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INTRODUCTION   

Splitter blades were usually utilized in rotors of centrifugal compressors to improve the performance. The centrifugal 

impellers with splitter blades were investigated using potential flow models to decrease the loading on the main blades 

and improve the flow structure at the rotor exit by Bhargava and Gopalakrishnan [1] and Fabri [2]. The results showed 

that the loading on the main blades and jet/wake effect at the rotor exit were decreased, respectively. The performance of 

a centrifugal impeller was evaluated experimentally with and without splitter blades by Ogawa and Gopalakrishnan [3]. 

The results showed that the size and location of the splitter blades were influenced on the overall performance of the 

centrifugal impeller. Oana et al. [4] suggested that splitter incidence angle affects positively the overall efficiency of an 

impeller. 

The splitter blades were also used in pumps and fans. Kergourlay et al. [5] suggested experimental and numerical 

studies in the impeller of a hydraulic centrifugal pump (ENSIVAL-MORET MP 250.200.400 pump). The numerical 

results were matched the experimental data and the pressure fluctuations were decreased at the canal duct. The location 

of splitter blades was investigated for a centrifugal fan by Madhwesh et al. [6] using CFD code Fluent with a standard k-

. The results showed that the static pressure recovery was increased and the total pressure loss was decreased. 

For axial compressors, the splitter blades were introduced in rotor stage in a single-stage transonic axial compressor 

by Wennerstrom and Frost [7]. The stage total pressure ratio was increased from 3.0 to 3.056. Tzuoo et al. [8] carried out 

an investigation on the Wennerstrom’s rotor [7] using splitter blades based on inviscid and viscid 3-D analysis. The 

splitter blades in a single-stage axial compressor was presented by Li et al. [9], who simulated and analyzed with 3-D 

unsteady CFD code. The results showed that splitter blades affected the unsteady static pressure distribution and 

fluctuation on principle blade, splitter and stator. A new design procedure of a transonic axial compressor rotor with 

splitter blades was proposed by Drayton [10]. The results showed that the geometry and placement of splitter blades 

effected on the overall performance ofthe Wennerstrom’s rotor [7]. 

All the splitter blades in the centrifugal and axial compressor rotors introduced above had the same height with the 

rotor blades. In the axial compressor with high rotational speed, the splitter blades with small thickness and high span are 

becoming dangerous in the rotational domain. Until now, no investigation of splitter blades in stator domain of an axial 

compressor was found in literature. The present work proposes splitter blades in the stator domain of a single-stage 

transonic axial compressor with a height smaller than 15% of the stator height, to improve the operating stability. A 

parametric study with four geometric parameters of the stator splitter blades was performed for a single-stage transonic 

axial compressor, NASA Stage 37 [11] with stator splitter blades using three-dimensional (3-D) Reynolds-averages 

Navier-Stokes (RANS) equations. 

ABSTRACT – Splitter blades located between stator blades in a single-stage axial compressor 
were proposed and investigated in this work to find their effects on aerodynamic performance and 
operating stability. Aerodynamic performance of the compressor was evaluated using three-

dimensional Reynolds-averaged Navier-Stokes equations using the k- turbulence model with a 
scalable wall function. The numerical results for the typical performance parameters without stator 
splitter blades were validated in comparison with experimental data. The numerical results of a 
parametric study using four geometric parameters (chord length, coverage angle, height and 
position) of the stator splitter blades showed that the operational stability of the single-stage axial 
compressor enhances remarkably using the stator splitter blades. The splitters were effective in 
suppressing flow separation in the stator domain of the compressor at near-stall condition which 
affects considerably the aerodynamic performance of the compressor.   
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NUMERICAL ANALYSIS 

Description of Geometry 

The single-stage transonic axial compressor investigated in this work was NASA Stage 37 with 36 blades of Rotor 37 

at a rotation speed of 17185.7 rpm (100% of design speed) and 46 blades of Stator 37 [11]. The values of tip clearance 

for rotor and stator of this single-stage compressor were 0.04 cm and 0.0762 cm, respectively. The total pressure ratio 

and peak adiabatic efficiency were 2.00 % and 84.00%, respectively, at a mass flow rate of 20.74 kg/s (peak efficiency 

condition). The mass flow rate at choking and near-stall conditions were 20.93 kg/s and 19.6 kg/s at 100% of design speed 

and the reference temperature and pressure were 288.15 K and 101,325 Pa, respectively. 

The compressor geometry and definition of geometric parameters of the splitter blades are shown in Figure 1. The 

curvatures of the suction and pressure surfaces of the splitter blades are same as those of the stator blades. The radius of 

leading edge of the splitter is same as that of the stator leading edge, whereas that of the trailing edge of the splitter blade 

is equal to 0.05% of the stator blade chord length. The maximum thickness of a splitter blade is equal to 1/3 maximum 

thickness of a stator blade as illustrated in a small picture in Figure 1. The chord length of splitter blades (Cs), the 

streamwise distance between the leading edges of splitters and stator blades (L), the height of splitter blades (H) and the 

angle about the axis of rotation between the pressure surfaces of a splitter and the adjacent stator blades (α), were selected 

as the parameters of the splitter blades to be tested. Single rotor passage has an angle of 10 (360 / 36 blades), and thus 

the angle (α) was normalized by 10. The reference design of the splitter blades is presented in Table 1, and the ranges of 

these parameters for the parametric study were determined as shown in Table 2. 

The single-stage transonic axial compressor investigated in this work was NASA Stage 37 with 36 blades of Rotor 37 

at a rotation speed of 17185.7 rpm (100% of design speed) and 46 blades of Stator 37 [11]. The values of tip clearance 

for rotor and stator of this single-stage compressor were 0.04 cm and 0.0762 cm, respectively. The total pressure ratio at 

peak adiabatic efficiency and peak adiabatic efficiency were 2.00 % and 84.00%, respectively, at a mass flow rate of 

20.74 kg/s (peak efficiency condition). The choking mass flow rate is of 20.93 kg/s at 100% of design speed and the 

reference temperature and pressure were 288.15 K and 101,325 Pa, respectively. 

 

 

Figure 1. Compressor geometry and geometric parameters of splitter blades 

 

Table 1. Dimensionless parameters of reference design 

Variables Cs/C (%) L/C (%) H/S (%) α/10o (%) 

Value 50 0 10 40 

 

Table 2. Ranges of parameters for parametric study 

Variables Cs/C (%) L/C (%) H/S (%) α/10o (%) 

Lower 25 0 5 25 

Upper 50 50 15 40 
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Performance Parameters 

The compressor aerodynamic performance parameters in this paper are the total pressure ratio (PR), adiabatic 

efficiency (η), stall margin (SM), and stable range extension (SRE), which are described by Kim et al. [12]–[14] and Dinh 

et al. [15]–[20] as shown in the following: 

𝑃𝑅 =
𝑃𝑡,𝑜𝑢𝑡
𝑃𝑡,𝑖𝑛

 (1) 

𝜂 =

(
𝑃𝑡,𝑜𝑢𝑡
𝑃𝑡,𝑖𝑛

)
𝛾−1
𝛾 − 1

(
𝑇𝑡,𝑜𝑢𝑡
𝑇𝑡,𝑖𝑛

) − 1
 (2) 
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𝑚̇𝑝𝑒𝑎𝑘

𝑚̇𝑠𝑡𝑎𝑙𝑙

×
𝑃𝑅𝑠𝑡𝑎𝑙𝑙
𝑃𝑅𝑝𝑒𝑎𝑘

− 1) × 100% (3) 

𝑆𝑅𝐸 = (
(𝑚̇𝑚𝑎𝑥 − 𝑚̇𝑠𝑡𝑎𝑙𝑙)𝑠𝑝𝑙𝑖𝑡𝑡𝑒𝑟 − (𝑚̇𝑚𝑎𝑥 − 𝑚̇𝑠𝑡𝑎𝑙𝑙)𝑠𝑚𝑜𝑜𝑡ℎ

(𝑚̇𝑚𝑎𝑥 − 𝑚̇𝑠𝑡𝑎𝑙𝑙)𝑠𝑚𝑜𝑜𝑡ℎ

) × 100% (4) 

 

where 𝑚̇𝑝𝑒𝑎𝑘, 𝑚̇𝑠𝑡𝑎𝑙𝑙 , and 𝑚̇𝑚𝑎𝑥 are the mass flow rates at peak efficiency, near-stall, and choke conditions, respectively. 

𝑃𝑅𝑝𝑒𝑎𝑘 and 𝑃𝑅𝑠𝑡𝑎𝑙𝑙  are the total pressure ratio at peak efficiency and near-stall conditions, respectively. , 𝑃𝑡, and 𝑇𝑡 

indicate the specific heat ratio, total pressure, and total temperature, respectively. 

The stall margin is determined with peak efficiency and near-stall points. The stall margin increases as the pressure 

rise increases and the mass flow rate decreases at the near-stall point. On the other hand, the stable range extension is 

determined with choking and near-stall points. And, the stable range extension increases as the mass flow rate at the near-

stall point deceases. With a numerical experiment, the authors found that the stator splitter blades reduce the mass flow 

rate at near-stall point of the singe-stage axial compressor, which enhances the operational stability. 

 
Numerical Method 

The flow analysis was performed by 3-D RANS analysis, which are averaged from three conservation equations 

(continuity, momentum and energy conservations) and called Reynolds-averaged Navier-Stokes equations. These 

averaged equations are presented as follows: 

 

The average continuity equation: 

𝜕𝜌̅

𝜕𝑡
+

𝜕

𝜕𝑥𝑖
(𝜌̅𝑢̃𝑗) = 0 (5) 

The average momentum equation: 
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The averaged energy equation: 
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Based on the design of NASA Stage 37 with 𝑚̇𝑚𝑎𝑥 = 20.93
𝑘𝑔

𝑠
 and 𝑚̇𝑚𝑖𝑛 = 19.6

𝑘𝑔

𝑠
, the value of Reynolds number for 

the airflow was from 8x105 to 8.6x105, so the airflow in this compressor was totally turbulent. To solve the RANS 

equations in turbomachinery, most researchers used the k- and SST turbulence models. Kim et al. [12], [13] presented a 

comparision between the numerical results using the SST turbulence model and experimental data. The results showed 

that the numerical results were underlined by a comparison with the experimental data and the relative errors between 

numerical and experimental results were 3% for total pressure ratio and 3.8% for efficiency, respectively, at the design 

point. The experimental near stall point was at 0.925 of normalized mass flow rate, while the numerical near stall point 

was 0.921 of normalized mass flow rate, which was 0.43% of relative error. However, the numerical results using the 

two-equation k- turbulence model [15], [16] showed a very good agreement with the experimental data, where the 

relative errors between numerical and experimental results for total pressure ratio and efficiency were only 1% and 2%, 

respectively, and the relative error for the near-stall point between numerical simulation and experimental data was only 
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0.12%. So, the two-equation k- turbulence model with a scalable wall function was selected with y+ values of the first 

nodes near the walls in a range from 20 to 100. 

ANSYS CFX-19.1 [21] was utilized for analysing the flow analysis. Design-Modeler was used to design the rotor, 

stator and splitter blades, and Turbo-Grid was employed to generate the meshes. ANSYS CFX-Pre, CFX-Solver, and 

CFX-Post were used to define boundary conditions, solve the governing equations, and to postprocess the results, 

respectively. 

 

Figure 2. Computational domain and grid structure 

 

The hexahedral elements were used to mesh the computational domain. O-type grids were used near the blade's 

surface, H/J/C/L-type grids were used in the other regions of the rotor and stator blocks as shown in Figure 2. A grid 

independency test was performed with three meshs, where Mesh 1, Mesh 2 and Mesh 3 have 336,236, 590,080 and 

914,188 nodes, respectively. The working fluid was considered to be an ideal gas. An average static pressure was set at 

the stator outlet boundary for steady state simulation. A turbulence intensity of 5% was specified at the rotor inlet 

boundary. The adiabatic smooth wall condition was used for blade surfaces, shroud and hub surfaces of rotor and stator, 

and also for the splitter surfaces. Periodic conditions were used at the side boundaries of the computational domain. The 

general grid interface (GGI) method was used for the connection between stator and rotor domains. The frozen rotor 

method using specified pitch angle (360o /36 =10o for rotor and 360o /46 = 7.826o for stator) was applied for the interface 

between the rotor outlet and stator inlet. The convergence criteria proposed by Chen et al. [22] were used in this work to 

determine near-stall point numerically; the inlet mass flow rate variation is less than 0.001 kg/s for 300 steps, the 

difference between the inlet and outlet mass flow rate is less than 0.3%, and the adiabatic efficiency variation is less than 

0.3% per 100 steps. 

 

RESULTS AND DISCUSSION 

Grid Independecy Test and Validation 

Figure 3(a) shows performance curves of the total pressure ratio and adiabatic efficiency using three grid systems 

having different grid node numbers. And, Figure 3(b) shows the total pressure ratio and adiabatic efficiency at design 

condition (96.5% of choking mass flow rate). The optimum grid system for the single-stage 37 (smooth casing) is Mesh 

2 (590,080 nodes with 340,556 nodes for rotor and 249,524 nodes for stator). 

Figure 4 shows the numerical performance curves of the total pressure ratio and adiabatic efficiency for the single-

stage transonic axial compressor without splitters compared to the experimental data [11]. The numerical results are 

qualitatively in good agreements with the experimental data, the adiabatic efficiency is overestimated (about 1.3% at 

near-stall point), but the total pressure ratio is slightly underestimated (about 0.22% at the peak efficiency). The predicted 

peak adiabatic efficiency, 83.85% is very close to the measurement, 84.00%. And, the predicted total pressure ratio at 

peak adiabatic efficiency condition, 2.0045 is slightly higher than the experimental result, 2.000. The predicted near-stall 

point, 93.85% of the choking mass flow rate is very close to the measurement, 93.65%. The predicted stall margin, 9.95%, 

is also very close to the measurement, 10.00%. 
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Figure 3. Grid independency tests with smooth casing: (a) performance curves and (b) at design point 

 

 

 

Figure 4. Validation of numerical results with experimental data [11] 

 

Effect of Splitter Design 

 To examine the effcts of the stator splitter design on the aerodynamic performance of a single-stage transonic axial 

compressor, NASA stage 37, four geometric parameters of the splitter blades were investigated using 3-D Reynolds-

averaged Navier–Stokes (RANS) equations. The reference value of the chord length (Cs/C), streamwise distance between 

the leading edges of splitters and stator blades (L/C), height of splitter blades (H/S) and angle about the axis of rotation 

between the pressure surfaces of a splitter and the adjacent stator blades (/10) are 35, 0, 10 and 40, respectively, as 

shown in Table 1. Figure 5 shows the effect of adding the splitter blades in a single-stage transonic axial compressor as 

compared to the case with smooth casing. The results show that the near-stall point is largely delayed using the splitter 

blades (the reference design) compared to the smooth casing from the normalized mass flow rate, 0.9385 (smooth casing) 

to 0.9336 (reference design). However, the peak adiabatic efficiency of the reference design is slightly decreased from 

83.85% (smooth casing) to 83.59% (reference case), and the total pressure ratio at the peak adiabatic efficiency of the 

reference design (2.000) is almost equivalent to that of the smooth casing (2.0045). The predicted stall margin of the 

reference design, 10.39%, is higher than that of the smooth casing, 9.95%, and the stable range extension increases from 

0.00% (smooth casing) to 8.22% (reference design). 

At near-stall condition, low speed zones on 98% span of stator corresponding to Mach number contours of 0.4 are 

shown in Figure 6, where a low speed zone is pushed away from each stator pressure surface using the splitter blade. 

When flow separates from the stator blades on the suction surfaces, the splitter contains the flow and keeps it attached, 

resulting in increasing the stall margin and stable range extension. But, the reference design with the splitter blades (Figure 

6(b)) shows also enlargement of the low speed zones corresponded to Mach number contours of 0.2 on the suction surfaces 

of the splitter blades, which reduces the total pressure ratio and adiabatic efficiency of the axial compressor. 
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Figure 5. Performance curves of reference design compared with smooth casing 

 

 

  

 

Figure 6. Relative Mach number contours on 98% span in stator domain at near-stall condition: (a) smooth casing and 

(b) reference case 

 

The aerodynamic performance (total pressure ratio, efficiency, stall margin and stable range extension) of a single-

stage transonic axial compressor were investigated for a wide range of splitter geometric parameters (chord length, 

position, height and angle from the stator pressure surfaces). The splitter parameters are nondimensional with the total 19 

models. The results of the parametric study on aerodynamic performance of the single-stage transonic axial compressor 

using the four parameters of splitter blades (Table 2) are shown in Figures 7-10 to better understand the sensitivity and 

correlation of each parameter. In the parametric study, the values of the parameters that were not being tested were fixed 

as the reference values. 
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Figure 7. Effect of splitter blade chord length on aerodynamic performances of stage 37: (a) stall margin, (b) stable 

range extension, (c) total pressure ratio at peak efficiency condition and (d) adiabatic efficiency at peak efficiency 

condition 

 

 

  

  

Figure 8. Effect of splitter blade angle on aerodynamic performances of stage 37: (a) stall margin, (b) stable range 

extension, (c) total pressure ratio at peak efficiency condition and (d) adiabatic efficiency at peak efficiency condition 
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Figure 9. Effect of splitter blade height on aerodynamic performances of stage 37: (a) stall margin, (b) stable range 

extension, (c) total pressure ratio at peak efficiency condition and (d) adiabatic efficiency at peak efficiency condition 

 

 

  

  

Figure 10. Effect of splitter blade location on aerodynamic performances of stage 37: (a) stall margin, (b) stable range 

extension, (c) total pressure ratio at peak efficiency condition and (d) adiabatic efficiency at peak efficiency condition 
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The effect of splitter blade chord length (Cs/C) on aerodynamic performance of the stage 37 is presented in  

Figure 7. The peak adiabatic efficiencies and the total pressure ratios at peak efficiency with splitter blades are slightly 

decreased as compared to those of smooth casing; maximum relative reductions of 1.49% for the total pressure ratio and 

0.29% for the efficiency as shown in Figures 7(c) and 7(d). However, the stall margins with splitter blades are larger than 

that of smooth casing. The maximum value of the stall margin is 12.04% at Cs/C=35%, while it is 9.95% for smooth 

casing as showed in Figure 6(a). The stable range extension using the splitter blades reaches the maximum value of 9.23% 

at Cs/C=35% as showed in Figure 7(b). At near-stall condition for Cs/C=35% in stator domain of a single-stage transonic 

axial compressor, the low speed zones are highly separated from each stator pressure surface with the splitter blade. That 

is the main reason of a maximum increase in stall margin and stable range extension as compared to other cases. 

Figure 8 illustrates the effect of splitter blade angle (α) on aerodynamic performance of Stage 37. The stall margin 

and stable range extension are also sensitive to the splitter blade angle. The maximum values are 10.79% for stall margin 

and 8.28% for stable range extension at α/10=35% as shown in Figures 8(a) and 8(b), respectively. This value of splitter 

blade angle is corresponded to the splitter blade position near the middle of two stator blades. At the value of α/10=35%, 

the low speed zones are maximally pushed out from the stator pressure surface as compared to other cases. So, the 

maximum stall margin and stable range extension are reached at α/10=35%. Whereas, the peak adiabatic efficiency and 

the total pressure ratio at peak efficiency condition with splitter blades are slightly reduced as compared to those of smooth 

casing with a maximum relative reductions of 0.52% for the total pressure ratio and 0.29% for the efficiency as shown in 

Figures 8(c) and 8(d). 

Effect of the height of splitter blades on compressor performance is presented in Figure 9, where the maximum stall 

margin and stable range extension are 11.08% and 9.24%, respectively, at 5% of stator blade span. It is interesting that 

the smallest height of the splitter blades shows the best operating stability. However, the peak adiabatic efficiency and 

total pressure ratio at peak adiabatic efficiency are smallest at 5% of stator blade span as shown in Figures 9(c) and 9(d). 

The location of a splitter blade in the flow direction is tested as the last parameter. Figure 10 presents the effect of this 

parameter on aerodynamic performance of the single-stage transonic axial compressor. The best value of stall margin is 

10.60% at L/C = 12.5% as shown in Figure 10(a), whereas the maximum stable range extension is 8.22% at L/C = 0% 

(reference design) as shown in Figure 10(b). The total pressure ratio and efficiency at the peak adiabatic efficiency 

condition are slightly decreased with a maximum relative reductions of 0.45% and 0.32% for total pressure ratio and 

efficiency, respectively.  

 

CONCLUSIONS 

Splitter blades between stator blades having a height less than 15% stator height were proposed to enhance operating 

stability of a Single-stage transonic axial compressor, NASA Stage 37. The numerical results using the k- turbulence 

model for total pressure ratio and adiabatic efficiency were validated as compared to experimental data for a smooth 

casing. The results of parametric study using RANS analysis showed that the splitter blade chord length has most 

influence on the stall margin, and the maximum stall margin is 12.04% at Cs/C=35%. And, the maximum stable range 

extension is 9.24% at H/S = 5%. However, the peak adiabatic efficiency and total pressure ratio at peak adiabatic 

efficiency are slightly reduced with splitter blades from those of smooth casing; maximum relative reductions of 0.224% 

for the total pressure ratio and 0.26% for the efficiency. Based on the results of this study, the splitter design will be 

combined with an injection mass flow rate to increase all aerodynamic performance of a single-stage transonic axial 

compressor in a future work. 
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