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INTRODUCTION   

Understanding the physical mechanisms of bone fracture represents a major challenge in biomechanics, since it allows 

the enhancement of injury criteria commonly used by European New Car Assessment Programme (Euro NCAP) for the 

safety of vehicle passengers and pedestrians [1]. It can also deliver a follow up of athlete's safety during their trainers 

avoiding risk zones of injury especially in contact sports [2]. This knowledge is essentially based on the use of the 

numerical models, whose prediction is assessed through the development of high resolution medical imaging and 

simulation software [3]. Among these models, the anthropometric test device (ATD) commonly used for crash-test or 

other more detailed local models simulating the interaction between bone tissue and clinical equipment such as prostheses. 

Their advantage lies mainly in the diversity of configurations and loading conditions and hence the optimization of time 

and the total benchmark cost.  However, one can observe that the material constitutive laws used are often derived from 

the experimental characterizations carried out at the macroscopic scale ignoring the bone microarchitecture [4]. A 

micromechanical approach is more interesting to improve the limitations of these models [5]. Concerning the studies 

investigating the effects of geometrical parameters and their combinations, we can cite the study of Sam Daliri et al. [6, 

7] who combined numerical and statistical analysis for the prediction of stress distribution and buckling of the cylindrical 

shell structures [8], analogous to humerus bone. 

The present investigation shows the theoretical formulation, the numerical development and the experimental 

validation of a ductile damage and fracture model applied to the human humerus bone in the thermodynamics framework 

[9]. As the bone architecture has a matrix-inclusion morphology, the Mori-Tanaka homogenization scheme [10] was 

proposed for the modeling of the elastic behavior [11, 12]. For the non linear behavior, the macroscopic tangent operator 

was formulated. The strain rate effects on the humerus failure was considered by means of the standard model of Johnson-

Cook as a preliminary trial [13]. The resulting micromechanical damage model was then implemented as User Material 

subroutine (UMAT) within the explicit dynamics code LS-DYNA [14].  

The numerical model was validated by a drop tower test on human humerus for the determination of the mechanical 

response and the damage growth until complete failure of humerus. The proposed approach revealed to be appropriate 

for fracture analysis of biomechanical hard tissues.  

 
METHODS AND MATERIALS 

Micromechanical Formulation of the Damage model 

The representative elementary volume of human humerus bone is composed of an elastic solid matrix and cylindrical 

voids. In the thermodynamic framework, we consider an elastic damage model caused by the void growth in which the 

porosity represents the damage variable d. As classically, the thermodynamical potential of the solid matrix reads: 

 

𝜓 =
1

2
𝜀 ∶ ℂ ∶ 𝜀 

(1) 

ABSTRACT – This paper deals with the formulation, development and validation of a newly 
developed micromechanical-based model for the modeling of the nonlinear ductile fracture of 
human humerus. The originality of the present works concerns the coupling between the 
micromechanical formulation based on the Mori-Tanaka homogenization scheme for cylindrical 
voids and the Marigo nonlinear ductile damage model based on the porosity growth. The proposed 
model was implemented as a User Material UMAT within the explicit dynamic software LS-DYNA 
and validated by numerical and experimental analysis conducted by a drop tower impact of human 
humerus. The outcome of the proposed multi-scale model appears to correctly predict the general 
trends observed experimentally via the good estimation of the ultimate impact load and the fracture 
patterns of the human humerus. 
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where ε is the macroscopic strain tensor and where ℂ is the macroscopic stiffness tensor obtained from the Mori Tanaka 

model [10, 15]: 

ℂ = ℂ𝑠 + (ℙ − ℂ𝑠
−1)−1: [(1 − 𝑑)𝕀 + 𝑑(𝕀 − ℙ ∶ ℂ𝑠)−1]−1 

(2) 

                                           

 

where 𝕀 is the identity tensor and where ℙ is the Hill tensor [16] which depends on the shape and orientation of voids and 

on the solid matrix elasticity tensor ℂ𝑠 (see [11, 17]). 

From the Marigo [9] formulation, we can obtain the following yield function 𝑔 as a function of the damage variable 𝑑 

and the thermodynamical force 𝐹𝑑: 

 

𝑔 = 𝐹𝑑 − 𝑅(𝑑) ≤ 0 (3) 

                                  

with 𝑅(𝑑) = 𝑘 + 𝜉𝑑.The two damage variables 𝑘 and 𝜉can be identified from experimental investigations.      

The standard normality rule reads: 

 

�̇� = �̇�
𝜕𝑔

𝜕𝐹𝑑
= �̇� 

(4) 

 

where �̇� is the damage multiplier calculated by means of the consistency condition �̇� = 0. 

Then, by including the evolution law in the stress tensor, we obtain the tangent formulation  of the elastic damage law: 

 

�̇� = 𝕃 ∶ 𝜀̇ (5) 

                         

where the tangent operator 𝕃 writes: 

 

𝕃 = ℂ −
1

𝐻
(

𝜕ℂ

𝜕𝑑
∶ 𝜀) ⊗ (

𝜕ℂ

𝜕𝑑
∶ 𝜀) 

(6) 

 

with 𝐻 = −
𝜕𝑔

𝜕𝑑
= 𝜉 +

1

2
𝜀 ∶

𝜕2ℂ

𝜕𝑑2 ∶ 𝜀. 

 
Strain Rate Effect 

The strain rate 𝜀̇ can have a significant influence in the case of dynamic loading. Then, to consider the strain rate 

effect on the humerus bone failure strain, we adopt the simplified Johnson-Cook rupture model [18]: 

 

𝜀𝑟
𝑑𝑦𝑛

= 𝜀𝑟
𝑠𝑡𝑎 (1 + 𝐷4 ln

𝜀̇

𝜀0̇

) 
(7) 

                                         

where 𝜀𝑟
𝑠𝑡𝑎 is the yield strain at the failure in quasi-static and  𝜀𝑟

𝑑𝑦𝑛
 the one in dynamic. 𝜀0̇ represents the inial strain rate 

and the parameter 𝐷4 can be determined from experiments. Then, we can obtain the critical damage in dynamic by the 

following equation: 

 

𝑑𝑟
𝑑𝑦𝑛

= 𝑑0 + (𝑑𝑟
𝑠𝑡𝑎 − 𝑑0) (1 + 𝐷4 ln

𝜀̇

𝜀0̇

)
2

 
(8) 

 

where 𝑑0 and 𝑑𝑟
𝑠𝑡𝑎 are the initial and the static critical damage respectively. 

 
Three-Point Bending Experiments 

Three-point bending experiments of three fresh human humeri were conducted on a drop tower apparatus of 2.30 m 

height. A drop mass fixed to a carriage was allowed to fall freely while guided on vertical rails. The carriage height can 

be adjusted to adapt the impact velocity. A laser sensor M7L for accurate measurement against all surfaces was fixed to 

the drop tower bed in order to record the successive positions of the impactor. The two epiphyses of each humerus are 

fixed by an epoxy resin in two aluminum prismatic brackets (Figure 1) and the diaphysis was equipped with five strain 

gauges.  
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Figure 1. Three-point bending experiment. 

 
Multi-Scale Finite Element Model 

The finite element model of the humerus mechanical response under impact was elaborated from the digitalized STL 

format obtained by medical scans of the system humerus-brackets. First, the 3D CAD geometry of the diaphysis was 

generated using the CATIA © v6.0 software [19] and the inner and outer surfaces of the humerus diaphysis were 

reconstituted. Next, a first mapped finite element mesh was generated using only quads. Then, a 3D mesh was extruded 

using 7920 hexahedrons by means of the HYPERMESH © v2017 software [20].  

The rigid brackets have been modeled by solid-shell elements [21] and the humerus epiphyses were embedded into 

the brackets using a prismatic solid having the resin material parameters. The system humerus-brackets was positioned 

on a plate which has been modeled by rigid elements. The impactor has been modeled using shell elements and an elastic 

material (see Figure 2). The simulation was carried out using the Explicit algorithm of LS-DYNA © R11 software [14].  

 

 
Figure 2. Finite Element model 

RESULTS 

Experimental Local Identification of the Model Parameters 

The first step was the experimental identification of the local elastic and damage behaviors. As shown in the Figure 

3, small specimens were dissected from the same humerus and tested mechanically. First, nanoindentation tests were 

performed on four samples (I1 to I4) of 8 × 5 × 2 mm size using a nanoindenter Nano XP from MTS factory equipped 

with a Berkovich tip in order to identify the elastic properties of the bone solid matrix. This nanoindenter has a load 

resolution of 10 nN, a displacement resolution of 0.01 nm and a maximum indentation load of 500 mN.  

We obtain an average value of 𝐸𝑠 = 17.37 ± 1.97 GPa for the elastic modulus which is in agreement with the results 

available in the literature [22]. The value of the Poisson ratio 𝜈𝑠 was fixed to 0.3 as commonly proposed for long bones 

in the literature  [23, 24]. 
 

 

Figure 3. Specimens localization on the humerus 
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A second test was performed by incrementing the applied displacement at a constant velocity of 0.05 mm/min in 

order to evaluate, until failure, the specimens behavior as a function of the damage evolution. Cyclic three-points bending 

experiments on two specimens F1 and F2 of 58 × 5 × 3 mm size were performed using an Hounsfield H5KT machine 

directly connected to a computer recording data of load and displacement in real time. The H5KT testing machine is also 

equipped cell of 5 kN and a servomotor for displacement. The results showed an average value of 100 ± 38 N/m for the 

initial bending stiffness and of 92 ± 30 N/m for the final one. 

Finally, cyclic compression tests were performed on six specimens (C1 to C6) of 2 × 3 × 2.8 mm using an ElectroPuls 

E3000 test machine from Instron company equipped with two compression plates. This machine designed for dynamic 

and static testing on a wide range of materials and components possesses a linear stroke of 60 mm and a dynamic load 

capacity of 3 kN. The compression stiffness was 9119 ± 783 N/mm  in the longitudinal direction and 9568 ± 425 N/m 

in the transverse one. 

 
Numerical Local Identification of the Model Parameters 

The next step was the numerical identification of the local parameters of the proposed micromechanical model by 

using the basic equations of the damage for bar or beam structures and exploiting the results of the previous cyclic 

compression and bending tests. 

For the identification of the damage variables (𝑘 and 𝜉) under compression loading, a one dimension analytical model 

using bar theory in large strains was proposed. The one dimension hypothesis (Figure 4) leads to the following expression 

of the damaged elastic modulus as function of the elastic modulus of the solid matrix 𝐸𝑠 and the damage variable d: 

 

𝐸 = 𝐸𝑠(1 − 𝑑) (9) 

 

By means of our micromechanical model and the results of cyclic compression experiments, we can obtain this explicit 

expression of the critical damage as a function of the critical strain: 

 

𝑑𝑟 = 𝑑0 +
𝐸𝑠

2𝜉
𝜀𝑟

2 
(10) 

                                                                                                                                             
 

 
Figure 4. 1D model of humerus specimen under compression loading   

 

The evolution of the damage in this case with respect to the compression strain of the specimen C1 is given in the 

Figure 5. 
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Figure 5. Damage evolution with respect to the strain for compression specimen 𝑪𝟏. 

 

This procedure was applied to the six specimens (𝐶1 to 𝐶6). The identification results of compression damage 

parameters are summarized in Table 1. 

 

Table 1. Summary of damage parameters (case 1:  compression specimens). 

Specimen 𝜉 𝜀𝑟 

𝐶1 8.8 0.022 

𝐶2 9.1 0.022 

𝐶3 8.3 0.020 

𝐶4 8.3 0.020 

𝐶5 8.1 0.023 

𝐶6 7.1 0.023 

Mean 8.28 0.0216 

 

On the other hand, the identification of the damage parameters under three points bending loading is made in the same 

way as in compression case. Here, the exact beam bending theory is used. 

The 1D hypothesis (Figure 6) makes it possible to arrive to an explicit relationship of the critical damage as a function 

of the curvature χ : 

 

𝑑𝑟 = 𝑑0 +
𝐸𝑠

2𝜉
𝑒2𝜒2

𝐿0

2
 

(11) 

                                  

 

 
 Figure 6. 1D model of humerus specimen under bending 
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Then, the evolution of the damage of the specimen F1 under bending loading is given in the Figure 7. 

 

 
Figure 7. Damage evolution with respect to the strain for bending specimen 𝐹1 

 

This procedure was applied again to the second specimen F2. The identification results of bending damage parameters 

are  summarized in the Table 2. 

 

Table 2. Summary of damage parameters (case 2: bending specimens). 

Specimen 𝜉 𝜔𝑟 𝜒𝑟  𝜀𝑟 𝑑𝑟 

𝐹1 9.5 2.1    0.0109    0.0202    0.2919 

𝐹2 9.1 2.2    0.0109    0.0164    0.2747 

Mean 9.3 2.15 0.0109 0.0183 0.2833 

 

Finally, by means of the cyclic three point bending tests, the parameters of the Johnson-Cook model are determined 

and listed in the Table 3. 

 

Table 3. Summary of the Johnson-Cook parameters (case 2: bending specimens). 

Specimen 𝑑0 𝜉 𝜀𝑟
𝑠𝑡𝑎 𝐷4 𝑑𝑟

𝑠𝑡𝑎 𝑑𝑟
𝑑𝑦𝑛

 

𝐹1     0.029 9.5    0.0202    -0.3315    0.2919    0.0553 

𝐹2     0.045 9.1    0.0164    -0.2959    0.2747    0.0799 

Mean 0.037 9.3 0.0183 -0.3137 0.2833 0.0676 

 

According to the results of the table 4, it can be seen that the values obtained for the two specimens 𝐹1 et 𝐹2 are very 

close. Thus, the found critical damage value at the failure was 𝑑𝑟 ≈ 0.02. This maximum damage value will be retained 

and used for the validation of the proposed model of the human humerus, as a criterion for eliminating elements that will 

reach this damage value. 

 

DISCUSSION 

The aim of this section is to evaluate the predictive capabilities of the proposed micromechanical model and in 

particular its ability to reproduce the main features of mechanical behavior of the human humerus under dynamic loading. 

The Figure 8(a) represents the impact load as au function of time for the three humerus 485, 514 and 582. As we can 

observe, the load curve of the FE elastic model without damage, performs increasingly fast oscillations over the period 

of 10 ms. Because the humerus bone is assumed to be elastic and undamageable (no degradation), only the first oscillation 

is to be retained in this study and compared with the physical measurements. Indeed, the rest of the curve has no physical 

meaning, because in practice the humerus breaks at a critical damage value. Moreover, it can be seen from the three 
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figures that the maximum impact load is correctly estimated by the FE elastic model without damage compared to the 

experimental results. 

 

  

Figure 8. Mechanical response of humerus under impact: (a) Experiment vs numerical (b) Predicted fracture patterns.  

 

The introduction of damage in the FE model was made by means of the parameters 𝑑𝑟
𝑑𝑦𝑛

 and 𝜉. The filter SAE 1000 

was, then, applied in order to smooth the dynamic oscillations and to obtain a mean curve of the FE model with damage. 

(a) (b) 
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This model had allowed to reach the first peak of the elastic curve and to estimate more precisely the maximum impact 

load with a minimum error of 7%. 

As soon as the critical damage value dr
dyn

 is reached, the finite element is removed from the mesh by the software. 

The option dr
dyn

 was used in the software in order to obtain a first response on the humerus failure (Figure 8b). The first 

stalling of the FE curve with damage from the elastic curve occurs at time t = 2ms for the humerus 485 and 514 and at 

time t = 3ms for the humerus 582. However, the experimental response of the humerus is damped by the presence of the 

marrow, which is not taken into account in the FE models. This explains the differences between numerical models and 

experiments. 

For the fracture patterns predicted by the proposed damage model, they are in agreement with the physical humerus 

fracture with degrees of concordance ranging from 70% to 90%. The fracture is pronounced at the bottom of the humerus 

slightly offset from the axis of the impactor for the humerus 485 and 514. For the humerus 582, which has a particular 

geometry and a greater length than the other humerus, the predicted fracture is initiated at the bottom at two symmetrical 

points on either side of the impactor (see the Figure 8b). 

It should be noted that the fracture patterns depend highly on the mesh size according to the literature  [25, 26]. Then, 

it is necessary to refine the mesh size in order to improve the breakthrough initiation points and to introduce the XFEM 

method in order to correctly predict the rupture propagation paths after initiation  [27]. The proposed micromechanical 

model is limited only to estimating the fracture initiation points. 

 
CONCLUSIONS 

A new theoretical formulation, development and validation of a ductile damage model applied to the human humerus 

bone under impact loading, has been proposed in the present investigation. The outcome of the proposed model appears 

to be more biofidelic than classical macroscopic-based models, since it predicts the observed physical response of several 

impacted human humerus with a good accuracy within the range of variability parameters inter-donors. It has to be noticed 

also, that the ultimate impact load that a human humerus may encounter before fracture, can be estimated with the 

proposed coupled model with a high accuracy.  

The fracture patterns predicted by the proposed micromechanical damage model are consistent with the physical 

observed humerus ruptures even if this model is limited only to the fracture initiation. Further improvements will be 

performed to the present model by taking into account the marrow effects and fracture propagation by means of advanced 

Peridynamics or XFEM techniques. 
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