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INTRODUCTION 

Cobalt alloys are largely used in the aerospace industry for many applications to require an excellent mechanical 

strength, corrosion and oxidation resistance at high temperatures  [1, 2]. This super-alloys is specially used for nuclear 

reactors, electronics and chemical equipment and medical devices principally in power plants [3, 4].  

Nevertheless, the cobalt alloy is known by machining difficulties [5]. The principal problems encountered in the dry 

machining of cobalt alloys are low material removal rates and the reduction of tool life. The low thermal conductivity 

and a strong chemical bond for various materials cause frequently the formation of an adhesion layer on the cutting face 

yielding to a rapid tool wear. Moreover, the low elastic modulus of cobalt alloy (50% lower than steel) is the most 

significant source of vibrations generated during machining. In addition, this material is sensitive to mechanical and 

thermal shocks due to their reduced toughness [6]. The grain size and presence of carbide formed in the Cobalt matrix of 

the cobalt based super alloy present a significant change in mechanical properties [7]. 

The chrome element is a component of cobalt alloy. It improves its resistance to hot corrosion under room temperature. 

Moreover, in machining of cobalt alloy, the thermal and mechanical interaction of tool-workpiece generate the mechanical 

and microstructural change at the sub-surface and their impact on fatigue life [8, 9]. The cutting difficulties in the 

machining of cobalt alloy is related to their intrinsic characteristics and high hardness. These characteristics lead to a 

Short-lived tool and a deterioration of the machined surface [10]. As a result, significant changes in surface layers, caused 

by metallurgical transformations, may occur during the tool-material interaction [11–13]. Such transformations depend 

on the cutting process parameters, thermo-mechanical properties of workpiece material, the shape and grade of the tool 

and the cooling mode [8, 13, 14].  

 In the literature, different machining methods and modelling procedures have been proposed by different scientists 

to optimize conditions. Their objectives have been to ultimately predict the Stellite 6 machinability and to achieve greater 

efficiency [15–17]. Notwithstanding, to our knowledge, it is important to conduct studies on the effect of machining 

parameters on the modification of surface characteristics and integrity of cobalt-based alloys. Numerous researchers, 

Aykut et al. and Saidi et al., [18, 19] were interested in finding the optimal cutting conditions when machining cobalt-

based refractory materials. Bagci et al. and Aykut et al., [20, 21]. looked in up or down face milling of cobalt alloy (Stellite 

6), the influence of machining conditions on tool wear during, tangential force (Ft) and chip morphology.  

In milling of Stellite 6, using Taguchi method, Bagci et al., [16] have investigated the influence of cutting parameters 

on surface roughness [22]. It is revealed that surface roughness values are strongly influenced by feed rate speed, cutting 

ABSTRACT – The present research work proposes an experimental investigation helping to 
comprehend fundamental impacts of operating conditions during the cutting of cobalt alloys 
(Stellite 6). Thus, an experimental design was adopted to allow to build predicted mathematical 
models for the outputs, which are the average peak-to-valley profile roughness (Rz) and the 
tangential cutting force (Ft). Artificial neural network (ANN), support vector machine (SVM) and 
response surface methodology (RSM) were exploited to model the pre-cited outputs according to 
operation parameters. As a result, it has been highlighted that both feed rate and cutting depth, 
considerably, affect tangential cutting force evolution. Moreover, results show that both the insert 
feed rate and nose radius, are higher. This means the average peak-to-valley profile roughness is 
higher. In order to put out the effect of operating parameters on cutting outputs, Analysis of variance 
(ANOVA) method has been employed. This has allowed the detection of significant cutting 
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speed and cutting depth [16, 17, 23]. The contribution of Bordin et al., [13] show the effect of cutting parameters with 

PVD TiALN under conventional lubrification conditions in the cobalt alloy (CoCrMo) turning. It has been discovered 

that the feed rate represent the most parameter affecting the integrity and surface quality and tool wear mechanisms. 

Turning and milling processing of the cobalt alloy reduce tangential cutting forces; As a result, they maintain its hardness 

and mechanical strength. Nevertheless, this is uncertain depending on the variation in cutting speed [19]. Yingfei et al., 

[12] observed a compressive residual stress along feed rate direction when machining longer than 5 min are converted to 

a tensile residual stress along cutting one with all cutting conditions. However, the microhardness on surface and 

subsurface layers, affected by cutting parameters reveals higher values. These increases were caused by the contact 

between the interaction tool-workpiece [12, 13]. 

To attain production efficiency, various modelling methods and techniques have been applied to optimize cutting 

conditions [14, 16, 19]. Artificial neural networks (ANN), genetic algorithm (GA), genetically optimized neural network 

system (GONNS) and other modelling techniques are adopted to optimize machining operations with the response surface 

methodology (RSM) [24, 25]. In order to compare the dry to cooling mode in turning Stellite 6, Sarikaya et al., [14, 17] 

examined the influence of these parameters on tool wear based on Analysis of variance (ANOVA) and Taguchi methods 

to determine optimal surface roughness. Sarikaya et al., [26] have inspected the cooling mode optimization with MQL 

method (Minimum Quantity Lubrication) using Taguchi method and Grey relational analysis in turning of cobalt based 

alloy (HAYNES 25).  

Two methods support vector machine (SVM) and ANN are used by many authors for correlations between response 

and process parameters. Among the kernel methods, it can be found the inspired statistical theory of learning by Vladimir 

and Vapnik, [27–30] SVM approach is the most well-known form. It is based on the existence of a linear classifier in an 

appropriate space. In studies Boser et al., Cortes and Vapnik, [31, 32]. and his co-authors [29] introduced carrier vector 

machines (SVMs) as non-linear extensions of a linear separator: the maximum margin hyperplane [33].  Much works has 

been completed in the field of speech recognition by applying SVM and several kernels are being developed for this 

purpose [33–35]. Vadlamani et al. and Mohammadnejad et al., [36, 37] have used the SVM method to predict the induced 

ground vibration. These experimental data was used by authors to generate the SVM model. Thesebpredicted results 

corroborate ones with correlation coefficient of 0.944. 

The research conducted by Rao Venkata et al., [38, 39] have shown that ANN technique can help in the selection of 

appropriate cutting parameters minimizing  tool vibration, insert wear and reducing surface roughness. De Aguiar et al., 

[40] have studied the hardened steel grinding process and observed a slight increases of surface roughness with cutting 

parameters. Indeed, Ben Fathallah et al., [24] investigated multi-objective optimization in turning of AISI 12L14 free-

cutting steel for an appropriate combination of settings to obtain optimal surface quality and productivity, such as (surface 

roughness, material removal rate, and etc.).Belhadi et al., [41] studied the optimization of the orthogonal high density 

polyethylene (HDPE-100) turning operation using (GRA) technique. It is found the feed rate has significantly effect on 

tangential force than cutting depth and cutting speed.  

Based on previous studies, it appears important to perform scientific research to characterize the machinability of 

cobalt alloy commercially named Stellite 6. Our study focuses on the establishment of cutting models modelling allowing 

to predict the evolution of process responses such as the average peak-to-valley profile roughness (Rz) and the tangential 

force (Ft) according to finishing cutting conditions. For that, response surface methodology (RSM), artificial neural 

network (ANN), support vector machine (SVM) and ANOVA analysis were exploited.  

 

METHODOLOGY 

Experimental Setup and Turning Conditions 

Our machined parts are based on the cobalt alloy (Stellite 6), with a chemical composition including 28.25% Cr, 3.74 

% W 1.17% Mo, 1.11% C, 1.89% Fe, 2.32 % Ni, 0.57% Mn, 1.20 % Si, 0.004 % P, 0.001% S, and balance of Co. This 

material has an average hardness of 41 HRC. Figure 1 shows that the material microstructure is mainly composed with 

an intimate lamellar mixture of the fcc alpha phase and (Cr,Co,W)TC eutectic carbides, which are distributed in coarse 

plates of M7C3 carbide and finer particles of M23C6 carbide. The straight turning operations were performed on three parts. 

Each one is subdivided on zones separated by grooves, in order to respect the decided combinations for the adopted 

experimental design (Figure 2). During this study, the cutting parameters (Insert nose radius (r), cutting speed (Vc),  feed 

rate (f) and cutting depth (ap)) are presented in Table 1 and the experimental machining are presented in Table 2. The 

cutting force was measured by a piezo-electric transducer dynamometer (type Kistler 9257B) and the average peak-to-

valley profile roughness (Rz) values were measured by Mitutoyo Surftest type SJ-201P (Figure 2).  
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Table 1. Levels and cutting conditions values 

Level 

Factors 

r 

(mm) 

Vc 

(m/min) 

f 

(mm/rev) 

ap 

(mm) 

1 0.2 30 0.08 0.15 

2 0.4 55 0.12 0.30 

3 0.8 80 0.16 0.45 
 

 

 

 

 

 

 

 

 

 

Figure 1. Microstructure of Stellite 6 Cobalt Alloy, 

(magnification: x 400) 

 

Table 2. Definition of the experimental machining system 

Item Description 

Machine tool 
SN 40C, with 6.6 kW spindle power of the Czech company ‘‘TOS 

TRENCIN” 

Cutting insert 
coated with PVD (Ti, Al) N2, CNGG, SGF geometry, 

(1105 grade) Sandvik ISO 

Tool Holder PCLNR 2020K12 

Working tool geometry 

cutting edge angle (χr = +95°), inclination angle (λ = -6°), rake angle 

(γ = -6°) and clearance angle (α = 0°) 

nose radius: 0.2, 0.4 and 0.8 mm 

Cooling mode  Synthetic conventional oil mode (20 %). 

 

The design of experiments (DOE) was adopted and experimental tests based on 4 factors at 3 levels were carried-out in 

Table 1. A statistical data processing using Analysis of variance (ANOVA) and Response surface methodology (RSM) 

method to determine machining parameters relationships and process characteristics. The ANN and SVM were also 

exploited for modelling outputs process of cutting parameters. 

In RSM, relationship between input parameters (r, Vc, f and ap) and responses (Rz and Ft) can be expressed based on 

the following quadratic polynomial equation (Eq. (1)): 
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Here, Φ indicates estimated responses (Rz and Ft), b0 is a constant term,  bi is a linear effect,  bii corresponds to pure 

quadratic effect, bij is the second level interaction effects,  Xi and Xj indicate the associated coded variables (r, Vc f and 

ap) and  is the error in predicting experimental on estimated responses.  
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Figure 2. Experimental design diagram used workpiece, tool geometry, acquisition system and modelling approaches: 

response surface methodology (RSM), artificial neural networks (ANN) and support vector machine (SVM) 

 

RESULTS AND DISCUSSION 

Prediction of Responses using RSM 

Variations on responses are calculated based on factors considered influential, previously. Effects of the combined 

operating conditions (r, Vc, f and ap) on responses of the cutting force Ft  and the average peak-to-valley profile roughness 

(Rz), in machining of the Stellite 6 cobalt alloy with the turning process, were evaluated. These experimental results are 

presented in Table 3. For prediction with an empirical modeling approach, we used the response surface methodology 

(RSM). This technique allows minimizing the number of cutting tests during design optimization. Moreover, the aim of 

ANOVA analysis is used to specify the significantly affection of the cutting parameters (r, Vc, f and ap) on the responses, 

Rz and Ft, respectively. The statistical treatment of the data based on ANOVA method using some equations to evaluate 

the contribution of input parameters and their interactions. Furthermore, the second phase is based on an quadratic 

regression using the optimal regression equations characterising Rz and Ft models. These models were analyzed by 

exploiting design expert software to study the impact of cutting conditions (r, Vc, f and ap) on global variance of results.  

The results derived from the ANOVA method indicate that the feed rate is the main factor affecting Rz variations 

(Table 4) with a contribution of about 48.55 % (Figure 3(a)). The other terms (r), (r × f) and (r × r) have a lower 

contribution with 39.72 %, 1.19 % and 5.05 %, respectively (Figure 3(a)). The results derived from the ANOVA method 

indicate that the feed rate is the main factor affecting Rz variations, ratio of mean square of regression model (F-value) 

and probability value (p-value) (Table 4) with a contribution of about 48.55% (Figure 3(a)). Results in Table 5 show that 

ap is the most significant factor affecting tangential force (Ft) variations with 76.03% contribution (Figure 3(b)). The next 

important contributions are f (10.79%), Vc (2.91%) and f × ap (2.31%). 
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Table 3. Experimental results of average peak-to-valley profile roughness (Rz) and tangential force (Ft) when varying 

cutting conditions 

Trail 

No. 

Inputs Outputs parameters 

r Vc f ap Rz Ft 

(mm) (m/min) (mm/rev) (mm) (µm) (N) 

1 0.2 30 0.08 0.15 5.11 43.0 

2 0.2 30 0.08 0.30 5.81 94.0 

3 0.2 30 0.08 0.45 6.25 147.4 

4 0.2 55 0.12 0.15 7.46 70.0 

5 0.2 55 0.12 0.30 7.94 131.2 

6 0.2 55 0.12 0.45 6.90 218.2 

7 0.2 80 0.16 0.15 10.65 82.0 

8 0.2 80 0.16 0.30 9.07 171.6 

9 0.2 80 0.16 0.45 10.06 262.4 

10 0.4 30 0.12 0.15 5.09 55.5 

11 0.4 30 0.12 0.30 6.60 109.6 

12 0.4 30 0.12 0.45 6.57 183.9 

13 0.4 55 0.16 0.15 6.44 90.5 

14 0.4 55 0.16 0.30 7.35 152.7 

15 0.4 55 0.16 0.45 7.92 259.2 

16 0.4 80 0.08 0.15 3.07 54.4 

17 0.4 80 0.08 0.30 3.18 96.7 

18 0.4 80 0.08 0.45 3.49 175.6 

19 0.8 30 0.16 0.15 5.96 69.3 

20 0.8 30 0.16 0.30 6.32 118.3 

21 0.8 30 0.16 0.45 6.15 208.5 

22 0.8 55 0.08 0.15 2.98 58.4 

23 0.8 55 0.08 0.30 2.30 98.0 

24 0.8 55 0.08 0.45 3.13 150.3 

25 0.8 80 0.12 0.15 4.43 70.4 

26 0.8 80 0.12 0.30 3.52 137.5 

27 0.8 80 0.12 0.45 4.29 207.0 

 

Table 4. Analysis of variance (ANOVA) results for the average peak-to-valley profile roughness (Rz) 

Source 
Sum 

of Squares 
df 

Mean 

Square 
F-value p-value Significance 

Model 120.98 6 20.16 64.12 0.00 significant 

r 50.56 1 50.56 160.79 0.00 significant 

Vc 1.16 1 1.16 3.68 0.07 not significant 

f 61.79 1 61.79 196.49 0.00 significant 

ap 0.716 1 0.716 2.28 0.15 not significant 

r × f 1.52 1 1.52 4.82 0.04 significant 

r × r 6.43 1 6.43 20.44 0.00 significant 

Residual 6.29 20 0.314    

Total Corrected 127.27 26     
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Table 5. ANOVA results for tangential force (Ft) 

Source 
Sum of 

Squares 
df 

Mean 

Square 
F-value p-value Significance 

Model 1.04E+05 10 10426.74 363.32 0.00 significant 

r 582.8 1 582.8 20.31 0.00 significant 

Vc 3049.63 1 3049.63 106.26 0.00 significant 

f 11299.45 1 11299.45 393.73 0.00 significant 

ap 79605.18 1 79605.18 2773.83 0.00 significant 

r × Vc 187.44 1 187.44 6.53 0.02 significant 

r × ap 385.69 1 385.69 13.44 0.00 significant 

Vc × ap 367.52 1 367.52 12.81 0.00 significant 

f  × ap 2424.79 1 2424.79 84.49 0.00 significant 

Vc × Vc 537.45 1 537.45 18.73 0.00 significant 

ap × ap 649,45 1 649.45 22.63 0.00 significant 

Residual 459.18 16 28.7    

Total 

Corrected 
1.05E+05 26     

 

 

 
(a) 

 

 
(b) 

Figure 3. Contribution of cutting parameters on: (a) the average peak-to-valley profile roughness and (b), tangential 

force  

 

Regression Equations  

The relationship between cutting parameters and predicted outputs (Rz, Ft) is displayed by quadratic equations (Eqs. 

(2) and (3)) with coefficients of determination R2 equal to 95.06 % and 99.56 %, respectively. ANOVA results of Rz 

indicate that R2 (squared value) is close to 1, whereas R2 adjusted is equal to 0.94 and R2 predicted is equal to 0.91. In the 
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case of ANOVA applied to that R2 is close to 1 whereas both R2 adjusted and R2 predicted are almost equal to 0.99. 

Consequently, elaborated quadratic models according to significant input parameters and their interactions are presented 

by (Eqs. (2) and (3)).  

 

𝑅𝑧 = 3.48 − 14.63 × 𝑟 − 0.012 × 𝑉𝑐 + 64.09 × 𝑓 + 1.33 × 𝑎𝑝 − 34.41 × 𝑟 × 𝑓 + 13.17 × 𝑟2 (2) 

  

Ft =  −10.11 − 15.18 × 𝑟 + 1.44 × 𝑉𝑐 + 30.38 × 𝑓 − 133.76 × 𝑎𝑝 + 0.61 × r × 𝑉𝑐 + 

            −123.71 ×  𝑟 ×  𝑎𝑝  +  1.47 ×  𝑉𝑐  ×  𝑎𝑝  +  2 369.17 ×  𝑓 ×  𝑎𝑝  − 0.015 ×  𝑉𝑐
2

+  462.39 ×  𝑎𝑝
2  

 

(3) 

 

Figures 4 (a) and (b) displays a comparison between measured and predicted responses (Rz and Ft). This comparison 

proves a good corroboration between results. Figures 5 (a) and (b) show the normal probability diagrams of Rz and Ft, 

respectively. These models are adequate as represented by the points falling in a straight line along the normal probability 

curve. It indicates that errors are normally distributed. Theses graphics indicate also the capability of quadratic models to 

predicted values in comparison with the experimental of different technological studied parameters. 

 

  
(a) (b) 

Figure 4. Comparison between experimental and predicted values of technological parameters: (a) average peak-to-

valley profile roughness and (b) tangential force 

 

(a) (b) 

  

Figure 5. Normal probability plots of: (a) average peak-to-valley profile roughness and (b) tangential force 

 

Effect of Cutting Conditions on Rz and Ft Evolutions 

The effect of turning conditions (r, Vc, f, and ap) on machinability and surface quality of Stellite 6, such us the average 

peak-to-valley profile roughness, Rz and the tangential force, Ft are studied in this reseach. The results of cutting 

parametters (Vc = 80 m/min and ap = 0.45 mm) on resonse Rz and Ft are presented in 2D contours illustrations (Figure 6, 

7 (a) and 7(b)). It has been shown an increase of the microgeometrical characterics for higher nose radius and smaller 

feed rate (Figure 6). This investigation corroborate to the contribution of Bordin et al. [13]. Furthermore, the effect of 

cutting parameters on the surface quality investigations is the consequence of the heat-affected layer (about 20µm). This 

result corroborate to published paper in [8], [9], [42]. Also, the effect of cutting parameters (r, Vc, f and ap) on surface 
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integrity such as the tangential force, Ft were shown in Figure 7(a). The evolution of Ft depends considerably on ap and 

Vc variations. This figure depicts higher levels of Ft as the cutting depth and feed rate increases. Lower Ft values are 

depicted when both feed rate and cutting depth are decreasing. This is the results of lower chip section. For cutting 

parameters Vc = 80 m/min and f = 0.12 mm/rev a slight effect of the nose radius on tangential force evolution can be 

underlined (Figure 7(b)). Important values of Ft are shown for higher cutting depth of nose radius, independently. Higher 

Ft values are due to material hardening caused by higher cutting depth [13, 18]. 

Figure  7(c) shows a small effect of the cutting speed on Ft evolution for r = 0.8 mm and f = 0.16 mm/rev. Important 

values of Ft are depicted also for higher cutting depth independently of cutting speed. Figure 7(d) illustrates the interaction 

of cutting speed and feed rate regarding Ft evolution for r = 0.8 mm and ap = 0.45 mm. Here, the higher is both Vc and f, 

the higher is Ft. It is known that tangential force values increase for undeformed chip thickness smaller than the cutting 

edge radius [7, 11]. This case induces higher specific cutting energy [21, 43].  

 

 
Figure 6. Effect of feed rate and nose radius on average peak-to-valley profile roughness evolution, with Vc = 80 

m/min; ap = 0.45 mm 

 

  
(a) Vc = 80 m/min and r = 0.2 mm (b) Vc = 80 m/min and f = 0.12 mm/rev 

  

  
(c) r = 0.8 mm and f = 0.16 mm/rev (d) r = 0.8 mm and   ap = 0.45 mm     

Figure 7. Effect of cutting conditions on tangential force evolution, 2D contours graphs 



 B. Ben Fathallah et al.  │ Journal of Mechanical Engineering and Sciences │ Vol. 15, Issue 4 (2021) 

8548   journal.ump.edu.my/jmes ◄ 

Confirmation Tests 

In order to confirm the validity of elaborated models of Rz and Ft when varying cutting parameters (for tool nose 

radius, r = 0.8 mm), additional tests were performed (Table 6). Results show that errors between experimental trials and 

developed mathematical models do not exceed 8.36% for Rz and 8.66% for Ft. This finding demonstrates the effectiveness 

of developed models for the considered cutting conditions. 

 
Table 6. Errors between experimental and estimated results in terms of average peak-to-valley profile roughness and 

tangential force (for r = 0.8 mm) 

Test 

Cutting parameters Experimental Model Error (%) 

Vc f ap Rz Ft Rz Ft 
Rz Ft 

(mm/min) (mm/rev) (mm) (µm) (N) (µm) (N) 

1 55 0.16 0.15 6.87 76.38 7.31 80.28 6.40 5.11 

2 55 0.20 0.15 8.75 96.7 9.30 97.87 6.29 1.21 

3 55 0.08 0.20 3.71 58.3 3.40 63.35 8.36 8.66 

4 55 0.08 0.30 3.82 88.52 3.53 95.83 7.59 8.26 

5 55 0.08 0.15 4.12 42.80 3.90 45.1 5.34 5.37 

6 110 0.08 0.15 3.32 49.93 3.20 53.9 3.61 7.95 

 
Prediction of Responses using Artificial Neural Network (ANN) 

 The ANNs is based on Neural Network toolbox, which is available in MATLAB Software. It is used to predict 

the Rz and Ft as a function of four input parameters: nose radius, cutting speed, feed rate and cutting depth. 

Back-propagation algorithm and Levenberg-Marquadt (TRAINLM) were used as a learning algorithm and the TRANSIG 

(hyperbolic tangent sigmoid transfer function) as an activation function [44, 45]. The optimal ANN was composed of 

seven neurons in single hidden layer. The (4-7-1) architecture of ANN is illustrated in Figure 8. Two created networks 

are considered having the same architecture (4-7-1). They are used to predict an average peak-to-valley profile roughness 

and tangential force. The correlation between cutting parameters (ap, f, r and Vc) and performance measurements, using  

the optimal ANN prediction of Rz and Ft by the Eqs. (2) and (3), respectively. Indeed, the output correlation coefficients 

(R2) of the developed models, presented with the validation, test and overall graph in Figures 9 and 10 indicate the robust 

output correlation R2, which are 98.02% and 99.59% for Rz and Ft, respectively. Therefore, it is important to note that the 

test sets are measure of generalisation for each network, although not for all of them, as the data that constitute a test set 

for a network are probably used for training or validation only. For this reason, the original data set was split into two 

parts, in order to ensure the preservation of a completely independent test set. The performance capability of the individual 

network was examined on the result of the correlation ratio between the network predictions and the experimental values 

using the original training, validation and test datasets. The performance of the prediction models for cutting force and 

surface roughness using the full training, validation and test datasets are presented in Figures 9 and 10.  

 

 

Inputs 

 

Outputs 

r 

Vc 

f 

ap 

Rz 

Ft 

 

Figure 8. Architecture of neural network (Matlab ToolBox)  

 

http://www.scialert.net/asci/result.php?searchin=Keywords&cat=&ascicat=ALL&Submit=Search&keyword=surface+roughness
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Figure 9. Training, Validation, Test and Overall graph for the correlation coefficient for average peak-to-valley profile 

roughness 

 
Figure 10. Training, Validation, Test and Overall graph for the correlation coefficient for tangential force 

 

Prediction of Responses using SVM Approach 

SVM’s, also called “wide margin separators” are binary classification methods by supervised learning techniques 

designed to solve classification problems inspired by the statistical theory of learning. SVM are the best-known form of 

kernel methods [26, 27]. They are based on the use of kernel functions allowing an optimal separation of data. 
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The intuitive justification for this learning is valid when learning sample is linearly separable. 

The linear function is formulated with Eq. (4): 

 

𝑦(𝑥) = 𝜔𝑇𝜑(𝑥) + 𝑏                                          (4) 

 

Where 𝑦(𝑥) is called the characteristic function and 𝜑(𝑥) is the correctly classifying all observations in the learning 

set. 𝜔 is a weight vector and b is a bias which is evaluated by the minimization of  Eq. (5): 

 

R(c) = C
1

n
∑ L(di

n
i=1 . yi) +

1

2
‖ω2‖                              (5) 

 

L(di. yi) is called the ε-intensive loss function and indicates that errors below ε are not penalized. The term 

C
1

n
∑ L(di

n
i=1 . yi) is the empirical error, 

1

2
‖ω2‖ is a measure of the smoothness of the function. C is the regularization 

constant and ε is the SVM tube size.  

The success of this method is justified by the solid foundations that support it. They can be used to address various 

classification issues. SVM is a particularly well adapted method for processing very large data. 

In order to estimate the experimental results (Rz and Ft), the SVM model was formed with 27 experimental data, as 

shown in Table 7. In this model, four parameters were selected as inputs (r, Vc, f and ap), while the outputs was also Rz 

and Ft. 

The SVM model was developed using RapidMiner Software. For each type of SVM model developed, few different 

kernel functions have been applied to analyze the best kernel leads to the best result. For best SVM model performance, 

a non-linear kernel (kernel type, radial) was selected due to the non-linear machining process. The optimized parameters 

SVM such as regularization constant (C = 5000) and the tube size (ε = 0.02), have been used to obtain the best SVM 

output. SVM models are constructed separately by using the experimental data. 

 
Table 7. Experimental and prediction results for RSM, ANN and SVM during the turning operation of Stellite 6 material 

Run 
r Vc f ap Rz (µm) Ft (N) 

(mm) (m/min) (mm/rev) (mm) EXP RSM ANN SVM EXP RSM ANN SVM 

1 0.2 30 0.08 0.15 5.11 5.21 5.09 5.10 43.00 45.36 46.78 43.07 

2 0.2 30 0.08 0.30 5.81 5.66 5.83 5.81 94.00 87.86 94.20 93.94 

3 0.2 30 0.08 0.45 6.25 6.30 6.54 6.25 147.40 151.18 161.52 147.41 

4 0.2 55 0.12 0.15 7.46 7.23 7.44 7.45 70.00 70.63 69.82 70.01 

5 0.2 55 0.12 0.30 7.94 7.37 7.04 7.94 131.20 132.88 131.63 131.19 

6 0.2 55 0.12 0.45 6.90 7.70 6.85 6.90 218.20 215.95 218.43 218.24 

7 0.2 80 0.16 0.15 10.65 10.00 10.20 10.64 82.00 83.07 96.97 82.04 

8 0.2 80 0.16 0.30 9.07 9.86 9.13 9.08 171.60 165.08 171.94 171.61 

9 0.2 80 0.16 0.45 10.06 9.88 10.05 10.06 262.40 267.89 258.84 262.41 

10 0.4 30 0.12 0.15 5.09 5.65 5.04 5.11 55.50 56.38 54.21 55.52 

11 0.4 30 0.12 0.30 6.60 6.02 6.60 6.59 109.60 109.39 109.46 109.60 

12 0.4 30 0.12 0.45 6.57 6.59 6.61 6.57 183.90 183.21 184.47 183.87 

13 0.4 55 0.16 0.15 6.44 7.11 6.57 6.45 90.50 87.79 90.48 90.55 

14 0.4 55 0.16 0.30 7.35 7.17 7.29 7.34 152.70 160.55 153.07 152.75 

15 0.4 55 0.16 0.45 7.92 7.42 7.92 7.93 259.20 254.12 251.59 259.16 

16 0.4 80 0.08 0.15 3.07 3.27 3.00 3.08 54.40 52.05 53.98 54.37 

17 0.4 80 0.08 0.30 3.18 3.18 2.90 3.17 96.70 101.92 115.64 96.56 

18 0.4 80 0.08 0.45 3.49 3.28 3.43 3.49 175.60 172.59 169.30 175.63 

19 0.8 30 0.16 0.15 5.96 5.81 5.92 5.96 69.30 65.28 78.05 69.34 

20 0.8 30 0.16 0.30 6.32 6.07 6.33 6.33 118.30 125.08 118.45 118.26 

21 0.8 30 0.16 0.45 6.15 6.53 3.79 6.15 208.50 205.69 208.49 208.45 

22 0.8 55 0.08 0.15 2.98 2.63 2.75 2.99 58.40 58.40 58.18 58.43 
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Table 7. Experimental and prediction results for RSM, ANN and SVM during the turning operation of Stellite 6 material 

(cont.) 

Run 
r Vc f ap Rz (µm) Ft (N) 

(mm) (m/min) (mm/rev) (mm) EXP RSM ANN SVM EXP RSM ANN SVM 

23 0.8 55 0.08 0.30 2.30 2.74 2.44 2.31 98.00 95.30 98.10 97.97 

24 0.8 55 0.08 0.45 3.13 3.04 3.13 3.14 150.30 153.02 150.22 150.33 

25 0.8 80 0.12 0.15 4.43 4.22 4.61 4.43 70.40 74.70 70.23 70.37 

26 0.8 80 0.12 0.3 3.52 4.01 3.53 3.52 137.50 131.35 137.77 137.55 

27 0.8 80 0.12 0.45 4.29 4.00 3.32 4.27 207.00 208.82 206.94 206.96 

 

COMPARATIVE OF PROCESS RESPONSES WITH RSM ANN AND SVM 

RSM, ANN, SVM experimental, and prediction results presented in Table 7. A comparison can be made using 

three indicators namely, coefficient of determination (𝑅2) (Eq. (6)), the model predictive error (MPE) (Eq. (7)) and 

root mean square error (RMSE) (Eq. (8)) 

 

𝑅2 = 1 −
∑ (𝑦𝑖.  𝑝𝑟𝑒𝑑 − 𝑦𝑖.𝑒𝑥𝑝)

  𝑛
𝑖=1

2

∑ (𝑦𝑖.  𝑝𝑟𝑒𝑑 − 𝑦𝑎𝑣𝑒𝑟𝑎𝑔𝑒)
2𝑛

𝑖=1

 
(6) 

 

  

𝑀𝑃𝐸(%) =
100

𝑛
∑ |

(𝑦𝑖.  𝑒𝑥𝑝 − 𝑦𝑖.𝑝𝑟𝑒𝑑)

𝑦𝑖.𝑝𝑟𝑒𝑑

|

𝑛

𝑖=1

 
(7) 

 

  

𝑅𝑀𝑆𝐸 = √∑ (𝑦𝑖,𝑒𝑥𝑝 − 𝑦𝑖,𝑝𝑟𝑒𝑑)
  𝑛

𝑖=1

2

𝑛
 

(8) 

 

 
where n is the experiments number, 𝑦𝑖.𝑝𝑟𝑒𝑑 and  𝑦𝑖.  𝑒𝑥𝑝 are the predicted and experimental values of the ith experiment, 

respectively and 𝑦𝑎𝑣𝑒𝑟𝑎𝑔𝑒  is the average value.  

The correlation coefficient (R2) values for the average peak-to-valley profile roughness (Rz) using RSM. ANN 

and SVM approaches are 0.9506, 0.9802 and 0.9997, respectively (Table 8). Moreover, SVM model presents a good 

model predictive error MPE (%) value (0.15) compared with the RSM (6.03) and ANN models (5.66). This 

comparison it is clearly presented in Figure 10. Also, it is very clear that SVM approach has higher performance when 

compared with ANN and RSM. Indeed, this performance can be depicted using root mean square error RMSE values 

for RSM (value equals to 0.40), ANN (value equals to 0.54) and SVM (value equals to 0.008). 

The SVM model presents a good coefficient of determination (𝑅2) values for tangential cutting force (Ft) using 

RSM, ANN and SVM models are 0.9956, 0.9959 and 0.9999, respectively (Table 8). In addition, the adopted SVM 

model presents a good model predictive error (MPE) value (0.04) compared with the ANN approach (2.74) and RSM 

method (2.87) (Table 8).  

The predictor RMSE (%) values find that the SVM is the good model compared with RSM and ANN models. 

These values are 0.76, 1.16 and 0.009, respectively. Figure 10 shows the comparison with observed values and the 

estimated values using RSM, ANN and SVM modelling for Ft. Similarly, the values obtained with three predictors 

(Table 8) shows that the SVM model is the adequate one when compared with RSM and ANN. 

 
Table 8. Values for predictors R2, RMSE (%) and MPE (%) for RSM ANN and SVM approaches 

 

 

 

 

 

 

 

 

 

 

Response 

RSM ANN SVM 

R2 
RMSE 

(%) 

MPE 

(%) 
R2 

RMSE 

(%) 

MPE 

(%) 
R2 

RMSE 

(%) 

MPE 

(%) 

Rz (µm) 0.9506 0.40 6.03 0.9802 0.54 5.66 0.9997 0.008 0.15 

Ft (N) 0.9956 0.76 2.87 0.9959 1.16 2.74 0.9999 0.009 0.04 
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Figure 11. Graphic representation for three predictors R2, RMSE (%) and MPE (%) 

 

CONCLUSIONS 

Modelling techniques of outputs according to the variations of operating parameters (nose radius, cutting depth, 

cutting speed and feed rate) in straight turning of Stellite 6 were presented. These techniques concern RSM, SVM and 

ANN which were exploited successfully to model evolutions of average peak-to-valley profile roughness and 

tangential force. 

The results showed that both feed rate and nose radius are the most significant factor affecting average value of 

peak-to-valley roughness closely followed by cutting depth and cutting speed. For tangential force, it can be underlined 

that its evolution is highly affected by both cutting depth and feed rate. 

An increase of the microgeometrical characterics is clearly the result of higher nose radius and the smaller feed 

rate. The evolution of tangential force depend considerably on cutting depth and cutting speed variations. In addition, it 

can be, on the one hand, it can be pointed out that higher levels of tangential force depend on both increasing depth of 

cut and increasing feed rate. On the other hand, lower tangential force values are shown as the feed rate and depth of 

cut decrease. This is due to lower chip section. For cutting parameters Vc = 80 m/min and f = 0.12 mm/rev, it can be 

noted a slight effect of the nose radius on tangential force evolution. Important values of tangential force are depicted 

for the higher cutting depth independently of the nose radius which is the result, among others, of material hardening 

caused by higher cutting depth. 

 The two new models showing the evolution of average peak-to-valley profile roughness and tangential force based 

on RSM provide effective guidelines for selecting appropriate cutting parameters to achieve desired surface roughness 

and associate tangential force for straight turning of Stellite 6. The significant impact of the cutting parameters on the 

tangential force (Ft) can illustrate that cutting depth is the most significant factor with (76.03%) contribution. The 

computational model that was developed in the study can be improved in the future for the investigation of more other 

parameters charachterising turning operations.  
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