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INTRODUCTION   

The exprimental and theorical dynamic responses of elastic bodies and applications under various external conditions 

have been investigated by many researchers [1-8] . Furthermore, the vibration analysis of a thin plate, with or without 

piezoelectric effects, has been the subject of several investigations. The electrostatic coupling effect of piezoelectric 

structures is defined as their ability to transform mechanical strains into electrical signals or vice versa. This effect has 

been also examined extensively over the past decades [9-12]. Regarding the substantial application of transverse 

vibrations in rectangular plates, several investigations have been devoted to this subject [13]. However, despite the 

probability of exciting in-plane vibrations in some structures, only a few studies have been focused on in-plane free 

vibrations due to the higher values of in-plane natural frequencies compared to the excitation frequencies.  

Bardell et al. [14] studied the free vibrations of isotropic rectangular plates using the Rayleigh-Ritz method for simply-

supported, clamped, and free boundary conditions. Farag and Pan [15] investigated the free and forced in-plane vibrations 

of rectangular plates; however, the forced responses were only studied in excitation with in-plane point force using 

orthogonal properties of the mode shapes and modal characteristics in different boundary conditions. The closed-form 

solutions were addressed for the in-plane vibrations of rectangular plates with simply-supported and clamped boundary 

conditions by Gorman [16-18] through superposition methods. In another study by Hosseini Hashemi and Moradi, a 

closed-form solution was obtained for the Mindlin plate using the Helmholtz decomposition [19]. Xing and Liu [20] 

presented exact solutions for in-plane free vibration of rectangular plates using the direct separation method. In-plane 

natural frequencies and mode shapes of composite materials were examined by Dozio and Lorenzo [21] through the use 

of the Ritz method.  

Recent years have witnessed remarkable developments in the field of intelligent materials, including piezoelectric and 

piezomagnetic materials. These materials are capable of converting one form of energy (e.g. magnetic, electrical, and 

mechanical) to another; they re also called magneto-electro-elastic (MEE) composites. 
Pan and Heyliger [22] investigated the linear vibrations of multilayer MEE rectangular plates under simply-supported 

boundary conditions using the theory of thin plates and classical plate theory. They also derived the governing equations, 

natural frequencies, and mode shape by propagator matrix method. Buchanan and George [23] examined and compared 

the vibrations of the multi-layered and multi-phase MEE plates. They obtained a solution by extracting shape functions 

using Galerkin's finite element method and considering the 3-node elements. 

In 2010, Liu et al. [24] studied the exact solution for the vibrations of isotropic MEE rectangular thin plates. They 

looked for an exact free vibration solution for two-layered material consisting of BaTiO3-CoFe2O4; besides, the effect of 

volume fraction on natural frequencies was addressed. In 2014, free vibrations of MEE plates on elastic foundation were 
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frequencies of the plate with a thickness-to-length ratio of 0.1 based on FSDT and ESDT; when the 
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investigated by Li and Zhang [25] using first-order shear deformation theory (also known as Mindlin theory). Ke et al. 

[26] analyzed the free vibration of MEE nanoplates based on classical and nonlocal theories. 

Recently, a new class of advanced materials has been introduced in the field of intelligent structures known as 

functionally grade Magneto-electro-elastic (FG-MEE) products. These materials can be exploited in sensors and 

actuators. Unlike ordinary multi-layered plates with abrupt material properties variations between the layers, these plates 

are benefited from the gradual alteration of material properties across their thickness which can significantly improve 

their performance and life. 

In 2005, Bhangale and Ganesan [27] investigated the free vibrations of nonhomogeneous FG-MEE cylindrical shells 

under simply-supported boundary conditions. The inner and outer surfaces of the shell were made from piezoelectric and 

piezomagnetic materials, respectively, and the problem was solved by the use of the finite element method introduced by 

Buchanan [28]. Tsai and Wu [29] in 2008 used an approximated method to evaluate the three-dimensional (3-D) free 

vibration of FG-MEE shells with simply-supported boundary conditions and solved the derived equations using the state 

space method. Wu and Lu  [30] analyzed the vibrations of FG-MEE rectangular plates by modified Pagano's method 

considering a 3-D plate under simply-supported boundary conditions. The multi-scale method was utilized for solving 

the 3-D vibrations of FG-MEE shells under simply-supported boundary conditions and classical shell theory assumptions 

by Wu and Tsai[31] . Hosseini et al.[32]  evaluated the sensitivity of FG-MEE nanoplates with attached nanoparticles as 

a nanosensor considering nonlocal Mindlin plate assumption and using the Navier’s method. Shooshtari and Mantashloo 

[33] studied the linear and nonlinear free vibrations of the FG-MEE rectangular plates based on third-order shear 

deformation theory. By omitting the rotational and in-plane inertia terms, they obtained the vibrational equations and 

solved the equations using Lindstedt- Poincare method. 

         Exponential shear deformation theory was first proposed by Karama et al. [34] in 2003 during studying a 

multilayer beam. Their new multi-layered structure exponential model exactly and automatically satisfied the continuity 

condition of displacements and transverse shear stresses at interfaces, as well as the boundary conditions for a laminated 

composite with the help of the Heaviside step function. Sayyed and Ghugal [35] examined the buckling and free vibrations 

of isotropic thick plates with exponential shear deformation theory. In their research, the exponential functions were 

aligned to the applied thickness and the displacements included shear transverse deformation and rotational inertia. The 

frequencies obtained by the ESDT theory for all modes of vibration were in excellent agreement with the exact values 

and higher-order shear deformation theory of frequencies for the simply supported square plate. Kharde et al.  [36] 

investigated the isotropic plate vibrations using exponential shear deformation theory. They obtained the differential 

equations and boundary conditions using the principle of virtual work and their results were compared with the results of 

other shear deformation theories as well as the exact solutions found in other papers. Khorshidi et al. [37, 38] investigated 

the free vibration and buckling of rectangular nano-plates based on a nonlocal theory with exponential shear deformation. 

Khorshidi et al. [39] investigated the free vibrations of functionally graded composite rectangular nanoplates based on 

the nonlocal theory by exponential shear deformation in the thermal environment. 

First-order shear deformation theory (FSDT) can be considered as an improvement to the classical plate theory (CPT). It 

is based on the hypothesis that the normal to the undeformed mid-plane remains straight but not necessarily normal to the 

mid-plane after deformation. This is known as FSDT because the thickness-wise displacement field for the in-plane 

displacement is linear or of the first order. In Mindlin’s theory, the transverse shear stress is assumed to be constant 

through the thickness of the plate, but this assumption violates the shear stress-free surface conditions on the top and 

bottom of the plate. Exponential shear deformation theory (ESDT) is used for free vibration analysis of thick rectangular 
plates which includes the effect of transverse shear deformation and rotary inertia. The displacement field of the theory 

contains three variables as in the FSDT of the plate.  

The FG-MEE materials are a new class of smart materials with coupling electrical, magnetic, and mechanical 

properties whose exact behavior has to be properly explored. In fact, to improve our understanding of these materials it 

is necessary to analyze them with higher-order theories such as ESDT and examine the validity of more common theories 

such as FSDT. To the best of the authors’ knowledge, there is no available literature in the field of in-plane and out-of-

plane vibrations of FG-MEE plates on Pasternak foundation based on the exponential shear deformation theory and first-

order shear deformation theory. Accordingly, in this paper, the equations of plate displacement were written based on the 

ESDT and FSDT and the constitutive equations were obtained. Moreover, the electrical and magnetic potential functions 

were obtained according to the initial conditions which satisfied the Maxwell equations as well. Finally, Navier’s method 

was used to solve the differential equations obtained based on the Hamilton principle. 

 

KINEMATICS OF DIFFERENT THEORIES 

A moderately thick FG-MEE rectangular plate with the respective length, width, and thickness of 𝑎, 𝑏, and ℎ  with 

simply-supported edges was considered in this research as depicted in Figure 1. 
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Figure 1. FG-MEE Rectangular plate rest on Pasternak foundation 

 

According to Figure 2, the considered FG plate is constructed from piezomagnetic (CoFe2O4) and piezoelectric 

(BaTiO3) materials. It is assumed that the material properties continuously varied across the plate thickness according to 

the power-law model as follows [30]: 

𝑃(𝑧) = (𝑃2 − 𝑃1)(
𝑧

ℎ
+
1

2
)𝑝 + 𝑃1 (1) 

where, P represents the properties of the constructed materials, including Young's modulus, density, and electrical and 

magnetic coefficients. In this research, 𝑃1and 𝑃2 correspond to the properties of CoFe2O4 and BaTiO3, respectively. 

 

Figure 2. FG-MEE Rectangular plate 

 

 Exponential Shear Deformation Theory 

The displacement fields can be expressed according to the exponential shear deformation theory as follows [38]: 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑦, 𝑡) − 𝑧
𝜕𝑤(𝑥, 𝑦, 𝑡)

𝜕𝑥
+ 𝑓(𝑧)𝜃𝑥(𝑥, 𝑦, 𝑡) 

𝑣(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣0(𝑥, 𝑦, 𝑡) − 𝑧
𝜕𝑤(𝑥, 𝑦, 𝑡)

𝜕𝑦
+ 𝑓(𝑧)𝜃𝑦(𝑥, 𝑦, 𝑡) 

𝑤(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤(𝑥, 𝑦, 𝑡) 

(2) 

where𝑓(𝑧) = 𝑧 (𝑒−2(
𝑧

ℎ
)
2

).𝑢0, 𝑣0  and   𝑤0  are the mid-plane displacements in x, y, and z directions, respectively. 𝜃𝑥and 

𝜃𝑦 denote the rotations of the mid-plane along the x and y axes, respectively. 

Based on the above relations for displacement, linear strains for a rectangular plate can be expressed as follows [36]: 

𝜀𝑥 = 𝑢,𝑥 = 𝑢0,𝑥 − 𝑧 𝑤,𝑥𝑥 + 𝑓(𝑧)𝜃𝑥,𝑥  

 𝜀𝑦 = 𝑣,𝑦 = 𝑣0,𝑦 − 𝑧 𝑤,𝑦𝑦 + 𝑓(𝑧)𝜃𝑦,𝑦              

𝛾𝑥𝑧 = 𝑢,𝑧 + 𝑤,𝑥 = 𝑓(𝑧),𝑧𝜃𝑥
𝛾𝑦𝑧 = 𝑣,𝑧 +𝑤,𝑦 = 𝑓(𝑧),𝑧𝜃𝑦
𝛾𝑥𝑦 = 𝑢,𝑦 + 𝑣,𝑥 = 𝑢0,𝑦 + 𝑣0,𝑥  − 2𝑧 𝑤,𝑥𝑦 + 𝑓(𝑧)(𝜃𝑥,𝑦 + 𝜃𝑦,𝑥)

 (3) 

 

First-order Shear Deformation Theory 

The displacement fields can be expressed according to the first-order shear deformation theory as follows [30]: 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑦, 𝑡) + 𝑧𝜃𝑥(𝑥, 𝑦, 𝑡) 
𝑣(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣0(𝑥, 𝑦, 𝑡) + 𝑧𝜃𝑦(𝑥, 𝑦, 𝑡) 

(4) 

where 𝑢0,   𝑣0  and   𝑤0  are the mid-plane displacements in x, y, and z directions, respectively. 𝜃𝑥 and 𝜃𝑦 denote the 

rotations of the mid-plane along the x and y axes, respectively. 

Based on the above relations for displacement, linear strains for a rectangular plate can be expressed as [30]: 
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𝜀𝑥 = 𝑢,𝑥 = 𝑢0,𝑥 + 𝑧𝜃𝑥,𝑥  

 𝜀𝑦 = 𝑣,𝑦 = 𝑣0,𝑦 + 𝑧𝜃𝑦,𝑥              

𝛾𝑥𝑧 = 𝑢,𝑧 + 𝑤,𝑥 = 𝑘(𝑤0,𝑥 + 𝜃𝑥)

𝛾𝑦𝑧 = 𝑣,𝑧 + 𝑤,𝑦 = 𝑘(𝑤0,𝑦 + 𝜃𝑦)

𝛾𝑥𝑦 = 𝑢,𝑦 + 𝑣,𝑥 = 𝑢0,𝑦 + 𝑣0,𝑥  + 𝑧(𝜃𝑥,𝑦 + 𝜃𝑦,𝑥)

 (5) 

 

CONSTITUTIVE EQUATION 

The constitutive equations of FG-MEE are given in the following form [30]: 

𝜎 = 𝐶(𝑧)𝜀 − 𝑒(𝑧)𝐸 − 𝑞(𝑧)𝐻 

𝐷 = 𝑒(𝑧)𝑇𝜀 + 𝜂(𝑧)𝐸 + 𝑑(𝑧)𝐻 

𝐵 = 𝑞(𝑧)𝑇𝜀 + 𝑑(𝑧)𝐸 + 𝜇(𝑧)𝐻 

(6) 

where, 𝜎, 𝜀, 𝐷, 𝐵, E and H are stress vector, strain vector, electrical displacement, magnetic flux vector, electric field, 

and magnetic field vectors, respectively. C, 𝜂, 𝜇, e,  𝑞,  and 𝑑   are matrices corresponding to the elastic, dielectric, 

magnetic, piezoelectric piezomagnetic, and magneto-electric coefficients, respectively.  As mentioned before, these 

coefficients are not constant along the thickness of FG-MEE materials and vary as a function of z according to Eq. (1). 

 

The matrix representation of the above-mentioned coefficients can be written as: 

𝐶(𝑧) =

[
 
 
 
 
𝑐11(𝑧) 𝑐12(𝑧) 0 0 0

𝑐12(𝑧) 𝑐22(𝑧) 0 0 0
0 0 𝑐44(𝑧) 0 0

0 0 0 𝑐55(𝑧) 0

0 0 0 0 𝑐66(𝑧)]
 
 
 
 

  𝜇(𝑧) = [

𝜇11(𝑧) 0 0
0 𝜇22(𝑧) 0

0 0 𝜇33(𝑧)
] 

 

𝑒(𝑧) =

[
 
 
 
 
0 0 𝑒31(𝑧)

0 0 𝑒32(𝑧)

0 𝑒24(𝑧) 0
𝑒15(𝑧) 0 0
0 0 0 ]

 
 
 
 

     𝑞(𝑧) =

[
 
 
 
 
0 0 𝑞31(𝑧)

0 0 𝑞32(𝑧)

0 𝑞24(𝑧) 0
𝑞15(𝑧) 0 0
0 0 0 ]

 
 
 
 

 

 

𝜂(𝑧) = [

𝜂11(𝑧) 0 0

0 𝜂22(𝑧) 0
0 0 𝜂33(𝑧)

]           𝑑(𝑧) = [

𝑑11(𝑧) 0 0

0 𝑑22(𝑧) 0
0 0 𝑑33(𝑧)

]     
 

(7) 

It should be noted that if the electric and magnetic fields are a negative scalar gradient of electrical and magnetic 

potentials, the Maxwell Equations can be written considering quasi-static approximation [30]: 

𝐸𝑗 = −
𝜕Φ(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑗

𝐻𝑗 = −
𝜕Ψ(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑗
           (𝑗 = 𝑥, 𝑦, 𝑧)

 (8) 

It is supposed that the MEE plate is subjected to the electrical potential of 𝜙0and magnetic potential of 𝜓0 boundary 

conditions in the upper and lower surfaces of the plate along the 𝑧 direction. These boundary conditions are expressed as 

follows: 

Φ(𝑥, 𝑦, −
ℎ

2
, 𝑡) = −𝜙0  ,   Φ (𝑥, 𝑦,

ℎ

2
, 𝑡) = 𝜙0

Ψ(𝑥, 𝑦, −
ℎ

2
, 𝑡) = −𝜓0  ,   Ψ(𝑥, 𝑦,

ℎ

2
, 𝑡) = 𝜓0         

 (9) 

Regarding the mentioned electromagnetic boundary conditions, the distributions of electrical and magnetic potentials 

can be expressed as a sum of the cosine function and linear variations [30]: 

Φ(𝑥, 𝑦, 𝑧, 𝑡) = −cos (
𝜋𝑧

ℎ
)𝜙(𝑥, 𝑦, 𝑡) +

2𝑧𝜙0
ℎ

  

Ψ(𝑥, 𝑦, 𝑧, 𝑡) = −cos (
𝜋𝑧

ℎ
)𝜓(𝑥, 𝑦, 𝑡) +

2𝑧𝜓0
ℎ

             

 (10) 
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EQUATION OF MOTION 

The governing differential equations of motion for an FG-MEE rectangular plate can be derived using Hamilton’s 

principle: 

∫ (𝛿𝑇 − 𝛿𝑈 + 𝛿𝑉) = 0
𝑡2

𝑡1

 (11) 

where 𝛿𝑇, 𝛿𝑈, and 𝛿𝑉 denote the virtual kinetic energy, the virtual strain energy, and the virtual work done by externally 

applied forces, respectively. To obtain the kinetic and potential energies for the studied plate, the following equations can 

be used: 

𝑈 =
1

2
∭(𝜎𝑥𝜀𝑥 + 

𝑣

𝜎𝑥𝜀𝑥 + 𝜏𝑥𝑦𝛾𝑥𝑦 + 𝜏𝑦𝑧𝛾𝑦𝑧 + 𝜏𝑥𝑧𝛾𝑥𝑧)𝑑𝑉

𝑇 =
1

2
∬𝜌(𝑧)(�̇�2 + �̇�2 + �̇�2)𝑑𝑆

𝑠

 (12) 

𝛿𝑇 = ∫[

𝐼0(�̇�0𝛿�̇�0 + �̇�0𝛿�̇�0 + �̇�0𝛿�̇�0)

+𝐼1(�̇�0𝛿�̇�𝑥 + �̇�𝑥𝛿�̇�0 + �̇�0𝛿�̇�𝑦 + �̇�𝑦𝛿�̇�0)

+𝐼2(�̇�𝑥𝛿�̇�𝑥 + �̇�𝑦𝛿�̇�𝑦)

]   𝑑𝐴

𝛿𝑈 = ∫

[
 
 
 
 
 
 𝑁𝑥

𝜕𝛿𝑢0
𝜕𝑥

+ 𝑁𝑦
𝜕𝛿𝑣0
𝜕𝑦

+ 𝑀𝑥

𝜕𝛿𝜃𝑥
𝜕𝑥

+𝑀𝑦

𝜕𝛿𝜃𝑦

𝜕𝑦

+𝑁𝑥𝑦(
𝜕𝛿𝑢0
𝜕𝑦

+
𝜕𝛿𝑣0
𝜕𝑥

) + 𝑀𝑥𝑦(
𝜕𝛿𝜃𝑥
𝜕𝑦

+
𝜕𝛿𝜃𝑦

𝜕𝑥
)

+𝑄𝑥(𝛿𝜃𝑥 +
𝜕𝛿𝑤0
𝜕𝑥

) + 𝑄𝑦(𝛿𝜃𝑦 +
𝜕𝛿𝑤0
𝜕𝑦

)
]
 
 
 
 
 
 

  𝑑𝐴

−∫∫ (
𝐷𝑥𝛿𝐸𝑥 + 𝐷𝑦𝛿𝐸𝑦 + 𝐷𝑧𝛿𝐸𝑧
+𝐵𝑥𝛿𝐻𝑥 + 𝐵𝑦𝛿𝐻𝑦 + 𝐵𝑧𝛿𝐻𝑧

)

ℎ
2

−
ℎ
2

 𝑑𝑧𝑑𝐴

𝛿𝑉 = ∫𝑞𝛿𝑤0𝑑𝐴

𝑞 = −𝑘𝑤𝑤0 + 𝑘𝑆(𝑤0,𝑥𝑥 +𝑤0,𝑦𝑦) + (𝑁𝐸𝑥 + 𝑁𝑀𝑥)𝑤0,𝑥𝑥 + (𝑁𝐸𝑦 + 𝑁𝑀𝑦)𝑤0,𝑦𝑦

 (13) 

ESDT 

According to Eq. (13), forces and momentums are defined as follows: 

{

𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦

} = ∫ {

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

}
−
ℎ
2

ℎ
2

𝑑𝑧               {

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

} = ∫ {

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

}
−
ℎ
2

ℎ
2

𝑧𝑑𝑧 

{

𝑅𝑥
𝑅𝑦
𝑅𝑥𝑦

} = ∫ {

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

}  𝑓(𝑧) 
−ℎ/2

ℎ/2

𝑑𝑧     {
𝑄𝑥
𝑄𝑦
} = ∫ {

𝜏𝑥𝑧
𝜏𝑦𝑧
} 𝑓(𝑧),𝑧 

−
ℎ
2

ℎ
2

𝑑𝑧 

{

𝐼0
𝐼1
𝐼2

} = ∫ {
1
𝑧
𝑧2
}

−
ℎ
2

ℎ
2

𝜌(𝑧)𝑑𝑧           {

𝐼3
𝐼4
𝐼5

} = ∫ {

𝑓(𝑧)

𝑧 𝑓(𝑧)

𝑓(𝑧)2
}

−ℎ/2

ℎ/2

𝜌(𝑧) 𝑑𝑧 

(14) 

The governing equations of motion for the rectangular plate are expressed as follows: 
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𝑁𝑥,𝑥 + 𝑁𝑥𝑦,𝑦 = 𝐼0�̈� − 𝐼1�̈�,𝑥 + 𝐼3�̈�𝑥

𝑁𝑦,𝑦 +𝑁𝑥𝑦,𝑥 = 𝐼0�̈� − 𝐼1�̈�,𝑦 + 𝐼3�̈�𝑦

𝑅𝑥,𝑥 + 𝑅𝑥𝑦,𝑦 − 𝑄𝑥 = 𝐼3�̈� − 𝐼4�̈�,𝑥 + 𝐼5�̈�𝑥

𝑅𝑦,𝑦 + 𝑅𝑥𝑦,𝑥 − 𝑄𝑦 = 𝐼3�̈� − 𝐼4�̈�,𝑦 + 𝐼5�̈�𝑦

𝑀𝑥,𝑥𝑥 + 2𝑀𝑥𝑦,𝑥𝑦 +𝑀𝑦,𝑦𝑦 + 𝑞 = 𝐼0�̈� + 𝐼1(�̈�,𝑥 + �̈�,𝑦) − 𝐼2(�̈�,𝑥𝑥 + �̈�,𝑦𝑦) + 𝐼4(�̈�𝑥,𝑥 + �̈�𝑦,𝑦)

∫ (
𝜕𝐷𝑥
𝜕𝑥

Cos(
𝜋𝑧

ℎ
) +

𝜕𝐷𝑦

𝜕𝑦
Cos(

𝜋𝑧

ℎ
) +

𝜋

ℎ
𝐷𝑧Sin(

𝜋𝑧

ℎ
))

𝑧𝑘+1

𝑧𝑘

𝑑𝑧 = 0

∫ (
𝜕𝐵𝑥
𝜕𝑥

Cos(
𝜋𝑧

ℎ
) +

𝜕𝐵𝑦

𝜕𝑦
Cos(

𝜋𝑧

ℎ
) +

𝜋

ℎ
𝐵𝑧Sin(

𝜋𝑧

ℎ
))

𝑧𝑘+1

𝑧𝑘

𝑑𝑧 = 0

 (15) 

By substituting the displacement from Eq. (2) into the strain of Eq. (3) and rewriting Eq. (14), we will have: 

{

𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦

} = ∫ [

𝑐11(𝑧) 𝑐12(𝑧) 0

𝑐12(𝑧) 𝑐22(𝑧) 0

0 0 𝑐66(𝑧)
] {

𝑢0,𝑥 − 𝑧 𝑤,𝑥𝑥 + 𝑓(𝑧)𝜃𝑥,𝑥 

𝑣0,𝑦 − 𝑧 𝑤,𝑦𝑦 + 𝑓(𝑧)𝜃𝑦,𝑦
𝑢0,𝑦 + 𝑣0,𝑥  − 2𝑧 𝑤,𝑥𝑦 + 𝑓(𝑧)(𝜃𝑥,𝑦 + 𝜃𝑦,𝑥)

}
𝑧𝑘+1

𝑧𝑘

𝑑𝑧

−∫ [
0 0 𝑒31(𝑧)
0 0 𝑒32(𝑧)
0 0 0

] {

0
0
−𝜙,𝑧

}
𝑧𝑘+1

𝑧𝑘

𝑑𝑧 − ∫ [
0 0 𝑞31(𝑧)
0 0 𝑞32(𝑧)
0 0 0

] {

0
0
−𝜓,𝑧

}
𝑧𝑘+1

𝑧𝑘

𝑑𝑧

 

 

{

𝑅𝑥
𝑅𝑦
𝑅𝑥𝑦

} = ∫ [

𝑐11(𝑧) 𝑐12(𝑧) 0

𝑐12(𝑧) 𝑐22(𝑧) 0

0 0 𝑐66(𝑧)
] {

𝑢0,𝑥 − 𝑧 𝑤,𝑥𝑥 + 𝑓(𝑧)𝜃𝑥,𝑥 

𝑣0,𝑦 − 𝑧 𝑤,𝑦𝑦 + 𝑓(𝑧)𝜃𝑦,𝑦
𝑢0,𝑦 + 𝑣0,𝑥  − 2𝑧 𝑤,𝑥𝑦 + 𝑓(𝑧)(𝜃𝑥,𝑦 + 𝜃𝑦,𝑥)

} 𝑓(𝑧) 
𝑧𝑘+1

𝑧𝑘

𝑑𝑧

−∫ [
0 0 𝑒31(𝑧)
0 0 𝑒32(𝑧)
0 0 0

] {

0
0
−𝜙,𝑧

}
𝑧𝑘+1

𝑧𝑘

𝑓(𝑧) 𝑑𝑧 − ∫ [
0 0 𝑞31(𝑧)
0 0 𝑞32(𝑧)
0 0 0

] {

0
0
−𝜓,𝑧

} 𝑓(𝑧) 
𝑧𝑘+1

𝑧𝑘

𝑑𝑧

 

 

{
𝑄𝑦
𝑄𝑥
} = ∫ [

𝑐44(𝑧) 0
0 𝑐55(𝑧)

] {
𝑓(𝑧),𝑧𝜃𝑦
𝑓(𝑧),𝑧𝜃𝑥

}
𝑧𝑘+1

𝑧𝑘

 𝑓(𝑧),𝑧𝑑𝑧

−∫ [
𝑒24(𝑧) 0

0 𝑒15(𝑧)
] {
𝐸𝑦
𝐸𝑥
}

𝑧𝑘+1

𝑧𝑘

𝑓(𝑧),𝑧𝑑𝑧 − ∫ [
𝑞24(𝑧) 0

0 𝑞15(𝑧)
] {
𝐻𝑦
𝐻𝑥
} 𝑓(𝑧),𝑧

𝑧𝑘+1

𝑧𝑘

𝑑𝑧

 

 

{

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

} = ∫ [

𝑐11(𝑧) 𝑐12(𝑧) 0

𝑐12(𝑧) 𝑐22(𝑧) 0

0 0 𝑐66(𝑧)
] {

𝑢0,𝑥 − 𝑧 𝑤,𝑥𝑥 + 𝑓(𝑧)𝜃𝑥,𝑥  

𝑣0,𝑦 − 𝑧 𝑤,𝑦𝑦 + 𝑓(𝑧)𝜃𝑦,𝑦
𝑢0,𝑦 + 𝑣0,𝑥  − 2𝑧 𝑤,𝑥𝑦 + 𝑓(𝑧)(𝜃𝑥,𝑦 + 𝜃𝑦,𝑥)

}
𝑧𝑘+1

𝑧𝑘

𝑧𝑑𝑧

−∫ [
0 0 𝑒31(𝑧)
0 0 𝑒32(𝑧)
0 0 0

] {

0
0
−𝜙,𝑧

}
𝑧𝑘+1

𝑧𝑘

𝑧𝑑𝑧 − ∫ [
0 0 𝑞31(𝑧)
0 0 𝑞32(𝑧)
0 0 0

] {

0
0
−𝜓,𝑧

}
𝑧𝑘+1

𝑧𝑘

𝑧𝑑𝑧

 

{

𝐷𝑥
𝐷𝑦
𝐷𝑧

} = [

0 0 0 𝑒15(𝑧) 0

0 0 𝑒24(𝑧) 0 0
𝑒31(𝑧) 𝑒32(𝑧) 0 0 0

]

{
 
 

 
 
𝑢0,𝑥 − 𝑧 𝑤,𝑥𝑥 + 𝑓(𝑧)𝜃𝑥,𝑥  

𝑣0,𝑦 − 𝑧 𝑤,𝑦𝑦 + 𝑓(𝑧)𝜃𝑦,𝑦  

𝑓(𝑧),𝑧𝜃𝑦
𝑓(𝑧),𝑧𝜃𝑥
𝑢0,𝑦 + 𝑣0,𝑥  − 2𝑧 𝑤,𝑥𝑦 + 𝑓(𝑧)(𝜃𝑥,𝑦 + 𝜃𝑦,𝑥)}

 
 

 
 

+ [

𝜂11(𝑧) 0 0

0 𝜂22(𝑧) 0

0 0 𝜂33(𝑧)
]  {

𝐸𝑥
𝐸𝑦
𝐸𝑧

} + [

𝑑11(𝑧) 0 0

0 𝑑22(𝑧) 0

0 0 𝑑33(𝑧)
]  {

𝐻𝑥
𝐻𝑦
𝐻𝑧

} 

 

 

{

𝐵𝑥
𝐵𝑦
𝐵𝑧

} = [

0 0 0 𝑞15(𝑧) 0

0 0 𝑞24(𝑧) 0 0
𝑞31(𝑧) 𝑞32(𝑧) 0 0 0

]

{
 
 

 
 
𝑢0,𝑥 − 𝑧 𝑤,𝑥𝑥 + 𝑓(𝑧)𝜃𝑥,𝑥 

𝑣0,𝑦 − 𝑧 𝑤,𝑦𝑦 + 𝑓(𝑧)𝜃𝑦,𝑦  

𝑓(𝑧),𝑧𝜃𝑦
𝑓(𝑧),𝑧𝜃𝑥
𝑢0,𝑦 + 𝑣0,𝑥  − 2𝑧 𝑤,𝑥𝑦 + 𝑓(𝑧)(𝜃𝑥,𝑦 + 𝜃𝑦,𝑥)}

 
 

 
 

+ [

𝑑11(𝑧) 0 0

0 𝑑22(𝑧) 0

0 0 𝑑33(𝑧)
]  {

𝐸𝑥
𝐸𝑦
𝐸𝑧

} + [

𝜇11(𝑧) 0 0

0 𝜇22(𝑧) 0

0 0 𝜇33(𝑧)
] {

𝐻𝑥
𝐻𝑦
𝐻𝑧

} 

 

 

(16) 



H. R. Talebi Amanieh et al. │ Journal of Mechanical Engineering and Sciences │ Vol. 14, Issue 3 (2020) 

7211   journal.ump.edu.my/jmes ◄ 

By substitution of Eq.  (16) into the equations of motion in Eq. (15), the governing equations can be obtained: 

𝐴11𝑢0,𝑥𝑥 − 𝐵11𝑤,𝑥𝑥𝑥 + 𝑆11𝜃𝑥,𝑥𝑥  + 𝐴12𝑣0,𝑦𝑥 − 𝐵12𝑤,𝑦𝑦𝑥 + 𝑆12𝜃𝑦,𝑦𝑥 + 𝐸11𝜙,𝑥 + 𝐹11𝜓,𝑥

+𝐴66(𝑢0,𝑦𝑦 + 𝑣0,𝑥𝑦) − 2𝐵66𝑤,𝑥𝑦𝑦 + 𝑆66(𝜃𝑥,𝑦𝑦 + 𝜃𝑦,𝑥𝑦) = 𝐼0�̈� − 𝐼1�̈�,𝑥 + 𝐼3�̈�𝑥
 (17-1) 

𝐴12𝑢0,𝑥𝑦 − 𝐵12𝑤,𝑥𝑥𝑦 + 𝑆12𝜃𝑥,𝑥𝑦  + 𝐴22𝑣0,𝑦𝑦 − 𝐵22𝑤,𝑦𝑦𝑦 + 𝑆22𝜃𝑦,𝑦𝑦 + 𝐸11𝜙,𝑦 + 𝐹11𝜓,𝑦

+𝐴66(𝑢0,𝑦𝑥 + 𝑣0,𝑥𝑥) − 2𝐵66𝑤,𝑥𝑥𝑦 + 𝑆66(𝜃𝑥,𝑦𝑥 + 𝜃𝑦,𝑥𝑥) = 𝐼0�̈� − 𝐼1�̈�,𝑦 + 𝐼3�̈�𝑦
 (17-2) 

𝑆11𝑢0,𝑥𝑥 − 𝑌11𝑤,𝑥𝑥𝑥 + 𝐺11𝜃𝑥,𝑥𝑥  + 𝑆12𝑣0,𝑦𝑥 − 𝑌12𝑤,𝑦𝑦𝑥 + 𝐺12𝜃𝑦,𝑦𝑥 + 𝐸12𝜙,𝑥 + 𝐹12𝜓,𝑥
+𝑆66(𝑢0,𝑦𝑦 + 𝑣0,𝑥𝑦) − 2𝑌66𝑤,𝑥𝑦𝑦 + 𝐺66(𝜃𝑥,𝑦𝑦 + 𝜃𝑦,𝑥𝑦)

−𝐻55𝜃𝑥 + 𝐽2𝜙,𝑥 + 𝐽3𝜓,𝑥 = 𝐼3�̈� − 𝐼4�̈�,𝑥 + 𝐼5�̈�𝑥

 (17-3) 

𝑆12𝑢0,𝑥𝑦 − 𝑌12𝑤,𝑥𝑥𝑦 + 𝐺12𝜃𝑥,𝑥𝑦  + 𝑆22𝑣0,𝑦𝑦 − 𝑌22𝑤,𝑦𝑦𝑦 + 𝐺22𝜃𝑦,𝑦𝑦 + 𝐸12𝜙,𝑦 + 𝐹12𝜓,𝑦 

+𝑆66(𝑢0,𝑦𝑥 + 𝑣0,𝑥𝑥) − 2𝑌66𝑤,𝑥𝑥𝑦 + 𝐺66(𝜃𝑥,𝑦𝑥 + 𝜃𝑦,𝑥𝑥)

−𝐻44𝜃𝑦 + 𝐿2𝜙,𝑦 + 𝐿3𝜓,𝑦 = 𝐼3�̈� − 𝐼4�̈�,𝑦 + 𝐼5�̈�𝑦

 (17-4) 

𝐵11𝑢0,𝑥𝑥𝑥 − 𝐷11𝑤,𝑥𝑥𝑥𝑥 + 𝑌11𝜃𝑥,𝑥𝑥𝑥  + 𝐵12𝑣0,𝑦𝑥𝑥 − 𝐷12𝑤,𝑦𝑦𝑥𝑥 + 𝑌12𝜃𝑦,𝑦𝑥𝑥  + 𝐸22𝜙,𝑥𝑥
+𝐹22𝜓,𝑥𝑥 + 𝐵12𝑢0,𝑥𝑦𝑦 − 𝐷12𝑤,𝑥𝑥𝑦𝑦 + 𝑌12𝜃𝑥,𝑥𝑦𝑦  + 𝐵22𝑣0,𝑦𝑦𝑦  − 𝐷22𝑤,𝑦𝑦𝑦𝑦 + 𝑌22𝜃𝑦,𝑦𝑦𝑦 

−4𝐷66𝑤,𝑥𝑥𝑦𝑦 + 2 𝑌66(𝜃𝑥,𝑦𝑦𝑥 + 𝜃𝑦,𝑥𝑥𝑦) + 𝐸22𝜙,𝑦𝑦 + 𝐹22𝜓,𝑦𝑦  + 2𝐵66(𝑢0,𝑦𝑦𝑥 + 𝑣0,𝑥𝑥𝑦)

+(𝑁𝐸𝑥 + 𝑁𝑀𝑥) 𝑤0,𝑥𝑥 + (𝑁𝐸𝑦 + 𝑁𝑀𝑦) 𝑤0,𝑦𝑦𝑥 − 𝑘𝑤𝑤0 + 𝑘𝑆(𝑤0,𝑥𝑥 + 𝑤0,𝑦𝑦)

  = 𝐼0�̈� + 𝐼1(�̈�,𝑥 + �̈�,𝑦) − 𝐼2(�̈�,𝑥𝑥 + �̈�,𝑦𝑦) + 𝐼4(�̈�𝑥,𝑥 + �̈�𝑦,𝑦)  

 (17-5) 

𝐽2𝜃𝑥,𝑥 + 𝑄1𝜙,𝑥𝑥 + 𝑄2𝜓,𝑥𝑥 + 𝐿2𝜃𝑦,𝑦 + 𝑋1𝜙,𝑦𝑦 + 𝑋2𝜓,𝑦𝑦
𝐸11(𝑢0,𝑥 + 𝑣0,𝑦) − 𝐸22(𝑤,𝑥𝑥 + 𝑤,𝑦𝑦) + 𝐸12(𝜃𝑥,𝑥 + 𝜃𝑦,𝑦) − 𝑃1𝜙 − 𝑃2𝜓 = 0

 (17-6) 

𝐽3𝜃𝑥,𝑥 + 𝑄2𝜙,𝑥𝑥 + 𝑄3𝜓,𝑥𝑥 + 𝐿3𝜃𝑦,𝑦 + 𝑋2𝜙,𝑦𝑦 + 𝑋3𝜓,𝑦𝑦
𝐹11(𝑢0,𝑥 + 𝑣0,𝑦) − 𝐹22(𝑤,𝑥𝑥 + 𝑤,𝑦𝑦) + 𝐹12(𝜃𝑥,𝑥 + 𝜃𝑦,𝑦) − 𝑃2𝜙 − 𝑃3𝜓 = 0

 (17-7) 

 

Where 

𝐴11, 𝐵11 , 𝐷11, 𝑆11, 𝑌11, 𝐺11 = ∫ 𝐶11(𝑧)(1, 𝑧, 𝑧
2, 𝑓(𝑧), 𝑧𝑓(𝑧), 𝑓2(𝑧))𝑑𝑧

ℎ 2⁄

−ℎ 2⁄

 𝐻44 = ∫ 𝐶44(𝑧) 𝑓
2(𝑧)

,𝑧
 𝑑𝑧

ℎ 2⁄

−ℎ 2⁄

 

𝐴12, 𝐵12 , 𝐷12, 𝑆12, 𝑌12, 𝐺12 = ∫ 𝐶12(𝑧)(1, 𝑧, 𝑧
2, 𝑓(𝑧), 𝑧𝑓(𝑧), 𝑓2(𝑧))𝑑𝑧

ℎ 2⁄

−ℎ 2⁄

 𝐻55 = ∫ 𝐶55(𝑧) 𝑓
2(𝑧)

,𝑧
 𝑑𝑧

ℎ 2⁄

−ℎ 2⁄

 

𝐴22, 𝐵22 , 𝐷22, 𝑆22, 𝑌22, 𝐺22 = ∫ 𝐶22(𝑧)(1, 𝑧, 𝑧
2, 𝑓(𝑧), 𝑧𝑓(𝑧), 𝑓2(𝑧))𝑑𝑧

ℎ 2⁄

−ℎ 2⁄

 𝐽2 = ∫ 𝑒15(𝑧)Cos (
𝜋

ℎ
𝑧)  𝑓(𝑧)

,𝑧
 𝑑𝑧

ℎ 2⁄

−ℎ 2⁄

 

𝐴66, 𝐵66 , 𝐷66, 𝑆66, 𝑌66, 𝐺66 = ∫ 𝐶66(𝑧)(1, 𝑧, 𝑧
2, 𝑓(𝑧), 𝑧𝑓(𝑧), 𝑓2(𝑧))𝑑𝑧

ℎ 2⁄

−ℎ 2⁄

 𝐽3 = ∫ 𝑞
15
(𝑧)Cos (

𝜋

ℎ
𝑧)  𝑓(𝑧)

,𝑧
𝑑𝑧

ℎ 2⁄

−ℎ 2⁄

 

𝐸11, 𝐸12, 𝐸22 = ∫ 𝑒31(𝑧) (
𝜋

ℎ
) Sin (

𝜋

ℎ
𝑧) (1, 𝑓(𝑧), 𝑧)𝑑𝑧

ℎ 2⁄

−ℎ 2⁄

 𝐿2 = ∫ 𝑒24(𝑧)Cos (
𝜋

ℎ
𝑧)  𝑓(𝑧)

,𝑧
𝑑𝑧

ℎ 2⁄

−ℎ 2⁄

 

𝐹11, 𝐹12, 𝐹22 = ∫ 𝑞
31
(𝑧) (

𝜋

ℎ
) Sin (

𝜋

ℎ
𝑧) (1, 𝑓(𝑧), 𝑧)𝑑𝑧

ℎ 2⁄

−ℎ 2⁄

 𝐿3 = ∫ 𝑞
24
(𝑧)Cos (

𝜋

ℎ
𝑧)  𝑓(𝑧)

,𝑧
𝑑𝑧

ℎ 2⁄

−ℎ 2⁄

 

𝑄
1
= ∫ 𝜂

11
(𝑧) [Cos (

𝜋

ℎ
𝑧)]

2

𝑑𝑧

ℎ 2⁄

−ℎ 2⁄

 𝑄
2
= ∫ 𝑑11(𝑧) [Cos (

𝜋

ℎ
𝑧)]

2

𝑑𝑧

ℎ 2⁄

−ℎ 2⁄

 

𝑋1 = ∫ 𝜂
22
(𝑧) [Cos (

𝜋

ℎ
𝑧)]

2

𝑑𝑧

ℎ 2⁄

−ℎ 2⁄

 𝑋2 = ∫ 𝑑22(𝑧) [Cos (
𝜋

ℎ
𝑧)]

2

𝑑𝑧

ℎ 2⁄

−ℎ 2⁄

 

𝑃1 = ∫ 𝜂
33
(𝑧) [(

𝜋

ℎ
) Sin (

𝜋

ℎ
𝑧)]

2

𝑑𝑧

ℎ 2⁄

−ℎ 2⁄

 𝑃2 = ∫ 𝑑33(𝑧) [(
𝜋

ℎ
) Sin (

𝜋

ℎ
𝑧)]

2

𝑑𝑧

ℎ 2⁄

−ℎ 2⁄

 

𝑄
3
= ∫ 𝜇

11
(𝑧) [Cos (

𝜋

ℎ
𝑧)]

2

𝑑𝑧

ℎ 2⁄

−ℎ 2⁄

 𝑋3 = ∫ 𝜇
22
(𝑧) [Cos (

𝜋

ℎ
𝑧)]

2

𝑑𝑧

ℎ 2⁄

−ℎ 2⁄
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𝑃3 = ∫ 𝜇
33
(𝑧) [(

𝜋

ℎ
) Sin (

𝜋

ℎ
𝑧)]

2

𝑑𝑧

ℎ 2⁄

−ℎ 2⁄

  

 

FSDT 

According to Eq. (13), forces and momentums are defined as follows: 

{

𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦

} = ∫ {

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

}
−ℎ/2

ℎ/2
𝑑𝑧    {

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

} = ∫ {

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

}
−ℎ/2

ℎ/2
𝑧𝑑𝑧 

{
𝑄𝑥
𝑄𝑦
} = 𝑘 ∫ {

𝜏𝑥𝑧
𝜏𝑦𝑧
}

−ℎ/2

ℎ/2

𝑑𝑧         {

𝐼0
𝐼1
𝐼2

} = ∫ {
1
𝑧
𝑧2
}

−ℎ/2

ℎ/2

𝜌(𝑧) 𝑑𝑧 

(18) 

The governing equations of motion for the rectangular plate are expressed as follows: 

𝑁𝑥,𝑥 + 𝑁𝑥𝑦,𝑦 = 𝐼0�̈� + 𝐼1�̈�𝑥

𝑁𝑦,𝑦 + 𝑁𝑥𝑦,𝑥 = 𝐼0�̈� + 𝐼1�̈�𝑦

𝑀𝑥,𝑥 +𝑀𝑥𝑦,𝑦 − 𝑄𝑥 = 𝐼1�̈� + 𝐼2�̈�𝑥

𝑀𝑦,𝑦 +𝑀𝑥𝑦,𝑥 − 𝑄𝑦 = 𝐼1�̈� + 𝐼2�̈�𝑦
𝑄𝑥,𝑥 + 𝑄𝑦,𝑦 + 𝑞 = 𝐼0�̈�

∫ (
𝜕𝐷𝑥
𝜕𝑥

Cos(
𝜋𝑧

ℎ
) +

𝜕𝐷𝑦

𝜕𝑦
Cos(

𝜋𝑧

ℎ
) +

𝜋

ℎ
𝐷𝑧Sin(

𝜋𝑧

ℎ
))

𝑧𝑘+1

𝑧𝑘

𝑑𝑧 = 0

∫ (
𝜕𝐵𝑥
𝜕𝑥

Cos(
𝜋𝑧

ℎ
) +

𝜕𝐵𝑦

𝜕𝑦
Cos(

𝜋𝑧

ℎ
) +

𝜋

ℎ
𝐵𝑧Sin(

𝜋𝑧

ℎ
))

𝑧𝑘+1

𝑧𝑘

𝑑𝑧 = 0

 (19) 

By substituting the displacement from Eq. (4) into the strain of Eq. (5) and rewriting Eq. (19), we have: 

 

{

𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦

} = ∫ [

𝑐11(𝑧) 𝑐12(𝑧) 0

𝑐12(𝑧) 𝑐22(𝑧) 0

0 0 𝑐66(𝑧)
] {

𝑢0,𝑥 + 𝑧𝜃𝑥,𝑥  

𝑣0,𝑦 + 𝑧𝜃𝑦,𝑦
𝑢0,𝑦 + 𝑣0,𝑥  + 𝑧(𝜃𝑥,𝑦 + 𝜃𝑦,𝑥)

}
𝑧𝑘+1

𝑧𝑘

𝑑𝑧

−∫ [
0 0 𝑒31(𝑧)

0 0 𝑒32(𝑧)
0 0 0

] {

0
0
−𝜙,𝑧

}
𝑧𝑘+1

𝑧𝑘

𝑑𝑧 −∫ [
0 0 𝑞31(𝑧)

0 0 𝑞32(𝑧)
0 0 0

] {

0
0
−𝜓,𝑧

}
𝑧𝑘+1

𝑧𝑘

𝑑𝑧

 

 

{
𝑄𝑦
𝑄𝑥
} = 𝑘∫ [

𝑐44(𝑧) 0

0 𝑐55(𝑧)
] {
𝑤0,𝑦 + 𝜃𝑦
𝑤0,𝑥 + 𝜃𝑥

}
𝑧𝑘+1

𝑧𝑘

𝑑𝑧

−∫ [
𝑒24(𝑧) 0

0 𝑒15(𝑧)
] {
𝐸𝑦
𝐸𝑥
}

𝑧𝑘+1

𝑧𝑘

𝑑𝑧 − ∫ [
𝑞24(𝑧) 0

0 𝑞15(𝑧)
] {
𝐻𝑦
𝐻𝑥
}

𝑧𝑘+1

𝑧𝑘

𝑑𝑧

 

{

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

} = ∫ [

𝑐11(𝑧) 𝑐12(𝑧) 0

𝑐12(𝑧) 𝑐22(𝑧) 0

0 0 𝑐66(𝑧)
] {

𝑢0,𝑥 + 𝑧𝜃𝑥,𝑥  

𝑣0,𝑦 + 𝑧𝜃𝑦,𝑦
𝑢0,𝑦 + 𝑣0,𝑥  + 𝑧(𝜃𝑥,𝑦 + 𝜃𝑦,𝑥)

}
𝑧𝑘+1

𝑧𝑘

𝑧𝑑𝑧

−∫ [
0 0 𝑒31(𝑧)

0 0 𝑒32(𝑧)
0 0 0

] {

0
0
−𝜙,𝑧

}
𝑧𝑘+1

𝑧𝑘

𝑧𝑑𝑧 − ∫ [
0 0 𝑞31(𝑧)

0 0 𝑞32(𝑧)
0 0 0

] {

0
0
−𝜓,𝑧

}
𝑧𝑘+1

𝑧𝑘

𝑧𝑑𝑧

 

 {

𝐷𝑥
𝐷𝑦
𝐷𝑧

} = [

0 0 0 𝑒15(𝑧) 0

0 0 𝑒24(𝑧) 0 0
𝑒31(𝑧) 𝑒32(𝑧) 0 0 0

]

{
 
 

 
 
𝑢0,𝑥 + 𝑧𝜃𝑥,𝑥  

𝑣0,𝑦 + 𝑧𝜃𝑦,𝑦  

𝑤0,𝑦 + 𝜃𝑦
𝑤0,𝑥 + 𝜃𝑥
𝑢0,𝑦 + 𝑣0,𝑥  + 𝑧(𝜃𝑥,𝑦 + 𝜃𝑦,𝑥)}

 
 

 
 

+ [

𝜂11(𝑧) 0 0

0 𝜂22(𝑧) 0
0 0 𝜂33(𝑧)

]  {

𝐸𝑥
𝐸𝑦
𝐸𝑧

} + [

𝑑11(𝑧) 0 0

0 𝑑22(𝑧) 0
0 0 𝑑33(𝑧)

]  {

𝐻𝑥
𝐻𝑦
𝐻𝑧

} 

 

(20) 
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{

𝐵𝑥
𝐵𝑦
𝐵𝑧

} = [

0 0 0 𝑞15(𝑧) 0

0 0 𝑞24(𝑧) 0 0
𝑞31(𝑧) 𝑞32(𝑧) 0 0 0

]

{
 
 

 
 
𝑢0,𝑥 + 𝑧𝜃𝑥,𝑥  

𝑣0,𝑦 + 𝑧𝜃𝑦,𝑦  

𝑤0,𝑦 + 𝜃𝑦
𝑤0,𝑥 + 𝜃𝑥
𝑢0,𝑦 + 𝑣0,𝑥  + 𝑧(𝜃𝑥,𝑦 + 𝜃𝑦,𝑥)}

 
 

 
 

+ [

𝑑11(𝑧) 0 0

0 𝑑22(𝑧) 0
0 0 𝑑33(𝑧)

]  {

𝐸𝑥
𝐸𝑦
𝐸𝑧

} + [

𝜇11(𝑧) 0 0

0 𝜇22(𝑧) 0
0 0 𝜇33(𝑧)

] {

𝐻𝑥
𝐻𝑦
𝐻𝑧

} 

 

By substitution of Eq.  (20) into the equations of motion in Eq. (19), the governing equations will be obtained as 

follows: 

𝐴11𝑢0,𝑥𝑥 + 𝐵11𝜃𝑥,𝑥𝑥 + 𝐴12𝑣0,𝑦𝑥 + 𝐵12𝜃𝑦,𝑦𝑥 + 𝐸11𝜙,𝑥 + 𝐹11𝜓,𝑥
+𝐴66(𝑢0,𝑦𝑦 + 𝑣0,𝑥𝑦) + 𝐵66(𝜃𝑥,𝑦𝑦 + 𝜃𝑦,𝑥𝑦) = 𝐼0𝑢0,𝑡𝑡 + 𝐼1𝜃𝑥,𝑡𝑡

 (21-1) 

𝐴12𝑢0,𝑥𝑦  + 𝐵12𝜃𝑥,𝑥𝑦 + 𝐴22𝑣0,𝑦𝑦 + 𝐵22𝜃𝑦,𝑦𝑦 + 𝐴66(𝑢0,𝑦𝑥 + 𝑣0,𝑥𝑥) + 𝐵66(𝜃𝑥,𝑦𝑥 + 𝜃𝑦,𝑥𝑥)

+𝐺11𝜙,𝑦 + 𝐻11𝜓,𝑦 = 𝐼0𝑣0,𝑡𝑡 + 𝐼1𝜃𝑦,𝑡𝑡
 (21-2) 

𝐵11𝑢0,𝑥𝑥 + 𝐷11𝜃𝑥,𝑥𝑥 + 𝐵12𝑣0,𝑦𝑥 + 𝐷12𝜃𝑦,𝑦𝑥 + 𝐵66(𝑢0,𝑦𝑦 + 𝑣0,𝑥𝑦 ) + 𝐷66(𝜃𝑥,𝑦𝑦 + 𝜃𝑦,𝑥𝑦)

−𝐾𝐴55(𝑤0,𝑥 + 𝜃𝑥) + (𝐸22 + 𝐾𝐽2)𝜙,𝑥 + (𝐹22𝐾𝐽3)𝜓,𝑥 = 𝐼1𝑢0,𝑡𝑡 + 𝐼2𝜃𝑥,𝑡𝑡
 (21-3) 

𝐵12𝑢0,𝑥𝑦 + 𝐷12𝜃𝑥,𝑥𝑦 + 𝐵22𝑣0,𝑦𝑦 + 𝐷22𝜃𝑦,𝑦𝑦 + 𝐵66(𝑢0,𝑦𝑥 + 𝑣0,𝑥𝑥) + 𝐷66(𝜃𝑥,𝑦𝑥 + 𝜃𝑦,𝑥𝑥)

−𝐾𝐴44(𝑤0,𝑦 + 𝜃𝑦) + (𝐺22 + 𝐾𝐿2)𝜙,𝑦 + (𝐻22𝐾𝐿3)𝜓,𝑦 = 𝐼1𝑣0,𝑡𝑡 + 𝐼2𝜃𝑦,𝑡𝑡
 (21-4) 

𝐾𝐴44(𝑤0,𝑦𝑦 + 𝜃𝑦,𝑦) + 𝐾𝐴55(𝑤0,𝑥𝑥 + 𝜃𝑥,𝑥) − 𝐾𝐿2𝜙,𝑦𝑦 − 𝐾𝐿3𝜓,𝑦𝑦
−𝐾𝐽2𝜙,𝑥𝑥 − 𝐾𝐽3𝜓,𝑥𝑥 − 𝑘𝑤𝑤0 + 𝑘𝑆(𝑤0,𝑥𝑥 + 𝑤0,𝑦𝑦) + (𝑁𝐸𝑥 + 𝑁𝑀𝑥)𝑤0,𝑥𝑥
+(𝑁𝐸𝑦 + 𝑁𝑀𝑦)𝑤0,𝑦𝑦 = 𝐼0𝑊0,𝑡𝑡

 (21-5) 

𝐽2(𝑤0,𝑥𝑥 + 𝜃𝑥,𝑥) + 𝑄1𝜙,𝑥𝑥 + 𝑄2𝜓,𝑥𝑥 + 𝐿2(𝑤0,𝑦𝑦 + 𝜃𝑦,𝑦) + 𝑋1𝜙,𝑦𝑦 + 𝑋2𝜓,𝑦𝑦
𝐸11𝑢0,𝑥 + 𝐺11𝑣0,𝑦 + 𝐸22𝜃𝑥,𝑥 + 𝐺22𝜃𝑦,𝑦 − 𝑃1𝜙 − 𝑃2𝜓 = 0

 (21-6) 

𝐽3(𝑤0,𝑥𝑥 + 𝜃𝑥,𝑥) + 𝑄2𝜙,𝑥𝑥 + 𝑄3𝜓,𝑥𝑥 + 𝐿3(𝑤0,𝑦𝑦 + 𝜃𝑦,𝑦) + 𝑋2𝜙,𝑦𝑦 + 𝑋3𝜓,𝑦𝑦
𝐹11𝑢0,𝑥 + 𝐻11𝑣0,𝑦 + 𝐹22𝜃𝑥,𝑥 + 𝐻22𝜃𝑦,𝑦 − 𝑃2𝜙 − 𝑃3𝜓 = 0

 (21-7) 

 

Where 

  

𝐴44 = ∫ 𝐶44(𝑧)𝑑𝑧

ℎ 2⁄

−ℎ 2⁄

 𝐴55 = ∫ 𝐶55(𝑧)𝑑𝑧

ℎ 2⁄

−ℎ 2⁄

 

  

𝐺11, 𝐺22 = ∫ 𝑒32(𝑧) (
𝜋

ℎ
) Sin (

𝜋

ℎ
𝑧) (1, 𝑧)𝑑𝑧

ℎ 2⁄

−ℎ 2⁄

 𝐻11, 𝐻22 = ∫ 𝑞
32
(𝑧) (

𝜋

ℎ
) Sin (

𝜋

ℎ
𝑧) (1, 𝑧)𝑑𝑧

ℎ 2⁄

−ℎ 2⁄

 

𝑁𝑥
𝐸 = ∫ 2𝑒31(𝑧)

𝜙
0

ℎ
𝑑𝑧

ℎ 2⁄

−ℎ 2⁄

 𝑁𝑥
𝑀 = ∫ 2𝑞

31
(𝑧)

𝜓
0

ℎ
𝑑𝑧

ℎ 2⁄

−ℎ 2⁄

 

𝑁𝑦
𝐸 = ∫ 2𝑒32(𝑧)

𝜙
0

ℎ
𝑑𝑧

ℎ 2⁄

−ℎ 2⁄

 𝑁𝑦
𝑀 = ∫ 2𝑞

32
(𝑧)

𝜓
0

ℎ
𝑑𝑧

ℎ 2⁄

−ℎ 2⁄

 

𝐽
2
= ∫ 𝑒15(𝑧)Cos (

𝜋

ℎ
𝑧) 𝑑𝑧

ℎ 2⁄

−ℎ 2⁄

 𝐽
3
= ∫ 𝑞

15
(𝑧)Cos (

𝜋

ℎ
𝑧) 𝑑𝑧

ℎ 2⁄

−ℎ 2⁄

 

𝐿2 = ∫ 𝑒24(𝑧)Cos (
𝜋

ℎ
𝑧) 𝑑𝑧

ℎ 2⁄

−ℎ 2⁄

 𝐿3 = ∫ 𝑞
24
(𝑧)Cos (

𝜋

ℎ
𝑧) 𝑑𝑧

ℎ 2⁄

−ℎ 2⁄
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SOLUTION METHOD 

In this section, Navier’s method is utilized to solve the linear and coupled governing equations for FGMEE, which 

were obtained in Eqs. (17 and  21). The simply-supported boundary conditions for in-plane vibrations of the rectangular 

plate are as follows [40]: 

𝑢0 = 𝑁𝑦 = 0         𝑎𝑡   (𝑦 = 0, 𝑏)

𝑣0 = 𝑁𝑥 = 0         𝑎𝑡  (𝑥 = 0, 𝑎)
 (22-1) 

Besides, simply-supported boundary conditions for out-of-plane vibrations of a rectangular plate are expressed as 

follows [41]: 

𝑤0 = 𝜃𝑥 = 𝑀𝑦 = 0         𝑎𝑡   (𝑦 = 0, 𝑏)

𝑤0 = 𝜃𝑦 = 𝑀𝑥 = 0         𝑎𝑡  (𝑥 = 0, 𝑎)
 (22-2) 

To solve the obtained governing differential equations, the responses satisfying the aforementioned boundary 

conditions are considered [32]: 

𝑢0(𝑥, 𝑦, 𝑡) = ∑∑ 𝑈𝑛𝑚

∞

𝑚=1

∞

𝑛=1

Cos(𝛼𝑥)Sin(𝛽𝑦)𝑒𝑖𝜔𝑡

𝑣0(𝑥, 𝑦, 𝑡) = ∑∑ 𝑉𝑛𝑚

∞

𝑚=1

∞

𝑛=1

Sin(𝛼𝑥)Cos(𝛽𝑦)𝑒𝑖𝜔𝑡

𝑤0(𝑥, 𝑦, 𝑡) = ∑∑  𝑊𝑛𝑚

∞

𝑚=1

∞

𝑛=1

Sin(𝛼𝑥)Sin(𝛽𝑦)𝑒𝑖𝜔𝑡

𝜃𝑥(𝑥, 𝑦, 𝑡) = ∑∑ 𝑋𝑛𝑚

∞

𝑚=1

∞

𝑛=1

Cos(𝛼𝑥)Sin(𝛽𝑦)𝑒𝑖𝜔𝑡

𝜃𝑦(𝑥, 𝑦, 𝑡) = ∑∑ 𝑌𝑛𝑚

∞

𝑚=1

∞

𝑛=1

Sin(𝛼𝑥)Cos(𝛽𝑦)𝑒𝑖𝜔𝑡

𝜙(𝑥, 𝑦, 𝑡) = ∑∑  𝜙𝑛𝑚

∞

𝑚=1

∞

𝑛=1

Sin(𝛼𝑥)Sin(𝛽𝑦)𝑒𝑖𝜔𝑡

𝜓(𝑥, 𝑦, 𝑡) = ∑∑  𝜓𝑛𝑚

∞

𝑚=1

∞

𝑛=1

Sin(𝛼𝑥)Sin(𝛽𝑦)𝑒𝑖𝜔𝑡

𝛼 =
𝑚𝜋

𝑎
                      𝛽 =

𝑛𝜋

𝑏

 (23) 

The natural frequencies of the system can be obtained in an Eigen-value form by substitution of Eqs. (23) into Eqs. 

(17 and 21): 

{[𝐾] − [𝑀]𝜔2}[𝑞] = 0 (24) 

where M and K are mass and stiffness matrices, respectively, and q denotes the displacement vector defined as follows: 

𝑞 = [𝑈 𝑉 𝑋 𝑌 𝑊 𝜑 𝜓]𝑇  (25) 

 

RESULTS AND DISCUSSION 

In this section, the numerical results are calculated for the in-plane and out-of-plane vibrations of the plate. 

 

In-plane Vibrations  

To validate the obtained results for in-plane vibrations, the natural frequencies attained for in-plane vibrations of the 

isotropic plate were compared with the results of reference [5] and [15], based on the third-order shear deformation theory 

and 3-D elastic theory, respectively. As it is evident, good consistency was achieved confirming the validity of the 

obtained results. 
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Table 1. Comparison of non-dimensional in-plane natural frequencies    𝝌 =
𝝎 𝒂

𝝅
√
𝝆

𝑮
   for isotropic rectangular plates 

Theory 
Mode sequences 

(0,1) (1,0) (1, 1) (0,2) (1,2) (2,0) 

Elasticity [15] 0.833 1.0000 1.301 1.6667 1.9437 2.0000 

TSDT [5] 0.833 1.0000 1.301 1.6667 1.9437 2.0000 

Present study 0.833 1.0000 1.301 1.6666 1.9436 2.0000 

 

Out-of-plane Vibrations  

 

Table 2 compares our results for the out-of-plane natural frequencies of an isotropic plate with simply-supported 

boundary conditions with the results of reference [1] and references [2, 3, 4],  based on the 3-D elastic theory and third-

order shear deformation theory, respectively. 

Table 2. Comparison of non-dimensional out-of-plane natural frequencies    𝝌 = 𝝎 𝒉√
𝝆

𝑮
  for SSSS isotropic 

rectangular plates 

Theory  
Mode sequences 

(1,1) (1,2) (1,3) (2,2) (2,3) (3,3) 

3-D [1] 0.0932 0.226 0.4171 0.3421 0.5239 0.6889 

TSDT [3] 0.0931 0.2222 0.4158 0.3411 0.5221 0.6862 

TSDT [4] 0.0930 0.2220 0.4151 0.3406 0.5208 0.6840 

TSDT [2] 0.0930 0.2220 0.4151 0.3406 0.5208 0.6840 

Present study 0.0894 0.2139 0.4013 0.3290 0.5043 0.6636 

 

 

Table 3 also presents a comparison of the out-of-plane natural frequencies of a plate with simply-supported boundary 

conditions with a transversely isotropic plate based on shear deformation theory [5]. 

Table 3. Non-dimensional out-of-plane natural frequencies 𝝌 =
𝝎 𝒂𝟐

𝒉
√
𝝆

𝑮
of transversely isotropic plates (SSSS) 

Theory 

Mode sequences 

(1,1) (1,2) (2,1) (2,2) (1,3) 

FSDT [5] 9.6016 23.8923 23.8923 38.0519 47.4202 

Present study 9.2311 23.0308 23.0308 36.7747 45.9065 

 

 

Moreover, to validate the vibration of  MEE plates based on FSDT, the out-of-plane non-dimensional natural 

frequencies, 𝜒 =
𝜔𝑎2

ℎ
√

𝜌

𝑐11
, obtained in this study were compared with results published by Li and Zhang [41] in Figure 3 

of their paper. As it is clear, there is a proper agreement between these studies.  
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Figure 3. Comparison of normalized frequency 𝒉 = 𝟎. 𝟎𝟏  𝛗 = 𝟎  𝒏 = 𝒎 = 𝟏  

 

In-plane and out-of-plane Vibrations  

To validate the results of the present work for the MEE plate based on ESDT and FSDT, a comparison was made with 

the results reported by Ke et al. [24] for the classical theory of MEE nanoplate. Table 4 provides the result of this 

comparison for non-dimensional natural frequencies which suggests a good coincidence. 

Table 4. Comparison of non-dimensional nature frequency𝝌 = 𝝎 𝒂√
𝑰𝟎

𝑨𝟏𝟏
 MEE plate 𝝍𝟎 = 𝝋𝟎 = 𝟎 

 Work 𝝎𝟏𝟏 𝝎𝟏𝟐 𝝎𝟐𝟐 

𝒂 = 𝒃 = 𝟔𝟎𝒏𝒎
𝒉 = 𝟒𝒏𝒎

 

Present study (ESDT) 0.3698 0.89 1.40 

Present study (FSDT) 0.3698 0.8861 1.384 

Ke et al [24] 0.3698 0.9247 1.48 

 

 

This section is dedicated to the numerical examples of out-of-plane vibrations of the FG-MEE rectangular plate. The 

bottom and top of the plate were considered to be made of CoFe2O4 and BaTiO3, respectively. Properties of FG-MEE 

material are listed in Table 5. 

 

Table 5. Properties of Materials [30] 

Properties BaTiO3 CoFe2O4 Properties BaTiO3 CoFe2O4 

𝑪𝟏𝟏 = 𝑪𝟐𝟐  (𝑮𝒑𝒂) 166 286 𝑞31 = 𝑞32  (𝑁/𝑀𝐴) 0 580.3 

𝑪𝟏𝟐 77 173 𝑞24 = 𝑞15 0 550 

𝑪𝟏𝟑 = 𝑪𝟐𝟑 78 170.5 𝑞33 0 699.7 

𝑪𝟑𝟑 162 269.5 
𝜂11 = 𝜂22  (10

−9 𝐶2

/𝑁𝑚2) 
11.2 0.08 

𝑪𝟒𝟒 = 𝑪𝟓𝟓 43 45.3 𝜂33 12.6 0.093 

𝑪𝟔𝟔 44.5 56.5 𝑑11 = 𝑑22 = 𝑑33 0 0 

𝒆𝟑𝟏 = 𝒆𝟑𝟐    (𝑪/𝒎
𝟐) -4.4 0 

𝜇11 = 𝜇22  (10
−6 𝑁𝑆2

/𝐶2) 
5 -590 

𝒆𝟐𝟒 = 𝒆𝟏𝟓 11.6 0 𝜇33 10 157 

𝒆𝟑𝟑 18.6 0 𝜌 (𝑘𝑔/𝑚3) 5800 5300 

 

First, the effects of different parameters, including electrical and magnetic potentials, as well as the plate length, on 

the natural frequencies were investigated. Thickness was considered as a function of length, while the thickness-to-length 
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ratio was assumed to be 0.1. Table 6 shows the effect of length variations with positive, zero, and negative electrical 

potentials on the natural frequencies in two modes of out-of-plane vibrations and coupled in-plane and out-of-plane 

vibrations. As can be seen, the natural frequency decreases by increasing the electrical potential. Also, the effect of plate 

length was investigated on the natural frequencies in two modes of out-of-plane vibration and coupled in-plane and out-

of-plane vibrations, based on FSDT theory as plotted in Figure 4. The natural frequencies decrease by the increment of 

the rectangular plate length. The maximum effect of electrical potential on natural frequency was observed by 2.5-time 

enhancing the length of the initial length. 

 

Table 6. Effect of electrical potential on the natural frequency 
𝒉

𝒂
= 𝟎. 𝟏   𝒑 = 𝒏 = 𝒎 = 𝟏 

a Theory 

In-plane and Out-of-plane Out-of-plane 

𝜑 = −107(𝑉) 𝜑 = 0 𝜑 = 107(𝑉) 𝜑 = −107(𝑉) 𝜑 = 0 
𝜑
= 107(𝑉) 

1 
FSDT 3637.12 3418.41 3184.71 3672.64 3456.06 3224.97 

ESDT 3638.38 3419.76 3186.16 3673.91 3457.41 3226.43 

2 
FSDT 1764.73 1709.21 1651.81 1782.34 1728.02 1671.21 

ESDT 1765.38 1709.88 1652.51 1783.65 1728.71 1671.96 

3 
FSDT 1164.28 1139.47 1114.11 1176.67 1151.98 1126.94 

ESDT 1164.72 1139.92 1114.57 1177.02 1152.47 1127.39 

 

 

Figure 4. Effect of electrical potential and length on the natural frequency 
𝒉

𝒂
= 𝟎. 𝟏   𝒑 = 𝒏 = 𝒎 = 𝟏 

 

Due to the inherent negative piezoelectric coefficient of MEE materials, application of the negative electrical potential 

to the plate can lead to an increase in the natural frequency; whilst, a decrease in the natural frequency is probable upon 

applying a positive electrical potential. In other words, by imposing a positive/negative external electric potential on the 

FG-MEE plate, compressive/tensile in-plane loads will be generated resulting in a subsequent reduction/enhancement of 

the natural frequency. 

The effect of length variations with positive, zero, and negative magnetic potentials on the natural frequency is listed 

in Table 7 for two modes of out-of-plane vibration and coupled in-plane and out-of-plane vibrations. This table suggests 

n increasing trend of frequency by elevating the magnetic potential. 
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Table 7.  Effect of magnetic potentials on the natural frequency 
𝒉

𝒂
= 𝟎. 𝟏   𝒑 = 𝒏 = 𝒎 = 𝟏 

a Theory 
In-plane and Out-of-plane Out-of-plane 

𝜓 = −105(𝐴) 𝜓 = 0 𝜓 = 105(𝐴) 𝜓 = −105(𝐴) 𝜓 = 0 𝜓 = 105(𝐴) 

1 
FSDT 3106.5 3418.41 3704.15 3147.72 3456.06 3738.87 

ESDT 3107.98 3419.76 3705.38 3149.21 3457.41 3740.3 

2 
FSDT 1633.09 1709.21 1782.07 1652.80 1728.02 1800.06 

ESDT 1633.8 1709.88 1782.72 1653.45 1728.71 1800.82 

3 
FSDT 1105.9 1139.47 1172.08 1118.75 1151.98 1184.17 

ESDT 1106.36 1139.92 1172.51 1119.27 1152.47 1184.74 

 

 

Furthermore, the effect of plate length on the natural frequencies is depicted in Figure 5 for two modes of out-of-plane 

vibration and coupled in-plane and out-of-plane vibrations, based on the ESDT theory. The natural frequencies decreased 

by incrementing the rectangular plate length. The maximum effect of magnetic potential on natural frequency was 

observed by the 1.5-fold increase of the initial length. By reviewing both graphs, an insignificant difference can be 

observed between natural frequencies in two modes of coupled in-plane and out-of-plane vibrations and out-of-plane 

vibrations, so the in-plane vibrations can be ignored in the analysis. 

 

Figure 5. Effect of electrical potential and length on the natural frequency 
𝒉

𝒂
= 𝟎. 𝟏   𝒑 = 𝒏 = 𝒎 = 𝟏 

 

Therefore, it can be declared that imposing the negative/ positive applied external magnetic potential will generate 

tensile/compressive in-plane loads in the FG-MEE plate resulting in the consequent frequency increase/reduction. 

 

Table 8. Effect of electrical potential on the natural frequency 

h Theory 

In-plane and Out-of-plane Out-of-plane 

𝜑 = −107(𝑉) 𝜑 = 0 𝜑 = 107(𝑉) 𝜑 = −107(𝑉) 𝜑 = 0 
𝜑
= 107(𝑉) 

0.1 
FSDT 3637.12 3418.41 3184.71 3672.64 3456.06 3224.97 

ESDT 3638.38 3419.76 3186.16 3673.91 3457.41 3226.43 

0.2 
FSDT 6075.28 6012.8 5949.66 8929.87 8973.58 9017.07 

ESDT 6087.12 6024.79 5961.80 8754.47 8798.99 8843.29 

0.3 
FSDT 7769.14 7737 7704.73 9049.55 9078.32 9107.01 

ESDT 7809.93 7778.01 7745.95 8825.37 8854.80 8884.13 
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In the latter case, the length and width were kept constant while the thickness was increased. Table 8 shows the effect 

of thickness variation at negative, zero, and positive electrical potential in two modes of out-of-plane, coupled in-plane 

and out-of-plane vibrations. As can be seen, an increase in the electrical potential declined the natural frequencies; 

moreover, an increment in the plate thickness enhanced the natural frequencies. Moreover, the effect of thickness 

variations at positive, zero, and negative magnetic potential is showed in Table 9 on the natural frequency in both modes 

of out-of-plane and coupled in-plane and out-of-plane vibrations. According to this table, an enhancement of the magnetic 

potential and plate thickness resulted in an increment of natural frequencies. A comparison between the two theories 

suggests an increase in the frequency difference by enlarging the thickness. 

 

Table 9. Effect of magnetic potentials on the natural frequency 

h Theory 

In-plane and Out-of-plane Out-of-plane 

𝜓 = −105(𝐴) 𝜓 = 0 𝜓 = 105(𝐴) 𝜓 = −105(𝐴) 𝜓 = 0 
𝜓
= 105(𝐴) 

0.1 
FSDT 3106.5 3418.41 3704.15 3147.72 3456.06 3738.87 

ESDT 3107.98 3419.76 3705.38 3149.21 3457.41 3740.3 

0.2 
FSDT 5929.38 6012.8 6095.06 9030.89 8973.58 8915.89 

ESDT 5941.58 6024.79 6106.87 8857.37 8798.99 8740.22 

0.3 
FSDT 7694.41 7737 7779.36 9116.14 9078.32 9040.35 

ESDT 7735.7 7778.01 7820.08 8893.46 8854.80 8815.97 

 

 

The effect of the power-law index on natural frequencies is illustrated in Figure 6 for zero electrical and magnetic 

potentials. As can be seen, by increasing the power index, natural frequencies raised. Moreover, a comparison between 

the two theories shows that although the frequency difference increased with the increment of thickness; this difference 

declined by the increase of the power index. 

 

Figure 6.  Effect of power index on the natural frequency 

 

In Table 10, the natural frequency of FGMEE plates with different thicknesses is shown for different types of elastic 

media, for FSDT and ESDT. Here, three types of the elastic foundation were considered: without elastic medium (𝑘𝑤 =
𝑘𝑆 = 0), Winkler medium (𝑘𝑤 ≠ 0, 𝑘𝑆 = 0), and Pasternak medium (𝑘𝑤 = 𝑘𝑆 ≠ 0). It can be seen that the natural 

frequency of the Pasternak medium was lower than Winkler as the Pasternak medium considers spring and shear constant 

as well as a higher structure stiffness. However, an increment of the plate thickness increased the plate stiffness, hence 

reducing the effect of the Pasternak medium on the natural frequency. 
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Table 10. The natural frequency of FGMEE plates with different types of elastic media 

h Theory 

In-plane and Out-of-plane 

Without 

elastic medium 

With 

Winkler medium 

With 

Pasternak medium 

0.1 
FSDT 3418.41 3416.33 3375.02 

ESDT 3419.76 3417.68 3376.38 

0.2 
FSDT 6012.8 6012.22 6000.79 

ESDT 6024.79 6024.21 6012.81 

0.3 
FSDT 7737 7736.7 7730.85 

ESDT 7778.01 7777.71 7771.89 

 

CONCLUSIONS 

In this paper, in-plane and out-of-plane free vibrations of the FG-MEE rectangular plate was investigated using FSDT 

and ESDT. The variations of electric and magnetic potentials along the thickness of the plate were determined according 

to the Maxwell equation and magnetoelectric boundary conditions. The following conclusions can be made from the 

obtained numerical results:  

1) The natural frequency difference between the coupling mode and out-of-plane vibration mode at a thickness of 0.1m 

is about 1.1%. With increasing the thickness to 0.2 this value reached 49.2%. 

2) The natural frequency difference between the two theories increased with enhancing the plate thickness. This 

difference with the thickness-to-length ratio of 0.1 is 0.03%. When the aspect ratio was set to 0.2 and 0.3 these 

differences reached 0.2% and 0.5%, respectively. 

3) In the FG-MEE plate, an increase in the power index from zero to 0.5 resulted in the highest frequency enhancement 

(11.7%). Moreover, with the increasing plate thickness, this value decreased and reached 7.4%. 

4) The natural frequency of vibration increased/decreased with positive/negative electrical potential for the FG-MEE 

plate. 

5) Natural frequency decreased/increased with positive/negative magnetic potentials in the FG-MEE rectangular plate. 

6) In the FG-MEE plate, the effect of the Pasternak medium on the reduction of the natural frequency declined from 

1.3% to 0.08% when the plate thickness was incremented. 
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