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INTRODUCTION   

The operating organisation is responsible for the safety of a nuclear research facility.  For more than 35 years, with a 

proper maintenance program, the RTP was able to operate safely.  Nonetheless, the accident in Fukushima changed the 

whole scenario. Since then, there were deep concerns regarding the safety of ageing nuclear facilities that come with 

imposed by the International Atomic Energy Agency (IAEA), existing safety assessment method had to be revised [1].   

Nominal incidental or accidental modes are the nuclear processes that may develop if subjected to different operational 

modes. The nuclear plant has parameters that should be within the scope of the operation and conditions for startup, 

operation, core configuration and shutdown, when in normal modes.  However, unexpected incidents might happen in 

accidental modes but without affecting many of the components at the plant. Worse, if increased uncontrollably, the 

reactor can result in failing to cool down the outflow and a lot of radioactive elements may be at large.  In order to prevent 

human injury, damage to the installation and pollution, there is a real need to diagnose the malfunctions of the reactor 

[2].  

New safety requirements  that emphasise safety fundamental principles have been introduced. The principles were 

adopted to improvise the safety assessment of the RTP to the highest level. Since after the programme upgrade, some 

subsystems at RTP have been upgraded. The analog control system has been substituted by a new digital control and the 

primary and secondary cooling systems have also been replaced. In this case, the overall control systems have performed 

differently and the cooling system has been unable to achieve the expected heat. Thus, a more detailed RTP operation 

study is necessary because the overall dynamic behaviour of the RTP has changed. At the same time, various parts of the 

RTP may deviate or fail at any juncture, hence a comprehensive intelligent fault detection and diagnosis (FDD) system 

would be critical [3,4].  

Compared to the possible hazard produced by nuclear power reactors, research reactors pose much less threat to the 

public.  However, this might not be the case for the operators who are more exposed and at risk. The interest in FDD 

methods are increasing among nuclear power industries compared to research reactors [5-9]. However, incidents also 

happen in nuclear research reactors as reported in [10]. The incidents have been classified according to the four major 

groups of initiating events: (1) the insertion of excess reactivity (Group 1), (2) the loss of flow (Group 2), (3) the loss of 

coolant (Group 3), and (4) human error, equipment and component failures (Group 4). Based on the operational 

experience presented, it is clear that uncontrolled reactivity changes and coolant channel blockages are the most serious 

events to be considered [10]. 

A nuclear reactor is a complex nonlinear, large scale and time-varying system.  It becomes more challenging to build 

a mathematical model that is able to successfully capture the dynamic behaviour of the system as the complexity of 
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nuclear reactor processes increases. Thus, the data driven method is getting more attention because it relies on the data 

acquired from the processes. The method can obtain useful information by data mining technologies and have become a 

practical FDD technology at present. In recent years, neural networks (NNs) have grown rapidly in academia and industry 

as one of thedata-driven methods [5]. The NN was successfully utilised in the FDD method for nuclear power reactors 

[5-9] and nuclear research reactors [2,11]. However, the FDD system introduced in [2,5-9,11] did not involve the overall 

nuclear reactor and only involve specific cases. 

The loss of coolant activities (LOCA) in boiling water reactor (BWR) is due to degradation mechanisms such as 

mechanical fatigue, stress accelerated corrosion (SAC) and flow accelerated corrosion (FAC) [12]. Apart from that, 

LOCA can also be caused by fault, like pipe rupture [13].  In order to diagnose the events and prediction, three 

methodologies could be implemented:  quantitative mathematical model, qualitative empirical model or data-driven 

model [14]. 

The choice of which methodology to be implemented depends on the needs of each fault occurrence in the system.  

The justification of the best methodology to be used can be obtained based on the collected operational history data.  It is 

important to choose the best methodology for specific fault occurrence as each methodology has its advantages and 

disadvantages, and can be interpreted differently when used to solve a particular nuclear power plant fault issues [15]. 

In [16] the temperature parameters of the inlet and outlet, and their failures are monitored using analytical redundancy 

methods.  The work in [17] described the application of ANN in nuclear thermal-hydraulics.  Sensor fault detection, 

isolation and reading estimate (SFDIRE) algorithm in particular was used for for the core cooling system process of this 

plant.  The behaviour of installation caused by accidents was simulated using ANN based classification techniques [2]. 

In Malaysian Nuclear Agency (MNA), a lot of work and research have been done regarding safety issues of RTP 

[11,18,19]. However, specific method to predict system failures at the RTP is still unavailable. Therefore, a preliminary 

study on fault detection system was carried out at the RTP. The project was divided to the subsystems, which were 

integrated to develop a complete intelligent FDD for the RTP. Firstly, the project has started to model the cooling system 

of RTP. The aim of the project is to investigate the potential of ANN approach to model the cooling system in normal 

state and fault state. ANN has been selected as a tool to be exploited, mainly because of its inability to formulate a 

mathematical relationship between input-output system.  This is caused by the non-linearity of the inputs and the outputs.  

On top of that, the ability to generalise well, work fast in real-time and execute complicated mapping without using 

functional relationship are also the justification of this choice. In order to eliminate the tedious work of fault detection in 

the RTP and to monitor the RTP’s health relating to safety issues, the ANN approach is very promising. 

 

DESCRIPTION OF THE RTP 

 The RTP was primarily designed to analyse nuetron activities, small angle neutron scattering, radioisotope 

production, neutron radiography, training and education purposes.  It is described as a pool-like light water moderated 

research reactor.  It has the capacity of 1MW maximum thermal power and has reach power since decades ago.  TRIGA 

fuel was used.  Enriched uranium (19.9%) is homogenously combined with zirconium hydride moderator.  The 

configuration of the RTP core is cylindric, encircled with an annular graphite relector and enclosed in aluminium casing 

tank.  The diameter is approximately 3.65 cm  and the length is 38.10 cm.  It contains 8.5% to 20% uranium 235.  The 

ration of hydrogen to zirconium atom is 1.6 [20].  Table 1 shows the exact specification of RTP:     
 

Table 1. Specification of the RTP 

Items Specification 

Name Reaktor TRIGA PUSPATI (RTP) 

Type TRIGA MARK II; pool-type reactor 

First Criticality 28 June 1982 

Max. Thermal Power 1 MW 

Av. Power Density 22.8 W/cm3 

Typical Max. Thermal Neutron Flux 1 × 1013 n/cm2/s 

Shape & Size of Reactor Core Cylindrical,55 cm in diameter × 59cm in height 

Coolant Light water 

Moderator Light water 

Control Rod B4C 

Reflector High Purity Graphite 

Fuel Element shape Rod Type 

Enrichment of U-235 Approximately  20% 
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Operational Cooling System of the RTP 

The diameter of the cylindrical reactor core is 1.09 m.  Its height is 0.89 m.  Its core contains graphite dummy elements, 

lattice fuel moderator elements and control rods, encircled by graphite reflector.  This assembly stays at the bottom of the 

reactor tank.  It is held by the reactor’s support structure.  Radiation shielding is prepared by filling it up with water about 

5.18m above the core, while the reactor is in operation.  The pool water natural convection that circulates through the 

core provides the cooling effect.  There are two cooling loops:  primary loop (80 m3/h flow rate) and secondary loop (160 

m3/h) that allow for heat rejection.  The generated heat from the fuel is transferred to the fuel cladding surface through 

thermal conductivity, and the coolant inside the core helps to remove the heat.  RTP operates in steady state and square 

wave modes.  The flow rate of the core coolant is calculated using the bouyancy force balance to the friction proessure 

obtained across the core to achieve the steady state natural convection. 

To control the reactor’s power level, four rods are used.  These control rods contain boron carbide, which is an 

absorbing material.  The cooling system is made up of a water surface skimmer, filter, pump, demineraliser, associated 

valves and piping, head exchange unit and diverse instrumentation.  This system is only needed during the operation of 

the reactor.  The water purification and cooling systems preserve the low water conductivity, the optical clarity of the 

water, remove impurities and allow for reactor heat dissipation.  Should one of the two cooling systems fail, automatic 

shutdown of the reactor will be in place.  All these control rods will be inserted inside the core of the reactor.  Rotating 

equipment such as pumps and cooling towers are numerous in order to minimise reactor operation disruption [21]. 

 The schematic diagram of the cooling systems is given in Figure 1. During usual operation, the bulk water temperature 

in the reactor tank is kept below 49℃. The temperature limit ensures the resin granules work efficiently because at high 

temperatures, the resin may damage and reduce the ability to filter the impurities in the cooling systems. The water 

chemistry of the RTP is tightly bound to the purification system that flows between the primary and secondary cooling 

loops. Structures, systems, and components (SSCs) mainly made from stainless steel and aluminium are installed inside 

the cylindrical reactor core that can hold up to 22,000 l of purified water. The water interact directly with SSCs, including 

the fuel elements that aligned vertically to the reactor core. During the operation of the reactor, activation products are 

formed, and a high radiation field is produced. The purified water flows back and forth from the primary to the secondary 

cooling loops through a resin bed installed at the demineralised system, which can trap the impurities and activation 

products. Good water quality will ensure all SSCs are intact without significant degradation and maintain its optical clarity 

inside the reactor core. The RTP has been serving for almost 40 years; therefore, it is essential to ensure its safety for 

another decade.   

 

 

Figure 1. SCADA of the primary and secondary cooling system for RTP 

 

Simulated Experimental Test Rig of RTP Cooling System 

The fault detection system was simulated by using a test rig of the RTP cooling system.  A study was conducted usint 

this simulated test rig to predict and to assess the detection of fault in RTP.  This is due to the fact that there can be 

potential accidents initiated from unreliable pipe integrity, failure in electronic, actuator, sensor and associated 

components. This test rig, although is an experimental one, can be used comprehensively to create a database that is useful 

to evaluate the estimated models.  Figure 2 illustrates the schematic diagram of this test rig.  Water flows from the primary 

into the secondary system.  Therefore the heat from the primary loop can be transferred in between both systems with the 
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help of a heat exchanger.  The heating rods from inside the water tank provide the heat effect.  This represents the nuclear 

fuel in the actual reactore core.  Using the operation history, several cases were extracted to simulate the faults. 

 

 

Figure 2. The schematic diagram for the simulated experimental test rig 

 

METHODOLOGY 

RTP Cooling System Modelling using Artificial Neural Network 

An intelligent fault detection system was developed to overcome the tedious process of detecting fault in the RTP 

cooling system. The ANN-based simulation of cooling system was implemnted in the plant model as shown in Figure 3. 

The dataset used in this work includes water temperature, pressure, and flow rate of the RTP cooling system collected 

during the normal reactor operation. The model is normal when the value of residual is zero and the model is faulty when 

the value of residual is nonzero. Based on the normal dataset, the ANN model structure was developed for each RTP 

cooling subsystem as shown in Figure 4. 

 

 

Figure 3. Plant model with a neural network 
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Figure 4. Block diagram of RTP cooling system 

 

Multilayer ANN with backpropagation training has a tremendous capacity to estimate and simplify the given model. 

The simplest networks with concealed layers comparable to a linear regression were adopted in the model. The 

backpropagation algorithm solves problems in the ANN faster. For the error 𝛿𝑗
𝑙of neuron 𝑗 in layer, 𝑙 is given by: 

𝛿𝑗
𝑙 =  

𝜕𝐶

𝜕𝑧𝑗
𝑙
 (1) 

The computation of 𝛿𝑙 for every layer is explored in the backpropagation and  the errors are related to the quantities 

of real interest. 

The neural network approach is by training and testing activities. Training means that a neural network is taught to 

seize the essential link between the selected inputs and outputs. A test database consists of a dataset that has not been 

used for training.  The networks will be tested using this database.  The model with low mean squared error (MSE) is a 

good model,while the regression (R) value of close to 1 shows that the outputs and the targets have a close relationship. 

The workflow of the proposed model is shown in Figure 5.  Using the real data, the best combinations of parameters for 

the configuration of ANN model structure with low MSE and R close to 1 is given in Table 2. 

 

 

Figure 5. Worflow of the proposed model 
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Table 2. The structure of ANN model for RTP cooling system 

Structure of ANN Model  

Subsystem 1: Cold-Heat Exchanger 3-10-2 

Subsystem 2: Hot-Heat Exchanger 4-10-2 

Subsystem 3: Reactor 3-10-2 

Input layer  

Subsystem 1: Cold-Heat Exchanger F002, P003, T004 

Subsystem 2: Hot-Heat Exchanger F001, P001, T002,T003 

Subsystem 3: Reactor F001, P004, T005 

Output layer  

Subsystem 1: Cold-Heat Exchanger P002, T003 

Subsystem 2: Hot-Heat Exchanger P004, T005 

Subsystem 3: Reactor P001, T002 

Number of Hidden Neurons 10 

Train function for Network Levenberg-Marquadt Algorithm 

Learning rate 0.001 

 

Artificial Neural Network Modelling for Fault Detection in RTP Cooling System 

The FDD define the fault occurrences in the system consisting of the available information gathered and processed to 

spot any deflection from nominal behaviour and categorize faults in order to conduct further sensitivity analysis. The 

ANN method can approximate the real system and detect faults if the model is very accurate. The ANN model for fault 

detection was developed using the same structure model as shown in Table 2.   The time varying residual presentation is 

used to diagnose the model and served as a fault detector.  The residuals are obtained from the command values of the 

controlled inputs and outputs observed from the monitored plant [22].  The preferred residuals are those that are affected 

by the faults only.  Unfortunately, there are  noise, disturbances and modelling errors.  They resulted in the residuals to 

be nonzero and this will interfere with the fault detection process.  The residual generation for a particular fault is shown 

in Figure 6.  The design of the residual generator catered to be robust to exasperation inputs, so that each residual will 

respond differently to the subset of faults.  At the same time, they are not affected at all by the others.  Hence, the response 

set pattern and the fault signal become the faults’ characteristics. 

 

 

Figure 6. Residual generation using ANN 

 

Five potential fault types generated from the process rig are shown in Table 3, together with the injection methods 

used. 
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Table 3. The simulated situation of normal and fault case for ANN training model 

Fault Fault Type Fault Injection Method 

1 75% restricted flowrate of the water in 

Hot-Heat Exchanger & Reactor 

Making the opening of the valve F001 to be 25% 

2 50% restricted flowrate of the water in 

Hot-Heat Exchanger & Reactor 

Making the opening of the valve F001to be 50% 

3 25% restricted flowrate of the water in 

Hot-Heat Exchanger & Reactor 

Making the opening of the valve F001 to be 75% 

4 75% restricted flowrate of the water in 

Cold-Heat Exchanger 

Making the opening of the valve F002 to be 25% 

5 75% restricted flowrate of the water in 

Cold-Heat Exchanger 

Making the opening of the valve F002 to be 50% 

 

RESULTS AND DISCUSSIONS 

This section illustrated the ANN modelling for developing a model and fault detection for RTP cooling system. In 

ANN modelling, the system model representing the normal and faulty conditions are developed. The residual is generated 

based on the differences of the two models. If the value of residual is not zero, it is indicate that the system in the faulty 

condition. In order to detect the faulty condition, the best model with the high accuracy is needed to represent the real 

RTP cooling system with the normal condition. The modelling of subsystem is as shown in Figure 4 has been done using 

multilayer ANN with backpropagation method.  

Based on the real data collected, the proposed ANN structure shows the best fit model for three subsystems of RTP 

cooling system. Table 4 shows that the MSE for all subsystems was the lowest and the R values was almost 1. The lower 

values of MSE indicate that the model is good and best fits the real model of the RTP cooling system. Meanwhile, an R 

value of 1 shows that the outputs and the targets have a close relationship. 

 

Table 4. The performance of the RTP cooling system model using ANN modelling 

Subsystem MSE R value 

Cold-Heat Exchanger 0.0006 0.8991 

Hot-Heat Exchanger 0.0061 0.9967 

Reactor 0.0543 0.9880 

 

The simulation output for each subsystem is shown in Figures 7 to 9. Only a small fluctuation of error was shown in 

the output response of pressure for each subsystem. However, the overall performance of the model for the three 

subsystems shows an excellent fit towards the target real data, which proves that the model accuracy is high.  

 

  

(a) (b) 

Figure 7. ANN modelling for cold-heat exchanger: (a) output T003 and (b) output P002 
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(a) (b) 

Figure 8. ANN modelling for hot-heat exchanger: (a) output T005 and (b) output P004 

 

  

(a) (b) 

Figure 9. ANN modelling for reactor: (a) output T002 and (b) output P001 

 

In the model accuracy assessment, a model with residual mean of less than 10% is a good model rated as A. Then, a 

model with residual mean raging from 20% to 30% is considered as an acceptable model and rated as B. Meanwhile, a 

model with residual mean of more than 50% is a poor model rated as D and a model with the rest of the residual percentage 

is referred as a marginal model and rated as C [23]. Table 5 shows that all the subsystems ranked A, indicating good 

performance with the residual mean of below 1%.  

 

Table 5. Summary of RTP cooling system model performance 

Subsystem Output Mean Residual(%) Ranking 

Cold-Heat Exchanger 
T003 0.0047 A 

P002 0.0025 A 

Hot-Heat Exchanger 
T005 0.0342 A 

P004 0.0029 A 

Reactor 
T002 0.0296 A 

P001 0.0037 A 

A=good, B=acceptable, C=marginal, D=poor 

 

The residuals obtained by comparing the differences between the system and fault models are used for detecting fault.  

The fault model  also used the proposed ANN structure is given in Table 2. The residual also known as the fault symptom 

should predict future occurrence of fault. Zero or near to zero fault symptom is considered a no fault condition, while 

nonzero fault symptom is considered a faulty condition.  

Since the fault was injected on the valve of the input system, only five possible errors of fault that can occur on the 

valve: clogged valve (75% valve F001 open), valve positioning error (50% valve F001 & F002 open) and broken valve 

(25% valve F001 & F002 open). Each type of faults was observed in terms of temperature and pressure because both 
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parameters are the output for the system model. When normal condition data and fault data were trained with the suitable 

number of hidden neuron, the observation for all data was compared.  

Figures 10 to 12 show the comparison of normal condition and fault condition at 750 kW reactor operation. Based on 

the graphs, the temperature and pressure were inversely proportional to the opening valve. As shown in the figures, the 

smaller the opening of the valve, the higher the reading for pressure and temperature. According to Layman’s theory [24], 

the pressure will increase as the flow is reduced and the temperature is directly proportional to the pressure. From the 

data obtained in the neural network, residual data are measured by calculating the difference between the normal data and 

each fault as tabulated in Table 6. 

Table 6 shows the residual pattern for temperature and pressure when the system experienced fault with 75% valve 

opening. The residual for temperature was ranging from 9.32 to 10.08℃, while the residual for pressure was 

approximately 31.84 to 32.55 kPa. The nominal water temperature was within the range of 20 to 33 ℃ during the reactor 

operation. Based on the results, the temperature is still low and within the range of during reactor operation and it can be 

considered as a small fault or small error in the system. This is because, when the opening valve is 75%, the flow of water 

is decreased by only 25%. This type of fault is classified as valve clogging. The valve clogging error need to solved early 

to prevent the fault from becoming a major serious fault. Therefore, the fault was set to be detected when the flow of 

water reduced by 25% as Fault 3. 

The residual pattern for temperature and pressure when the system experienced fault with 50% valve were higher than 

those of when the system experinced fault with 75% valve opening. The residual for temperature and pressure were higher 

especially in the reactor subsystem. It shows that for valve F001 opening 50%, the temperature was ranging from 28.55 

to 34℃, while for valve F002 opening 50% at cold-head exchanger temperature was approximately 39.35℃. As 

mentioned in [24], the pressure in all subsystems increased when the temperature increased. In this condition, the flow of 

water is decreased to 50% from the normal state. Valves F001 and F002 were 50% opened and the failure of the valves 

was injected to the system as fault 2 (F001) and fault 5(F002), respectively. This condition fault is considered as valve 

positioning error.  

When the valves are 25% opened, the condition is considered as a critical fault because the flow of water drop is very 

high which is reduced by 75% compared to the normal condition. The fault is classified as damaged valve and the output 

shows that both temperature and pressure in all subsystems were increased.  

Since this is a preliminary FDD performed on the cooling system for the RTP, the results show that the developed 

model could predict a single fault at a given data using the backpropagation training model. In the future, suitable selection 

of the filter method would be necessary to improve the fault data. 

 

  
(a) (b) 

Figure 10. Fault model for hot-heat exchanger: (a) output T005 and (b) output P004 
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(a) (b) 

Figure 11. Fault model for cold-heat exchanger: (a) output T003 and (b) output P002 

 

 

  
(a) (b) 

Figure 12. Fault model for reactor: (a) output T002 and (b) output P001 

 

Table 6. Summary of RTP cooling system for fault model 

Subsystem Output Fault Residual 

Hot-Heat Exchanger 

T005 

Fault 1 86.39 

Fault 2 28.55 

Fault 3 9.32 

P004 

Fault 1 287.42 

Fault 2 95.74 

Fault 3 31.84 

Cold-Heat Exchanger 

T003 
Fault 4 39.38 

Fault 5 20.50 

P002 
Fault 4 75.82 

Fault 5 32.55 

Reactor 

T002 

Fault 1 99.77 

Fault 2 32.47 

Fault 3 10.08 

P001 

Fault 1 492.27 

Fault 2 163.94 

Fault 3 54.55 
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CONCLUSION 

The preliminary study of fault detection was done using ANN and the set of operational data from the RTP was used 

as a training model. In this work, the residual generator was used to obtain the residual value from the actual and 

measurement data. Hypothetical data show that the ANN is capable of representing the fault detection of the cooling 

system. Therefore, the approach of using ANN to provide the failure symptoms was clearly defined. The results show 

encouraging progress, but further investigation is still required by adding other parameters, such as the material integrity 

in the system design, to gain confidence in the decision-making process. The simulation data proved that, under the 

normal operating condition of the RTP, the fault can be diagnosed accurately to provide credible and real-time data. In 

future work, several methods will  be employed to have a better understanding of the failure related to the RTP operation. 

The radiation effect will be considered in the model to simulate the consequences of high dose exposure to the system in 

faults prediction and diagnosis of the RTP. 
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