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INTRODUCTION   

In pipe inspection robots are necessary mobile mechanisms toward verifying the correctness of the pipeline 

installations and even implementing some manipulating tasks. Variety types of in-pipe robots are proposed so far each of 

which with different features and capabilities. The main objectives of improvement of the mentioned robots are 

optimizing their hardware mechanism and increasing the robustness of their software control center.  There are two 

challenges which make difficulty for investigating the pipe lines, using the traditional inpipe robots. The first one is the 

existence of obstacles at the inner surface of the pipe such as the solid sediments of the fluid which deviates the robot 

from its desired path. The second one is the necessity of blocking the flow which is impossible for some industries or at 

least costly. In this paper it is tried to propose a new mechanism which can solve the first challenge, while the second one 

is covered by designing a robust controller. The first generation of inpipe robot locomotion mechanism was based on 

wheels. However these robots didn’t have any mechanism to ensure the stability of the robot trough different pipe 

situations. Simba et.al. [1] focused on generating smooth trajectories with using piecewise Bezier curves for a wheeled 

non-holonomic mobile robot. Also, they considered ideal properties to study the mentioned purpose. Scaglia et.al. [2] 

investigated the problem of modelling the errors and demonstrated the zero convergence of tracking errors under 

polynomial un-certainties. Filaretov and Pryanichnikov [3] addressed and investigated the problem of creating an 

innovative technology for the engineers’ study on the basis of the so called “recurrent” method by forming scientific and 

R&D technical tasks for students as well as their engagement in the administration of software and hardware for mobile 

robots. Liu and Jiang [4] proposed a new class of distributed nonlinear controllers for leader-following formation control 

of unicycle robots without global position measurements. They proposed non-linear small-gain methods in order to deal 

with the problem caused by the non-holonomic constraint of the unicycle robot and yield simple conditions for practical 

implementation. Moghadam et al. has developed a wheeled based locomotion inpipe robot which is able to pass through 

the elbows. The robot employs three legs comprised of parallelogram linkages mechanism which enables adapting to 

various elbow joints in the piping systems [5].  

These kinds of robots that are mobile without any mechanism for stabilizing are not useful for pipe-investigations 

since they suffer from instability especially during tracking curvature paths and they also cannot move through vertical 

pipes. So, new mobile robots were designed which were adaptable with pipe line conditions and were more practical for 

in pipe investigations using different locomotion mechanisms. Suzumori et.al [6] designed an in-pipe robot called 

“snaking drive” that could adapt itself with pipe diameter. But these kinds of robots that have no wheels for smooth 

motion are too slow and can’t provide a fast movement. Thus, proper mechanisms were employed for in-pipe robots i.e. 

caterpillar and wheel in order to modify their movement. Nagaya er.al. [7] proposed a simple caterpillar robot with a new 

feature i.e. magnetic in caterpillar that provides the ability of moving through the vertical pipes and also increases the 

robot’s stability. To design a flexible robot Ciszewski et.al. [8] presented a robot with a new mechanism to operate in 
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circular and rectangular pipes and ducts oriented horizontally and vertically. Kwon and Yi [9] designed a new caterpillar 

robot with new property of caterpillar in order to provide a good frictional condition between the pipe’s wall and the robot 

system. It also uses a differential drive to steer the robot and spring loaded four-bar mechanisms to assure the leg’s 

expansion to the pipes’ wall. In order to increase the adaptability of the robot with geometrical condition of the pipes Park 

et.al. [10] proposed a caterpillar robot that can adapt itself with pipe diameter and it has an angular sensor to sense the 

curvature of the pipes during turning of the robot. In [11] an inchworm in-pipe robot is considered for path planning using 

GA. The robot is a helical drive in-pipe robot with multiple sub-robots connected together with conic springs just like the 

wagons of a train in order to move through the curved pipes with a good maneuverability. Caterpillar robots are so useful 

in slippery pipes since the caterpillar can provide a good friction between the robot and pipe’s wall but the mobility of 

the wheeled robots are better, so some researchers investigated and proposed wheeled based robots with modified 

mechanisms for increasing their stability. Suzumori et.al. A discussion about  the design of the wheeled robots that are 

omnidirectional and have active stabilizing control is provided by Dertien et.al.[12]. The stability of the mentioned inpipe 

robot can be increased using screw shaped locomotion mechanism. In [13] path planning of a screw-based in-pipe robot 

is investigated subject to energy optimization. Here energy consumption is investigated for three different planned path 

including minimum-energy, sinusoidal, and loss-minimization paths. There is also another type of wheeled robot in which 

the angular screw motion of a hull section is converted to a straight translational motion. This transfer occurs as a result 

of inclined angle of the frontal wheels. Since the in-pipes robot should be also capable of passing through the curved 

pipes, some special designs are proposed to meet the mentioned goal. Kakogawa et.al [14] introduced an in pipe robot 

equipped by an elastic arms which can move through the bents pipes and pipes with egg-shaped cross section. Another 

robot which can move through the bents of horizontal or vertical pipes, is studied by Li et.al.[15]. The proposed robot is 

an in-pipe robot with adaptive linkage. Peng Li et.al [16] designed a novel screw-based in pipe robot which can move 

through both circular and square tube pipe-lines with curvature using a wall pressed mechanism. Helical drive in-pipe 

robots are usually designed with passive wheels however, Yonghua Chen et.al [17] proposed a new mechanism of in-

pipe robot in which the wheels are synchronized by connecting timing belt. The experimental tests show better traction 

force for this novel in-pipe robot.  

The in-pipe robots can be also equipped by magnets to adhere the steel pipes and move through them. In a work 

accomplished by Jason Liu et.al. [18] a miniature magnetic in-pipe robot is proposed in which the movement through the 

small pipes with diameter of 50mm is realized by the aid of some magnets attached to the wheels. To extract the 

kinematics of screw in-pipe inspection robot, Nayak and Pradhan [19]  designed a screw type robot in straight and bent 

pipes. A new type of telescopic in-pipe robot is designed in this article, which is driven by step motor and screw, and 

supported by wheels. The robot has advantages of waterproof grade of IP68, stable motion state, and larger traction force. 

Through force analysis and calculation, its maximum climbing angle is larger than 35°. The robot has good passing ability 

through the pipelines with bends [20].  Obstacle avoidance is not considered in previous researches. Li et.al [21] proposed 

a screw robot with one motor that can change its job automatically in order to pass the obstacle. However since it has just 

one controlling input, its maneuverability is constrained. Yanheng et.al. [22] proposed a flexible steering mechanism in 

order to move in branches of the pipes. The mentioned researches are limited to designing the robot and no impressive 

controlling strategy is proposed for them.  Following studies focus on design and implementation of a closed loop 

controller in order to increase the robustness of the robot in front of disturbances and parametric uncertainties. A screw 

drive in-pipe robot based on adaptive linkage mechanism is proposed in [23] by Li. Et al. The differential property of the 

adaptive linkage mechanism allows the robot to move without motion interference in the straight and varied curved pipes 

by adjusting inclining angles of rollers self-adaptively. In order to improve the adaptability to the variable resistance, a 

torque control method based on the fuzzy controller is proposed. This controller is numeric and needs offline 

programming which is not suitable for online and real-time applications.Pyrkin and Pitanga et.al. [24] proposed a 

controller for mobile robots that has “consecutive compensator” and “MPC”. Although the robustness of the mentioned 

robot is increased, but it cannot be controlled in the presence of the fluid stream. A screw robot was investigated by 

Heidari et.al. [25] in live water stream and they extracted the kinematics and dynamics of the system while fuzzy-logic 

controller is employed for stabilizing the system which is numeric and is not preferable.  

As can be seen in the literature, a robust analytic controller is ignored for in pipe robots which are steerable. 

Considering the fact that the robustness of the Sliding Mode Controller (SMC) is significantly high, implementing of this 

controller for multi input in pipe robots which are usually exposed to flowing fluid can be extremely useful. SMC has 

been implemented for some similar mechanisms so far; Sliding mode is a strong nonlinear robust controller which can be 

employed for the vast variety of robots. Adaptive sliding mode control is implemented for a novel cable driven robot to 

increase the end-effector performance in presence of disturbances [26].  In [27] a robust controller based on back stepping 

method and sliding mode control method is designed for a wheeled omnidirectional mobile robots. Here the sliding mode 

control compensates the parametric uncertainties and external disturbances for a 4-wheels omnidirectional robot. There 

are also some studies proposing new controlling ideas which are robust and can compensate the disturbancers, but they 

are have been employed for simple plants such as motors or elastomers so far [28, 29].Most researches in the field of in 

pipe robots are limited to moving through the empty pipes while in many cases blocking the flow of the fluid is not 

possible or even cost full.  There are few researches in which the screw in pipe robots is considered in presence of  water 

flow however no robust controller is proposed in these papers [30]. 

To sum up, investigating the mentioned literatures shows that first of all, the previous screw robots have fixed wheels 

angle which are not steerable. Thus it is not possible to by-pass the probable obstacles. Secondly most of them are 

considered in the pipes with no flowing fluid which ignores the effect of real disturbances. Thus it is necessary to block 

http://www.sciencedirect.com/science/article/pii/S2405896315012550
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the stream of the pipe. And finally a robust analytic multivariable controller is not implemented on this kind of robots so 

far, to control them in presence of obstacles and drag forces. The goal of this paper is to design a robust analytic controller 

for the mentioned steerable in-pipe robot with two controlling input to increase its stability and robustness in presence of 

pipeline flow. This robot is able to bypass the obstacles and move through the live pipe with flowing fluid. To cover the 

mentioned goal, first of all, the mechanism is improved to increase its maneuverability in presence of obstacles.  

Kinematics and kinetics of the proposed variable pitch rate screw robot is represented. Afterwards, considering the multi 

input-multi output (MIMO) structure of the corresponding state space, the design procedure of a proper controller based 

on robust approach of SMC is presented in presence of external disturbance of fluid drag forces. In the next section the 

superiority of the designed robot and the efficiency of the implemented controller is verified by the aid of a series of 

analytic simulations performed in the MATLAB and SIMULINK. The proposed robot is also modeled in ADAMS and it 

is exported to the SIMULIMK in order to compare the efficiency of the proposed controller in presence of drag forces 

relative to conventional FL method. It is shown that, not only the possibility of controlling the pitch rate of the robot 

movement is provided by the aid of the proposed mechanism, but also its robust control is guaranteed in presence of 

external disturbances of flowing fluid using the SMC approach. 

 

KINEMATICS AND DYNAMICS 

Kinematics 

The robot consists of a stator with three fixed angle wheels and a rotor with three angled wheels as shown in  

Figure 1. The locomotion of the robot is realized by screw shaped rotation of the rotor part of the robot within the pipe 

by the aid of its installed angled wheels. Traditional versions of this robot had a fixed angle for the angled wheels which 

caused a fixed pitch rate for the robot movement. The new proposed screw in-pipe robot in this paper has steerable angled 

wheels which result in controllable pitch rate for the robot movement. 

Therefore, previous models of this kind robots had just one input and two states. But in this paper the system is 

considered steerable and so, one degree of freedom and one input is added to the system which eventually causes 

increasing the states of the system from 2 to 4.  

 

 
 

(a) (b) 

Figure 1. (a) A screw in-pipe inspection robot [31] and (b) The parameters on one pair of wheels  

without passive wheels 

 
To meet this goal, a differential based gearbox system is added to the steering mechanism, according to the Figure 2 

which controls the angle of all of the three front legs simultaneously by a unique motor. This differential is prepared using 

four interconnected bevel gears. The driver gear is connected to the input controlling motor while the driven gears are 

connected to the wheels.  
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(a) 

 
(b) 

Figure 2. (a) Proposed steerable screw inpipe robot and (b) The scheme of the added differential gear for  

the steer module 

 
Thus, the new Jacobian matric needs to be extracted. In this paper the states are (∅. ∅̇. 𝛼 𝑎𝑛𝑑 �̇�) in which ∅ is the 

angle of the hull and 𝛼 is the angle of the wheels. For infinitesimal motion along z direction which is the pipe line direction, 

there are two equations that demonstrate the kinematic relation between the robot rotation  with ∅ and 𝛼 and the relation 

between z distance with ∅ , 𝛼.  
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As shown in Figure 1(b), b is the distance between the center of the robot and the center of the wheel, r is the radius 

of the wheels and we have𝑅 = (𝑟 + 𝑏) which is the radius of the pipe. The translation matric of the system which 

translates the local center of the robot to its related global position, will be as Tz. 
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So if at the initial condition the vector of the center of the robot is p=[0,0,0], the position of the robot as a function of 

∅ and 𝛼 is: 
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Also in order to stablish the relation between the joint space and work space of the robot when �̇�, �̇�,�̇� are considered 

as the work space of the robot and �̇� and ∅̇ are considered as the joint space of the robot, the Jacobian matric can be 

defined as: 
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Dynamics 

The proposed system can be described with two coupled differential equations relevant to generalized coordinates 

(𝛼 𝑎𝑛𝑑 ∅). The equations of the system are extracted using Lagrangian approach. First of all, it is needed to make L as 

Eq. (6): 

L T V= −  (6) 

where T and V denote the kinetic energy and potential energy due to gravitational forces, respectively. Thus the total 

kinetic energy will be: 

1 2( )motor Hull w wT T T T T= + + +  (7) 

where Tmotor , THull , Tw1  and Tw2 show kinetic energy of the motor, hull, wheels around the pipe axis and wheels around 

the legs, respectively. 𝛤 denotes the number of steering wheels. In Eq. (7) the kinetic energy of the passive straight wheels 

is ignored. Therefore, total kinetic energy of the system can be described as: 

2
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where S and C denotes the Sin and Cos of the related angles and: 
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Also 𝐼𝐵 and 𝐼𝑤ℎ𝑒𝑒𝑙  are moment of inertia of the hull and moment of inertia of the wheel. Moreover Mm and Mh are the 

mass of the motor and hull respectively, and IWX and IWZ are the wheel moment of inertia about the X and Z axis. An 

infinitesimal change in the potential energy of the robot due to gravity during the motion along the vertical pipes can be 

calculated as: 

( )( ) tan( )m hdV M M m b r gd = + + +  (10) 

g is gravitational acceleration and m is the mass of the wheels. As mentioned above, ∅ 𝑎𝑛𝑑 𝛼 i.e. the angle of rotation of 

the hull and the variation of the wheels’ angle, respectively are considered as the generalized coordinates of the system 

and so the corresponding Lagrangian equation can be written as: 
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where Qi are the generalized forces which can be identified as Eq. (12) for the present work: 
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In Eq. (12), Tm is the torque generated by the motor relevant to the hull, Tf  is the resisting torque due to the friction 

between the wheels and their axles and Ts is the torque generated by  the motor corresponding to the steering wheels.  

The friction is one of the most important parameters in the system which guaranties the robot stability, so Tf  should 

be calculated accurately by the aid of Eq. (13): 

sin( )f NT b F =  (13) 

where, 𝜇 is the coefficient of friction and FN is the normal force exerted on the wheels from the pipe wall. Thus by 

calculating Eq. (11) the dynamic differential equation of the system in presence of external drag force of the stream can 

be extracted as: 
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(15) 

where 𝜆 is the summation of all masses, A is the cross section aria of the robot against the fluid stream, CD is drag 

coefficient,  is the density of the fluid and v is the relative velocity of the robot with respect to the fluid.   Because of 

steerability of the wheels and increasing the DOFs of the system, the number of differential equations of the system 

increases to two. In order to solve the mentioned equations, extracting the time responses of the DOFs and finally 
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controlling the system, it is required to rewrite the equations in the form of state space. Considering (∅. ∅̇. 𝛼. �̇�) as the 

states of the proposed inpipe robot, corresponding state space can be extracted as:  
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CONTROL DESIGN 

Two nonlinear controlling strategies of feedback linearization and sliding mode are employed here to control the 

designed robot and the performance of them are compared. It will be shown that in presence of stream drag force as the 

external disturbances, the former fails while the latter can handle the robot movement in presence of the mentioned 

disturbance.   

Also it should be considered that both of the considered nonlinear controllers of FL and SMC results in stable closed 

loop system according to Lyapunov theory and their stability are proved .Moreover about the latter case, the robustness 

of the system can be also guaranteed as the result of defining the related sliding surface. 

 

Feedback Linearization 

Considering the fact that the drag force of the flowing fluid is an external disturbance for the robot, sliding mode 

control approach is employed in order to control and stabilize the system. To meet this goal, exact linearization needs to 

be implemented on the state space of the system. The following MIMO system is the exact nonlinear presentation of the 

state space of the present robot:   
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where x (
n ) is the state vector, u (

m ) represents controlling inputs of the system, y (
m ) stands for outputs, f and 

g are nonlinear smooth vector fields, h is a nonlinear smooth scalar function and d(t) is a bounded external disturbance 

with definite bound of D, that is |𝑑(𝑡)| ≤ 𝐷 < ∞.Also Tm and Ts are the controlling input of the system which are the 

torque of the main body and the angle wheels.  

In this section the input-output linearization of the above MIMO system is performed by differentiating the output y 

of the system till the inputs appear explicitly. So, by differentiating Eq. (18): 
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u is the input of the system and 𝐿𝑓ℎ and 𝐿𝑔ℎ represent the Lie derivatives of ℎ(𝑥) with respect to 𝑓(𝑥) and 𝑔(𝑥), 

respectively.  For the proposed system, the Eq. (19) is: 
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       = + =            

 

  (20) 

The key point is that, if 𝐿𝑔𝑗𝐿𝑓

(𝑟𝑖−1)
ℎ𝑖(𝑥) = 0 for all j, then the inputs do not appear in Eq. (20), so for r1=1 and r2=1, the 

Eq. (20) is: 

.

1 2

.
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y x

x
y

 
     = +       

 

 (21) 

Thus, further differentiation needs to be repeated as: 

( ) ( ) ( 1)

1

( ) , 1,....,i i i

m
r r r

i f i gj f i j

j

y L h L L h u i m
−

=

= + =  (22) 

Such that 𝐿𝑔𝑗𝐿𝑓

(𝑟𝑖−1)
ℎ𝑖(𝑥) ≠ 0 for at least one j. this procedure is repeated for each output 𝑦𝑖 . Thus, there will be a set of 

m equation given by: 
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 (23) 

So for r1=2 and r2=2, Eq. (23) is as bellow for the proposed robot: 
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s
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 (24) 

 

where j(x) can be expressed as follow: 

1 11 1

1 1 1
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0

m m

r r

g f gm f

m B M

r r
wheelsg f m gm f m

L L h L L h

b I R x
j x

IL L h L L h

 

− −

− −

   
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(25)                                                                              

 

j(x) is the decoupling matrix for the MIMO systems. If j(x) is nonsingular, then the control law u can be shown as: 

1

11

1 1
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( ) ( )

....

( )m

r

f

r

mf m
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u j x g x
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− −

   
   
   = − +
   
   
    

                                                                                                  

(26) 

For which can be substituted as bellow for the present system: 
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(27) 

 

where �̅� = [𝑣1 … 𝑣𝑚]T is the new set of inputs to be defined by the designer. 

 

Normal Form and Internal Dynamics Analysis 

The order of the system “r” has a significant role in feedback linearization control approach. Indeed, according to the 

value of this parameter, three following cases can be considered.  

Case 1: If r = n, then the nonlinear system in Eq. (17) is fully feedback linearizable. 

Case 2: If r < n, then the nonlinear system in Eq. (17) is partially feedback linearizable. In this case, there are some 

internal dynamics of order (n-r). In tracking control, it should be guaranteed that these dynamics are not singular, i.e. 

unstable or unbounded. 

Case 3: If r does not exist on the domain D, then the input-output linearization approach is not suitable for the studied 

case. 

As shown in Eq. (24), r1= r2=n=2, so the proposed non-linear system of the robot is fully feedback linearizable. In 

other words, the input-output linearization is exactly the same as input-state linearization. 

 

Sliding Mode Control Design 

In this section sliding mode controller is designed for the new in-pipe inspection robot. Consider the MIMO system 

of Eq. (17). The goal of control design is to propose a control law to decrease the error between the state vector and the 

desired reference state trajectory 
( )( 1), ,..., n

d d d dx x xx −=
in the presence of model uncertainties and external disturbances. 

As there are two coupled second order differential equations here, the errors are: 

. .
( 1)

1 1 1 1 1 1 1, ,..., ( ), ( )

T

n

d d de e e x x x xe x x


−  
 = = − −    

= −  (28) 

. .
( 1)

2 3 3 3 3 3 3, ,..., ( ), ( )

T

n

d d de e e x x x xe x x


−  
 = = − −    

= −  (29) 

Index d denotes the desired value of the states. Then the sliding surface based on the error state space can be defined by 

the following equation, so there are two sliding surfaces as follow: 
. .

1 1 1 1 2 1 1( ) ( )d ds c x x c x x= − + −  (30) 

. .

2 1 2 2 2 2 2( ) ( )d ds c x x c x x = − + −  (31) 

where 
,c c

are the surface coefficients. In order to guarantee the stability of the designed controller, Lyapunov theory is 

implemented. The related Lyapunov function is defined according to the sliding surface as follow, and the controlling 

gains of the sliding mode is determined in a way that results in negative definite function for the Lyapunov derivation.  A 

sufficient condition to ensure the convergence of the error vector �̅� to the sliding surface and satisfy the mentioned stability 

control is to define the control law in the following way: 

( )
2

1 1 11

2
2 2 22

2 0 01
( ) ,
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1
, 0 0

2

ssd

sdt s

d
s s
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 
 

 

     
     

    
 −    −   

(32) 
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where the coefficient 𝜂 is a positive constant. By simplifying, the sliding condition in Eq. (32) can be rewritten as: 
.

1 1 1 1

.
2 2 2
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2

0 sgn( )
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sgn( )

T T
s s s

s s
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ss s s
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 

 −  
 

                                                                      
(33) 

By taking the time derivative of Eqs. (30,31), we obtain: 

1 1
( ) ( ) ( ) ( ) ( )

1 1

( , ) ( , ) ( ) ( )
n n

i n n i n
i id d

i i

s c e x x c e f x t g x t u t d t x
− −

= =

= + − = + + + −   
                                                

(34) 

where d is a disturbance with a definite bounded range. so we have: 

3

3

2 2
4 22 3 2 3

3 4 23.
3

11 1 2 2 2

3

..

12 2 2

3

2 sin( )( sin( ) )
(1 tan ( ))

cos ( ) 2

tan ( )

( )
tan ( )

M x D
N x f

m B M

m

m B M

R S x x AC b x Rx x v
Rg x x bF S K x

x
e

b I R x

T
d t x

b I R x

s c

 
 

 

 

+
+ − − − −

+
 + +

+ + −
 + +

=         

(35) 

 

( )2 3 2. ..
3 3 2 3

22 1 2 2 3

tan( ) tan ( ) (1 tan ( ))M s

wheels wheels wheels

R x x Rg x T
e x x x

I I I
s c

  +  +
 + − + − 
     

=   (36) 

Substituting Eq. (33) into Eqs. (35, 36), sliding condition can be defined as: 
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  
(38) 

By knowing 𝑓(�̅�. 𝑡), 𝑔(�̅�. 𝑡), 𝑑(𝑡), the following controlling law based on sliding mode method can be designed in a way 

that the sliding condition in Eqs. (30, 31) could be guaranteed: 
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(39) 

 

Therefore if we define 𝜂△ ≥ 𝜂 ≥ 0 the following controlling input always satisfies the above conditions: 

1
( ) ( )

1

1
( , ) ( )

( , )
sgn( )

n
i n

i d

i

c e f x t d t x
g x t

u s
−





=
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 
+  (40) 

Based on Eq. (34) and substituting it in Eq. (40), control law for the new proposed system can be presented in matrix 

form: 
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(41) 

 

The control law in Eq. (40) is usually expressed as the summation of two separated laws which are called equivalent and 

switching controlling terms: 

eq swu u u = −  (42) 
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eq i d
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1
sgn( )

( , )swu s
g x t

=  
(44) 

So for the considered in-pipe inspection robot of this paper the equivalent and switching control laws are as Eqs. (45,46). 

Thus not only the convergence in sliding surface will be meet but also the stability condition of Lyapunov will be satisfied 

employing the above controlling effort.  

3

3

1

2 2 2

1 3

2

2 2
4 22 3 2 3

3 4 23
. 3

2 2 211
3

.
2

21

1
0

tan ( )

1
0

2 sin( )( sin( ) )
(1 tan ( ))

cos ( ) 2

tan ( )

tan(

eq m B M

eq

wheels

M x D
N x f

m B M

M

u b I R x

u
I

R S x x AC b x Rx x v
Rg x x bF S K x

x
e b I R x

e R

c

c

 

 
 

 



−





 
    + +   = −
   
     

+
+ − − − −

 
 + + + +

 
  ( )

..

1

..
3 2

33 3 2 3
2 2

( )

) tan ( ) (1 tan ( ))

wheels wheels

x
d t

xx x Rg x
x x

I I



  
  
    
    + −    
   +   +

  −  
         

 

     (45) 
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(46) 

 

 

SIMULATION STUDY 

In this section the performance of the designed controller of sliding mode is compared with a linear controller in order 

to show the robustness of the controller in presence of disturbance and flowing fluid. It is shown that the SMC controller 

is more suitable for the present non-linear system since it is more robust and practical in real situations compared to linear 

controlling approaches. The main characteristics of the studied screw based in pipe robot in this paper and its related pipe 

specifications are mentioned in Table 1. 

 

Feedback Linearization 

As mentioned above the first step of designing a sliding mode controller is to linearize the system in an exact way. 

According to Eqs. (17,18) and based on the Table 1, the state space of the system is as:                                                                                       
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    (47) 

 

where in this paper, 𝑑(𝑡) = sin (𝑡) is considered as the disturbance exerted on the system. So according to Eq. (24) and 

considering, r1=2 and r2=2, Eq. (24) can be rewritten as:       
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So the control input based on feedback linearization can be computed as follow: 
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Table 1. The value of the physical parameters of the system 

Symbol Value Definition Unit 

M 0.01 Wheel mass Kg 

hM 1 Hull mass Kg 

mM 1 Motor mass Kg 

R 0.02 Wheel radius m 

B 0.1 Leg length m 

A 0.014 Robot’s Effective Cross Sectional Area m2 

NF 15 The normal  force of passive spring N 

𝜇 0.2 Friction coefficient - 

BI 10-4 Hull polar Moment of Inertia Kg.m2 

WX,IWZI 10-8 Wheel Moment of Inertia around the pipe axis Kg.m2 

g 9.8 Gravity 
𝑚

𝑠2 

Γ 3 Number of active wheels - 

wheelI 2*10-8 Wheel Moment of Inertia around the leg Kg.m2 

DC 0.5 Drag Coefficient - 

ρ 1 Fluid Density 
𝐾𝑔

𝑚3 

V 3 Downward Velocity of the Fluid 
𝑚

𝑠
 

fK 0.01 Damping Constant 𝑁 ∙ 𝑚 ∙ 𝑠 

μ 0.2 Fluid Dynamic Viscosity 
𝐾𝑔

𝑚 ∙ 𝑠
 

 

Sliding Mode Control Design 

In order to design the sliding mode controller, it is necessary to determine the errors and their related sliding surfaces. 

A parabolic movement versus time is considered as the desired path for both of states (∅ 𝑎𝑛𝑑 𝛼) according to Eqs. (50,51):  

2

1 0.35dx t=  (50) 

2

3 0.1dx t=  (51) 

So the errors can be stated as Eqs. (52,53). 

2

1 1 20.35 , 0.75
T

x t x te  − − =  (52) 

2

2 3 40.1 , 0.2
T

x t x te  − − =  (53) 

Now it is possible to set the sliding surfaces. These surfaces are considered as a linear function of errors: 

2

1 1 1 2 2( 0.35 ) ( 0.75 )s c x t c x t= − + −  (54)                                                                                              

2

2 1 3 2 4( 0.1 ) ( 0.2 )s c x t c x t = − + −  (55) 

So according to Eqs. (35, 36) the derivative of sliding surfaces can be calculated as: 
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( )( ) ( )( )
.

2 2 2 8
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(57) 

Thus, the control input results as follow: 
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Kinematics and Dynamics Results 

Based on the new designed screw in-pipe inspection robot and considering the inclined angle of its wheels, the path 

of the wheels forms a helical movement on the wall of the pipe. Consider the following trajectory as the desired path of 

the states (∅ 𝑎𝑛𝑑 𝛼) based on Eqs. (50, 51), so in Figure 3 the path of the wheels related to the desired path of the 

mentioned states can be observed. 

 

 

Figure 3. Path of wheels on the wall of pipe 

 
Figure 3 shows the path of one wheel of the robot on the wall of the pipe. As mentioned, the new proposed in pipe 

robot in this paper is steerable and it is possible to change the pitch rate. So as figured above, it is noticeable that the pitch 

rate of the helical path is increasing as a results of changing the third state (𝛼). Also the velocity of the center of the robots 

along the Z direction inside the pipe is illustrated in Figure 4. 
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Figure 4. The Z direction velocity of the center of the robot through the pipe 

 

As demonstrated in Figure 4, the velocity of the robot center through the pipe is increasing and the reason is 

contributed to the fact that the inclined angle of the wheels is enhancing. Finally considering the fact that the pipe which 

is modeled in this simulation is straight, the X and Y components of the velocity are zero and are not mentioned in the 

Figure 4. Joint space response relevant to the mentioned work space is also demonstrated in Figure 5. 

 

 
 

Figure 5. Responses of the joint space parameters 

 
Considering the fact that the desire path of the position states (∅ 𝑎𝑛𝑑 𝛼) are parabolic of order 2, it is expected that 

the velocity states (∅̇ 𝑎𝑛𝑑 �̇�) increase linearly. The kinetic inputs of the system based on the above joint space are shown 

in Figure 6. As shown in Figure 6 the inputs of the system in which no disturbance is implemented are calculate through 

the inverse dynamics of the system and as it can be seen are smooth.  

Also the correctness of the modeling is verified in [32] by the same authors by comparing the results of MATLAB 

with the results of the modeled robot in ADAMS. 
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Figure 6. The inputs of system related to joint space 

 

Control Results 

To show the efficiency and robustness of the robot which is controlled using the proposed sliding mode controller 

respect to uncertainties and disturbances a comparison study is performed between SMC and LQR. Controlling 

parameters related to both controlling strategies of SMC and LQR are mentioned in Table 2. An external time dependent 

disturbance with the following function of Eq. (59) and a water stream with speed of 3 m/s is implemented on the robot 

in order to examine the robustness of the designed controller: 

( ) sin( )d t t=  (59) 

 

 
Table 2. The control parameters 

 Definition Value 

1C (the gain of first error) 80 

1C (the gain of second error) 30 

1 
(the gain of sgn(s1)) 60 

2 
(the gain of sgn(s2)) 20 

The controller gain (KLQR) 
K1 = [2.2618 , 0.0180 , -10.6091 , 0.0063] 

  K2 = [ 3.0803 , 0.0184 , 0.7177 , 0.0887] 

In Figures 7 and 8, position states (∅ 𝑎𝑛𝑑 𝛼) are compared between the mentioned controlling approaches to show 

the superiority of SMC in presence of disturbance and fluid flow. 

 

Figure 7. The comparison of the first state (∅) 
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In Figure 7, it is shown that the SMC controller results in more smooth response in order to converge to the desire 

path compared to LQR specially at the initial moments of movement in which the response of LQR is under damped 

while the response of SMC is over damped. In addition, it can be seen in Figure 8 that the angle of the robot’s wheels 

using LQR could not track the desired path accurately while again in SMC the response converges to its desired path in 

an over damped way. Thus it can be concluded that as it was expected SMC is more robust rather than a linear controller 

like LQR in presence of disturbances. The response of LQR not only has overshoot but also has a n error about 10% at 

its maximum stage. Although the first state (∅), related to LQR is acceptable, but again it will be shown that the requisite 

input for this response is not practical.  

 

 

Figure 8. The comparison of the third state (𝛼) 

 
Control inputs of the system corresponding to the above response are depicted in Figure 9 and 10 in which, a 

comparison is performed again between the mentioned controlling approaches to show the optimality of SMC controller 

in presence of disturbance. 

In Figure 9 and 10, it is remarkable that LQR approach requires big inputs to support the system to track the path and 

compensate the disturbance at the beginning which is near 10N.m for the first input and is 15N.m for the second input. 

But these amount of torques are too high which need strong motors and is not economical.  

In contrast, SMC approach produces inputs near 2N.m that is optimum and more practical. It can be also observed 

that SMC provides higher input for the non-extremum intervals in order to neutralize the destructive effect of disturbances 

which is caused by fluid flow and so it can be concluded that the new designed non-linear controller based on SMC is 

more appropriate for the present system, especially in presence of disturbance and fluid stream. Also because of using the 

switching function of tanh, chattering phenomenon in inputs is decreased significantly.  

 

 

Figure 9. Comparison of the first input (Tm) 
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Figure 10. Comparison of the second input (Ts) 

 

At the end, it is necessary to investigate the errors of the system for two cases to check the accuracy of the employed 

controllers. In Figures 11 and 12 the tracking errors of both controllers are shown. 

 

 

Figure 11. Error of  the first state (φ) 

 

 

Figure 12.  Error of the second state (𝜶) 
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As seen above, the disturbance has a big influence on the responses of the system in the case in which the robot is 

controlled using LQR. On the other hand, as it was seen above, the error of the system in which it is controlled by the aid 

of SMC converges to zero in an over damped way which shows the superiority of this controller. Moreover, it should be 

noticed that since LQR is a linear controller and the in-pipe robot dynamic of the present paper is extremely nonlinear, 

domain of attraction of the system which is equipped by LQR is limited while SMC can be used for the whole workspace 

of the robot. So, Figures 13 and 14 show the domain of attraction of the position states. 

 

 

Figure 13.  Domain of attraction of (φ) 

 

 

Figure 14.  Domain of attraction of (𝜶) 

 

As demonstrated in Figures 13 and 14, SMC controller is working properly for the whole interval of the robot 

workspace while LQR controller becomes singular after entering in its singular zone. It is noticeable that, when LQR 

controller is going far from its operating point about which linearization is implemented, it becomes unstable and singular. 

Thus the domain of attraction related to the steering angle is about 1 rad while this domain is about 15 rad for the rotor 

angle. Therefore it can be concluded that the sensitivity of the rotor angle respect to the controller signal is less than the 

steering one.  

Finally since the system is extremely impressible respect to the angle of the wheels, it is so significant to control  the 

third state (𝛼) with an acceptable accuracy which can be realized using SMC. In Figure 15 it is shown that the path of the 

wheels with LQR controller does not have an accurate response compared to the case in which the robot is controlled 

using SMC method. It can be seen that the error of LQR after 10sec is about 0.5meters. This huge error is the result of 

the error of the third state (α). So in this figure, it is proved that the influence of the inclined angle on the path of the 

wheels is efficiently important. 

 

 



H. Tourajizadeh et al. │ Journal of Mechanical Engineering and Sciences │ Vol. 14, Issue 3 (2020) 

7011   journal.ump.edu.my/jmes ◄ 

 
Figure 15.  Path of the wheel in the pipe-wall 

 

Finally, to show the influence of the fluid stream inside the pipe on the performance of the robot, there is a comparison 

between the first input of the system in Figure 16(b) between the robot which is exposed to the fluid stream and the robot 

which moves through an empty pipe. Both cases are controlled using the selected SMC controller and the response of the 

path and the first state are the same for both cases thanks to usage of the mentioned robust controller (Figure 16a). 

 

  

Figure 16. Comparison of the first input of the system 

 
It is shown in Figure 16(b) when the robot is moving through an active pipe in which the flow of the fluid is not 

blocked the first input needs to be increased to maintain the robot in its stable situation. So not only the impact of fluid 

on system and its related modeling can be shown here but also the importance and necessity of design and implementation 

of a non-linear robust controller to ensure the stability of the robot can be highlighted.  

 

MSC-ADAMS Verification 

A verification is performed here in which the performance of the controlled robot is validated. To do so the plant of 

the system which is previously verified in [32] is modeled in ADAMS in presence of external disturbances and this plant 

is then exported to the SIMULINK. This modeled is controlled then by the aid of both the proposed SMC and conventional 

FL controllers. The performance of the system is compared for these two controllers in presence of drag force of fluid 

stream to show the efficiency of the proposed SMC control in presence of drag forces.  

(a) (b) 
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The inpipe inspection robot with the mentioned formulation of modeling section and kinematic and kinetic 

specifications of Table 3 is modeled in ADAMS as the plant of the system. The isometric view of the modeled robot in 

ADAMS is as Figure 17. 

 

 

 

 

Figure 17. Modeled inpipe robot in ADAMS 

 

Same kinematic and kinetic parameters of SIMULINK is employed for modeling the robot in ADAMS. The robot is 

modeled in the ADAMS with two separate parts of rotor and stator with the mentioned weights of Table 3. These two 

parts are finally assembled in ADAMS using a revolute joint. Within each part, three legged wheels are installed with 

relative degree of 120 degrees. The legs of the stator wheels are installed to their chassis using fixed constraint while the 

wheel legs of the rotor section is mounted on its corresponding chassis using a revolute joint in order to support the 

steering wheels. All of the three legs rotates simultaneously and equal employing a differential gear as their power 

transmission line. Whole the system is integrated by a cylindrical cover and the steering wheels are the robot locomotion 

mechanism which are driven by the rotor motor and the frictional force between the wheels and the pipe. In order to 

generate the required normal force   of the wheels a suspension spring is considered between the chassis and the wheels 

and the corresponding spring coefficient is mentioned in the Table 3.  

In order to check the efficiency of the proposed controller and compare it with a simple FL controller, the ADAMS 

model is exported to SIMULINK as the plant and two controlling strategies of FL and SMC are coded in SIMULINK as 

the controller of the system. The related Simulink circuit can be seen as Figure 18. To show the superiority of the proposed 

robust controller, a drag force of Eq. (60) is implemented to the plant and the performance of these two controllers are 

compared for tracking of Eq. (61): 

2

2 3( tan( ) )Dd AC Rx x v= +  (60) 

4 3 2

2

0.1 0.48 0.25 0.05 0.002

0.06 0.01 0.09

d

d

t t t t

t t





= − + − + −

= − +

 
(61) 
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Table 3. Modeling specification of the robot in ADAMS 

Physical properties of the system 

Symbol Value Definition Unit 

M 0.012 Wheel mass  Kg 

hM 1.2 stator mass Kg 

mM 1 Motor mass Kg 

R 0.01 Wheel radius M 

B 0.1 Leg length M 

A 0.014 Robot’s Effective Cross Sectional Area m2 

BI 0.3*10-4 Hull polar Moment of Inertia Kg.m2 

Γ 3 Number of active wheels  - 

DC 1 Drag Coefficient - 

ρ 1 Fluid Density 
𝐾𝑔

𝑚3
 

V 4 Downward Velocity of the Fluid 
𝑚

𝑠
 

 

 

 

 

Figure 18. Control scheme of the ADAMS model in SIMULINK 

 
The actual path of each controller and its comparison with the desired one is depicted in Figure 19. And its related 

error can be compared as Figure 20. As can be seen, the response accuracy of the plant which is controlled using SMC is 

significantly As can be seen, the response accuracy of the plant which is controlled using SMC is increased up to 90% 

with respect to FL and this is contributed to the fact that as mentioned the external drag force of the flowing fluid is a 

kind of external disturbance which should be neutralized using a robust controller like SMC. The error of this controller 

on the ADAMS plant is decreased about one tenth which shows that the proposed controller can practically control the 

inpipe robot of this paper in presence of pipe stream.  
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Figure 19. Desired path of the states and its comparison with the actual path for both controllers 
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Figure 20. Comparison of error between FL and SMC 

 

CONCLUSIONS 

A modified version of screw based inpipe investigation robot was proposed in this paper equipped by a robust 

controller. Pitch rate of the robot is controllable as a result of its steerable wheels and thus the robot is able to bypass the 

obstacles. Also the robot was modeled in live pipes in presence of fluid flow and its motion was controlled by the aid of 

a robust controlling strategy i.e. SMC in presence of external disturbances of drag forces. Thus it was seen that using the 

proposed controlling strategy there is no need to block the pipe line flow.  To meet this goal, kinematics and kinetics of 

the proposed in-pipe robot were completely represented. Afterwards, the nonlinear MIMO dynamics of the robot was 

linearized exactly and sliding mode control was employed to stabilize the robot in presence of external disturbing forces. 

In order to examine the performance of the proposed in-pipe robot and also applicability of the designed nonlinear 

controller, all of the mentioned modeling were simulated in MATLAB-SIMULINK. It was seen that the robot can track 

the desired path in presence of external disturbance of flowing fluid successfully with a good accuracy. The superiority 

of the designed robust and nonlinear controller of (SMC) was also shown with respect to LQR toward tracking the desired 

path in presence of disturbing drag force of flow.  Moreover, it was seen that SMC provides the stability and accuracy of 

the system within the whole of the dynamic workspace of the robot while LQR has a limited domain of attraction. This 

improvement of SMC is the result of its higher consumption of energy to compensate the impact of the fluid. Finally, in 

order to verify the model and also prove the superiority of the proposed robust controller compared to conventional 

nonlinear controllers like FL the robot was modeled in ADAMS and its performance in presence of drag force was 

compared between SMS and FL. It was seen that the error of the system in which the SMC is employed is about one tenth 

of the latter case. Therefore, it can be concluded that the proposed designed non-linear controller of sliding mode control 

in this paper can successfully control the new nonlinear in-pipe inspection robot which has higher maneuverability in a 

robust way and in presence of disturbances and drag force of flowing fluid while the stability and accuracy of the system 

is also guaranteed. 
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