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ABSTRACT 

 

The bioactive and biological affinity with bony tissue effect of hydroxyapatite (HA) is 

marked as the chosen material for implant applications. Uniting HA that has low mechanical 

properties that limit its application with higher mechanical property of metallic biomaterial 

SS 316L stainless steel (SS 316L) to form a composite has been a solution to produce 

acceptable mechanical properties for human implants. The SS316L/HA composite would 

have attributed vital to current implant materials, like a low Young’s modulus, high 

compatibility, and bioinertness. This study investigated the mechanical and physical 

properties of the SS 316L/HA composite fabricated by metal injection moulding. The 

synthesis of HA was produced from calcium-phosphate. Meanwhile, polypropylene (PP), 

stearin acid (SA) and the primary binder, paraffin wax (PW) were used as a binder system. 

Different weights of HA (0 wt. %, 5 wt. %, 10 wt. % and 15 wt. %) ratios to SS 316L/HA 

were prepared. All samples were sintered at 1350 ºC for 2 h soaking time. The result showed 

that 10 wt. % HA composite and above had higher porosity and low mechanical strength. 

However, SS 316L had a high relative density, which was 95.80%, while 5wt. % HA relative 

density was 87.95% as compared to other additives of HA % and hardness of 209.58% and 

132.94 %, respectively. The increase in HA wt. % content had routed the tensile strength and 

elongation of SS S316L/HA composite to decrease as it was brought closer to the human 

bone that had lower than tensile strength of 60 MPa –130 MPa . Therefore, 5 wt. % HA 

composite was found to be the most excellent powder ratio for SS 316L/HA composite in 

regard to mechanical and physical properties and to achieve the mechanical strength of the 

composite was necessary as the amount of HA content in the composite was smaller than 15 

wt. %.  
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INTRODUCTION 

 

Powder injection moulding (PIM) is a technology process that is based on injection moulding 

of metal powder. PIM process is moderately recognised as the development of processing 

industries. PIM is a net shaping process to fabricate a desired design and shape of a moulded 

part through mass production by using metal powder and it can produce intricate, small and 

precise compacts [1]. Powder metallurgy process is a well-established technique and viable 

alternative to investment machining and casting [2]. There are four necessary steps in PIM, 

which are mixing or kneading process, injection moulding, debinding and sintering process 

[2, 3]. Each process represents different phase of sample: i) mixing process of metal powders 

and organic binders to prepare the feedstock, ii) injection moulding of feedstock to fabricate 

a green compact iii) debinding (solvent and thermal) process to form a brown compact and 

iv) sintering to be near full density by solid state diffusion, which is called as a sintered 

compact [4, 5]. 

 Metals such as cobalt-chromium alloys (Co-Cr-Mo), titanium alloys  

(Ti-6Al-4 V) and stainless steel 316L (SS 316L) are well-known as metal alloys that are 

commonly used in dentistry and orthopaedics as implant materials.[6, 7]. There are many 

advantages of using these metals as biomaterials, for instance, excellent corrosion resistance, 

and outstanding mechanical properties [8]. The stainless steel 316L alloy is one of the 

medical-grade metals which are suitable devices for internal fixation [9, 10]. Besides, 316L 

is conventionally used as implant devices due to their characteristics, such as easy to 

fabricate, mechanical properties that are highly economical , i.e. good corrosion resistance, 

biocompatibility, high fatigue resistance and high tensile strength [11]. 

 Hydroxyapatite (HA) with stoichiometric formula Ca10(PO4)6(OH)2 is the chief 

inorganic component of bones that are frequently used as a synthetic bone graph and scaffold 

for tissue engineering[12]. Basically HA is calcium phosphate ceramic in which its chemical, 

composition and structure are approximately identical with the human teeth and bone. It 

offers outstanding properties, such as being non-toxic, has bioaffinity with living tissues, 

high biocompatibility and osteoconductive [13]. Moreover, HA partakes low mechanical 

properties, for instance, low fracture toughness and brittleness, which give a boundary for its 

use in load-bearing applications [14]. Consequently, to improve the mechanical properties, 

metallic materials are used to fabricate tough metal-ceramic composites [15]. 

 The SS 316L and HA composites convey designate a promising biomaterial for 

replacement implant applications [3]. This present research is designed to fabricate SS 

S316L/HA composite to study its physical and mechanical properties and the microstructure 

behaviour of sintered SS 316L-HA composites.  They can be obtained by the powder 

metallurgy process which can produce a product of mechanical strength, as well as excellent 

physical and chemical properties. Besides, this research explains the outcome of HA additive 

on composite mechanical and physical behaviours. 
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EXPERIMENTAL PROCEDURE 

  

Material 

The SS 316L atomised gas was provided by Osprey Co. and was selected to be used as a 

metal powder to combine with bioceramic hydroxyapatite powder. Commercial 

hydroxyapatite powder was supplied by MSHC Industrial CO. LTD with a stoichiometric 

formula of Ca10(PO4)6(OH)2 , and was used as material for the composite mechanical strength 

flexibility . Table 1 shows the characteristics of powders. The volume of powder loading 

used 60 vol% with Binder’s components shows detail in Table 2. 

 

Table 1. Characterisation of metal and ceramic powders. 

 

Powder D50 

(µm) 

D90 

(µm) 

D10 

(µm) 

Sw 

(µm) 

Density 

(g/cm3) 

Shape Melting 

point (̊C) 

SS 316L 11.4 25.2 3.6 3.0 7.99 Spherical 1400 

HA 70.26 137.46 29.61 3.84 3.06 Spherical 1300 

 

D50 is the mean particle size diameter for particle size distribution,  

D90 and D10 indicate the distribution at 90% and 10% (cumulative) for size distribution curve,  

Sw (slope parameter distribution = 2.56/log(D90/D10) 

 

 
Figure 1. SEM image of SS 316L alloy powder. 
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Figure 2. SEM image of hydroxyapatite powder. 

 

Table 2. Binder characterisation. 

 

Binder Chemical 

structure 

Density (g/cm3) Melting 

temperature (̊C) 

Decomposition 

temperature (̊C) 

PW C31H64 0.91 47-65 200-400 

PP (C3H6) n 0.90 >95 328-410 

SA C18H36O2 0.94 69.4 180-380 

 

Feedstock Preparation, Mixing and Injection Moulding Process 

Homogenisation of the SS 316L and HA powders was performed in a Portable V-Blender at 

a maximum rotational speed of 26 rpm. These powders were mixed in the V-Blender for 120 

min. Then, the powders were mixed with binders to prepare the feedstock by using the 

double-planetary mixer at 150 ºC and a rotational speed of 70rpm for 90 min. The NISSEI 

Model NS20-2A injection moulding machine was utilised to fabricate the tensile-shaped 

compacts (ASTM E8). The injection moulding process successfully fabricated the green 

compacts at 150 ºC. Based on observation, no defect was detected on the green compacts. 

 

Table 3. The binder system for SS S316L/HA composite. 

 

Binder Components Composition (%) 

Paraffin wax (PW) 70 

Polypropylene (PP) 25 

Stearic acid (SA) 5 
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Debinding and Sintering Process 

Debinding process was conducted in two phases, which were solvent debinding and thermal 

debinding. Wicking technique was applied for solvent debinding by using fine Al2O3 

powders. Compacts were placed in a desiccator with vaporised 40mL n-heptane at 60 ºC for 

4 h [16]. At this stage paraffin wax, as the primary binder, was removed from the green 

compact. The second stage of debinding was thermal debinding. Thermal debinding was 

done by using a furnace of 500 ºC temperature with soaking time of 1 hand heating rate of 5 

ºC /min. Next, the compact was sintered at 1,350 ºC with soaking time of 3 h and at 10 ºC 

/min heating rate. In this experiment, thermal debinding and sintering were run in a tube 

furnace with argon atmosphere condition of 1 mL/min flow rate. 

 

 

RESULT AND DISCUSSION 

 

Physical Properties  

Figure 3 shows the tensile-shaped green and sintered compacts of SS316L/HA by using 

NISSEI Model NS20-2A injection moulding machine.  

 

 
 

Figure 3. SS316L/HA (15 wt. % HA) tensile-shaped compact without defects. 

  

Figure 4 shows the experimental results of relative density. Meanwhile Figure 5 shows the 

microstructure of solid SS 316L/HA with compact porosity that is dependent on their amount 

of hydroxyapatite present in the powder mixtures. Based on the investigation results, it can 

be resolved that the relative density of SS 316L/HA composite sintered compact was lower 

than relative density of SS 316L sintered compact. The amount of HA additive in the powder 

mixtures affected the density, while the open and total porosity increased. It was apparent 

that the sintered compact with the highest content of HA presented the lowest density and 

higher porosity.  
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Figure 4. The influence of HA additive on SS 316L/HA sintered composite density. 

 

  

 

                                      
 

 

                                    
 

Figure 5. Microstructure images: (a) sintered SS 316L, (b) sintered SS 316L/ 5HA wt.%, 

(c) sintered SS 316L/10 HA wt.%, (d) sintered SS 316L/15 HA wt.%. 
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 The lowest amount of HA additive of 5 wt.% showed the highest relative density, 

which was 87.95% as compared to 10 wt.% and 15 wt.% HA additives. This decrease may 

have a relation with the reduction of ductility and compressibility of the biocomposites [17]. 

The ductility of SS 316L was higher than HA as it showed a lower amount of SS 316L in the 

mixture will lower relative density obtained. Sintered SS 316L/ 5 wt. % HA composite 

showed the best physical properties. These outcomes agreed to the results that were 

originated by Younesi et al. [17] who investigated the tribological properties and physical 

behaviour on effects of HA additive of nickel free stainless steels [17]. Next, the sintered 

compact SS 316L/HA showed obvious pores as Figure 6 shows the graph of porosity % on 

different wt.% HA with Image J. The graph trend clearly shows that the porosity % increases 

with increased HA content in biocomposite. The outward values of porosity reached to 62 % 

from 4.1 %.   

 
 

Figure 6. The influence of HA additive on sintered composite porosity. 

  

The dimensional shrinkage of the green and sintered compacts was measured from its 

dimensional changes. The linear shrinkage of many MIM compacts are varied between 10% 

to 20 % [18]. The shrinkage recorded in this work was in the range of 6.7% to 13.3 %. As 

shown in Figure 7, the highest shrinkage resulted from sintered compact with 13.3 % on 5 

wt. %. HA condition. Meanwhile, additive of 15 wt. % of HA showed the lowest percentage 

of shrinkage. It can be concluded that the amount of shrinkage percentage gradually 

decreased with increase in the HA amount. Besides, higher content of HA was not affected 

by heat in the sintering process, which likened to SS 316L metal that enlarge at high 

temperature [14]. 
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Figure 7. The influence of HA additive on shrinkage properties. 

 

Mechanical Properties  

Tensile Properties 

Figure 8 shows the trends of tensile stress-strain for SS 316L/HA composite with different 

HA percentage contents. From these graphs it clearly shows that addition of 5 wt. % HA will 

give the highest ultimate tensile stress (UTS). 

 
 

Figure 8. Stress-strain curve for SS 316L/HA biocomposite. 
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Figure 9. Ultimate tensile strength of SS 316L/HA biocomposite. 

 

It can be renowned from Figure 9 that the tensile strength of the biocomposite sintered 

compact decreases as the content of HA increases. The biocomposite content of 5 wt. % HA 

showed the closest value to the pure SS 316L, 323.8 and 429.0 MPa, respectively. It showed 

a lower strength with 10 wt. % and 15 wt.% HA contents of biocomposite. It can be concluded 

that with an increase in the content of HA in biocomposite, it showed a decrease in tensile 

strength, which nearly value with tensile strength of bone (human cortical bone), 60-130 MPa 

[19].  

The microstructures of different sintered compacts obviously showed perceived high 

strength at lower amounts of HA ceramic powder on sintered compacts.  The micro-voids or 

porosity appearances were due to interparticle spaces between 316L and HA detected as the 

utmost factor which affected the compact tensile strengths. Besides, the tensile strength of 

sintered compacts was affected by density. The higher value of density on sintered compact 

gave a stronger interparticle bonding as it avoided crack propagation and provided higher 

tensile strength [18].   
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Figure 10: Elongation for SS 316L/HA biocomposite 

 

 Figure 10 presents the elongation result from the tensile test for sintered compact. 

Biocomposite of 5 wt. % HA showed a higher elongation result of 16.6% as compared to 10 

wt.% and 15 wt. % powder ratio, which were 15.0% and 10.0%, respectively. Pure SS 316L 

sintered compact showed the highest elongation, which was 26.0%. From the graph, it can 

be said that the additive of HA ceramic in mixture gave a significant elongation result, 

whereby the elongation decreased with increased HA ceramic contents. It showed that at 

lower content of HA wt. % in sintered compact, the elongation tended to be a bit lower. The 

highest amount of HA, which was 316L/15 wt. % HA, recorded the lowest elongation 

percentage (10%). Meanwhile, at high HA content, the elongation of sintered compacts 

showed lower intensity and ductility. This was possibly associated with the presence of pores 

and cracks that occurred from the aggregation of ceramic brittle composition [19]. 

 

Hardness properties 

Figure 11 presents the Vicker’s hardness of biocomposite as a function of HA ceramic 

content (wt. %). It is noted that the graph shows the hardness result of all different HA wt. % 

content is augmented with HA content. Comparable trends were stated in previous study [20]. 

This was owed to the increase in percentage of HA ceramic with lower hardness in composite 

that caused the composite hardness to decrease. The maximum hardness value of SS 

316L/HA composite was found in composite with 0 wt. % HA, which was 209.58 Hv, 

followed by 5 wt.% 10 wt.% of HA and pure SS 316L without HA content, 132.94 Hv, 89.82 

Hv and 29.82 Hv, respectively.  The enhancement of hardness was comeuppance with the 

combination of hard HA particles [20]. In addition, 316L/HA composite microhardness 

rallies with increase in HA content. 
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Figure 11. Vickers hardness variation functions of HA weight percentage in SS 316L/HA 

composite. 

 

 

CONCLUSION 

 

From the above results, the study concludes the following; 

1) The amount of hydroxyapatite ceramic in the mixture of powders increases up to     15 

wt.%, sintered relative density and shrinkage percentage of SS 316L/HA composite 

decrease, while the open and total porosity increased. The additive of 5 wt. % HA in 

SS 316L/HA sintered composite obtained the best physical properties which was at 

87.95% relative density.  

2)  Hydroxyapatite additive chiefs to amend microstructure of sintered composite and 

modify the sintering behaviour since the content of HA is not affected by heat in the 

sintering process, which likened to SS 316L metal that enlarges in high temperature. 

As for the next study, the result will be enhanced by reducing the sintering 

temperature to accomplish the primary goal in powder metallurgy method.  

3)  From mechanical testing, the increase of HA additive in sintered compact routed the 

decrease in tensile strength and hardness. Composite with 5wt. % HA showed the 

most excellent physical properties. However, the tensile strength of 323.8MPa 

surpassed the human bone strength, leading to the stress-shielding phenomena. 

Meanwhile, the composite of SS 316L/10wt.% HA is closer to human bone strength 

with 240MPa, and tensile strength of 15wt.% of HA composite additive is in the range 

of human bone strength. The result achieved was seemed as an improvement in this 
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research, in which the mechanical strength was closer to human bone properties. This 

combination of excellent properties can be applied in human load-bearing 

applications. The results showed that the composites in range of between 5 wt. % and 

10 wt.% gave the best mechanical as the strength was closer to the human bone limit 

and high physical properties. Envisioned for future research, to maintain and achieve 

the strength of mechanical properties of SS 316L/HA biocomposite will require an 

amount of HA content in the composite which are below than 15 wt. %. Besides, 

further study on corrosion behaviour can be done to investigate the biocompatibility 

of sintered compact. 
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