vertical line at α = 250 kPa. This is where the system 

changes between order and chaotic signifying that an alter in control parameter can make a steady system in chaos. The 

distance between bubble and wall, d/R0 = 2 in Figure 4(a) show a single period-1 solution obtained from the phase diagram 

in Figure 4(b) for α < 120 kPa. And it stops as the bubble hit the wall afterwards. 

The structure in Figure 4(b) appear that the shell encapsulated bubble showing more chaotic dynamic behaviour for 

higher amplitude pressure. Where, the bubble undergoes a single period oscillation right before experiencing a period 

doubling bifurcation at α = 200 kPa, after the bubble exhibits a ‘jump’ similar to researcher Li et. al. [22] (refer Figure 6) 

at the onset of chaos at α = 150 kPa. This is a characteristic of a saddle node bifurcation, followed by a series of period-

doubling bifurcations that leads to chaotic behaviour. A chaotic response signifies a highly nonlinear dynamic behaviour 

that could increase drug/gene intake by applying shear stress on cell membranes [24, 25].  

Upon considering the effects of boundary proximity, the chaotic oscillations diminish (see Figures. 4(b) - (d)) as the 

distance of boundary is increase and more periodic oscillations are observed. Based on these observations bubble oscillate 
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and tends to enter the route to chaos as the amplitude pressure is increase when the system subjected to a driving 

ultrasound frequency, fext = 1 MHz. It is also observed that the microbubble system undergo chaotic oscillations at higher 

pressure amplitude as the distance between the bubble and the solid boundary is decreased. 

The control parameter is the driving pressure amplitude with frequency bifurcation diagrams were computed in Figure 

5 to allow us to analyse the effect of varying the ultrasound frequency to dynamical behaviour encapsulated microbubble 

near boundary proximity. The ultrasound frequency, fext, was taken as the control parameter and the bubble was driven at 

α = 150 kPa in Figure 5.  Each bifurcation diagram is plotted with the varying inter bubble-wall distances from Figure 

5(a) d/R0 = 2.5, Figure 5(b) d/R0 = 5, Figure 5(c) d/R0 = 10, and Figure 5(d) d/R0 = 15.  

In Figure 5(a) the computations was stopped for fext < 1.15 MHz since the bubble wall collides with the solid boundary. 

The response of the shell encapsulated bubble generally contains of single period and double period oscillations 

throughout the control parameter range, where it starts with period 2 at fext ~1.15 MHz and transitions to period 1 

oscillation at fext ~ 1.17 MHz. As the bubble moves further away from the boundary (compare Figures. 5(a)-(d)), the chaos 

region shrink. In Figure 5(b)-(d) the increase in frequency of the ultrasound driving results in two saddle node bifurcations 

characterised by the sudden “jumps” meanwhile at inter bubble-wall distance, d/R0 = 2.5 the absence of “jumps” same as 

published paper of MacDonald et. al [26] (refer Figure 3). 

 

  

  

Figure 4. Bifurcation characteristics showing the normalised radius versus the acoustic driving pressure, α, for fext = 1 

MHz for (a) d/R0 = 2.5, (b) d/R0 = 5, (c) d/R0 = 10 and (d) d/R0 = 15. The initial size of the microbubble is R0 = 2 µm. 

The three vertical lines in the figure shows reference location where α = 40, 125 and 250 kPa 
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Figure 5. Bifurcation characteristics showing the normalised radius versus the driving frequency for α =150kPa for (a) 

d/R0 = 2.5, (b) d/R0 = 5, (c) d/R0 = 10, (d) d/R0 = 15. The initial size of the microbubble is R0 = 2 µm 

 

Maximum Radius 

In the previous section, the bifurcation diagrams of pressure amplitude and driving frequency as control parameter 

computed only provides information of the frequency content of the bubble behaviour. 

Here, the maximum radial expansion ratio of the encapsulated gas bubble changes as the driving pressure amplitude 

(Figure 6(a)) and driving frequency (Figure 6(b)) increases will be studied. The maximum radial expansion of the 

encapsulated microbubble, Rmax provides a significant understanding in how changing the boundary proximity combined 

with varying control parameters whether is the driving frequency or acoustic pressure amplitude. There are numerous of 

applications such as local drug delivery and gene therapy, require identification of parameters that will contribute to large 

bubble oscillations leading to bubble rupture and collapse. Some applications such as drugs transportation with a targeted 

site inside the body, the practice requires a significant identification of physical parameters that eventually give rise to 

large microbubble oscillation [21, 27]. There is study suggested that the possibility of bubble collapse hence releasing 

localised drug, is higher for larger values of maximum radius [21, 28].  

 

  

Figure 6. Maximum radial expansion, Rmax for a microbubble with an initial radius R0 = 2 µm subjected to (left) 

constant ultrasound pressure amplitude and (right) constant ultrasound frequency for (a) fext = 1 MHz (b) α =150kPa. 

The colours represent the boundary proximity for the bubble-boundary separation distance d/R0 = 2.5 (red), d/R0 = 5 

(green), d/R0 = 10 (blue), d/R0 = 15 (black) 
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The computation of bubble response for all points of bifurcation in Figures. 4 and 5 the maximum radius, Rmax was 

also have been obtained for increasing proximity to the boundary, distance d/R0 = 2.5 (red), d/R0 = 5 (green), d/R0 = 10 

(blue), d/R0 = 15 (black). It appears a clear trend on how Rmax, changes with boundary proximity. From Figure 6(a) and 

(b) that as the microbubble is moved closer to the solid boundary tends to decrease Rmax. In Fig. 6, there is a consistent 

observation that the sudden “jumps” in the value of Rmax is followed by a more gradual increase of Rmax. With a further 

study, each time there is a saddle node bifurcation in the corresponding Figures 4 and 5 the “jumps” will occur. This show 

there is connection with the fundamental frequency and their harmonics as this type of bifurcation occurred [11]. The 

sudden expansion in maximum radial of oscillation may lead to forceful rapture due to the increase in inertial forces. This 

occurrence has been proven to be useful in local drugs release and gene release into microvessel walls and cell membrane 

[29, 30]. 

 

CONCLUSIONS 

Microbubbles have been shown to have the potential to redraw the boundaries of therapeutic and theranostic 

applications. However, the influence of shell encapsulation of a microbubble near a wall vessel remains unclear. Shell 

encapsulation is important in therapeutic applications as it stabilizes the bubble. However, many bubble studies 

investigate gas bubbles without a shell. Furthermore, most studies do not consider the boundary effects which is important 

in medical applications. To solve this, we modified a Keller-Miksis-Parlitz model that included the encapsulating shell 

and boundary effects. It was found that the combined influence of boundary proximity and shell encapsulation may cause 

a shift in the fundamental frequency of the bubbles by observing the effect distances between boundary and encapsulated 

microbubble and the changes of maximum radial expansion by varying the driving frequency or acoustic pressure. 

Moreover, it shows that the encapsulated bubble dynamic oscillations were suppressed with increasing separation distance 

between the bubble and boundary due to the presence of more periodic oscillations instead of broadband response. Also, 

the effect of ultrasonic acoustic driving pressure gives a significant finding where the higher the amplitude pressure apply 

to microbubble the higher chance for the bubble to collapse as show in maximum radial expansion.  In addition, the 

expansion of maximum radial decreased when the driving frequency higher and more likely stable as shown in bifurcation 

diagram.  
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