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INTRODUCTION   

Jet impingement is an active approach for heating and cooling of surfaces. In jet impingement method the flow of 

fluid (liquid or gases) is accelerated to high velocity through a designed nozzles or orifice and is made to impinging on 

surface involved in the process. Due to better results and feasibility, jet impingent have given scope to adopt it in various 

thermal related applications like cooling of turbine blades, combustion chamber walls in gas turbine engines, glass 

processing industries, cooling of electronic circuits and equipment’s and surface treatment of metals [1, 2]. The 

performance of an impinging method is greatly influenced by parameters such as structure of jet, impingement distance, 

jet configuration, confined and unconfined flow, flow type and type of fluid. In this regard, numbers of experimental and 

numerical studies are carried and came with some acceptable results. In the last few decades, numerous works are done 

using conventional jet but a recent research works given importance on use of swirl jet to provide an alternative to 

convention jets. Swirl jet flow can be achieved by many ways and this flow is created a great potential in relevant research 

area. Some of experimentation concluded that, the better mixing of the flow and vortices generation gives good results in 

a jet impingement, which can be achieved by well-defined nozzles creating swirling co-axial flows [1–5] thus, an attempt 

is made to conduct experiment using coaxial jet flow to analyze the distribution of pressure coefficients on convex test 

surface for both confined and unconfined flow. 

The research on coaxial jet flow given scope for the developments in burner design and configuration, stabilization of 

flame, combustion units, etc. The vertex formation is key factor in jet impingement study. Adzlan and Gotoda [6] 

highlighted the vertex formation and breakdown in the swirling coaxial jet. Ianiro and Cardone [7] used single and 

multiple swirl jet and compared experimental results with circular jet. Nuntadusit et al. [8] conducted similar experimental 

study using multiple swirling jet and oil film technique is used analyze flow pattern of jet.  Lu et al. [9] studied the mass 

flow rate using high speed flow visualization method. Later New and Tsioli [10] used 45º and 60º inclined coaxial jets 

are to impinge experimentally on test surface. Fenot et al. [11] adopted high speed and infrared thermography methods 

to identify the behavior of hot jets (Re = 23,000 to 33,000) on flat plate. Wannassi and Monnoyer [12] carried numerical 

and experimental study and identified the flow and heat transfer characteristics on flat plate using swirl jet and also 

compared the results with conventional round jet. Eiamsa-ard et al. [13] used co/counter-dual swirling impinging jets to 

study heat transfer over flat plate for jet Reynolds number 5,000 to 20,000.  

Boualia et al. [14] carried study using new configuration of tri-coaxial jet, they carried experiment to understand the 

dynamics of tri-coaxial burner. By considering a swirl number in the range 0 to 1.31 and swirl vanes up to 60º, 

Balakrishnan and Srinivasan [15] conducted an experiment using coaxial jet to reduce jet noise along with nozzle pressure 

are identified from 0.18 to 6 and they concluded that at subsonic zone weak swirl will be more effective in reduction of 

noise. The numerical study by Chouaieb et al. [16] with coaxial jet highlights the dynamic structure and the mixing of jet 
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in the confined zone. The effect of turbulent jet will have more impact on both fluid and heat characteristics when 

impingement is made at lower distance and it also provides better mixing due to which sudden peaks are seen in the values 

[17, 18]. Zeiny et al. [19] studied heat transfer over flat hot plate by impinging swirl jet with different twist number of 0, 

5, 8, 10 and 12 for Reynolds number 20,000. Higher Nusselt number are obtained for swirl jet when compared with 

convectional jet and for 12 twist swirl jet around 29% higher value of Nusselt number are observed. Recently, Markal 

[20, 21] used coaxial jet for confined flow to identify the effect flow ratio 0.25, 0.5, 0.75 and dimensionless impingement 

distance from 0.25 to 2.5 on heat and pressure destitution on convex surface and compared the results with conventional 

jet.  

Some other studies highlight the use of multiple swirling jet, effect of twist ratio, jet to test surface distance on the 

heat transfer distribution [22–29]. But, most of the studies are related to identify heat transfer characteristics over flat 

plate for unconfined flow at various flow conditions and only in few studies co-axial swirl jet is considered to impinge 

on test surface. Therefore, to fill this gap the present work an attention is given to identify pressure distribution (Pc and 

Pco) characteristic by experimentally impinging swirling co-axial air jet on smooth hemispherical element (convex) for 

both confined and unconfined flow for various flow and geometric conditions and the results obtained will be useful in 

jet impingement applications and for other research studies. 

 
EXPERIMENTATION AND METHODOLOGY 

The schematic experimental layout for present study is shown in Figure 1. The air blower is used as primary source 

for impingement of air through a coaxial jet, the blower delivers 3.1 m3/min of air with pressure on 600 mm of water 

when operating under 12,000 rpm. A convex smooth element of outer diameter 50 mm with 5 mm thickness and 300 mm 

effective test length is taken as test element. The air coming out from blower is maintained at stable pressure of 1bar using 

calibrated regulator. The jet Reynolds number is obtained from calibrated venturimeter with Cd ± 0.92 by adjusting control 

valves and air coming out at particular Reynolds number is made to impinge on the test element through coaxial jet in 

confined and unconfined flow. For completely developed flow at jet exit, the pipe length is taken 100 times the hydraulic 

diameter (dh) and the nozzle length to diameter ratio is to be taken as 83. Similar experimental method is used in the 

study carried to analyze effect of orifice geometry on pressure distribution by Hanchinal and Katti [28]. 

  

 

(1. Manometer to Measure Wall Static Pressure, 2. Adjustable Table, 3. Test Element, 4. Confinement Tube, 5. Coaxial 

Generator, 6. Tube or Pipe, 7. Venturimeter, 8. Manometer to Measure Re, 9. Pressure Indicator, 10. Control Value, 11. 

Pressure Regulator, 12. Air blower, 13. Flexible Pipe.)  

Figure 1. Schematic representation of experimental setup. 

 

Calibrated two-axis adjustable table is used to maintain test element at Z/dh (1 to 4) position. The Pc and Pco on test 

element is measured with help of pressure tap created at the back surface of test element. A probe of 0.5 mm diameter is 

inserted in the pressure tap till the outer surface without disturbing the flow.  A free movement is given to pressure tap so 

that Pc can be measured at various surface angle on test element.  The air is blown through coaxial jet configuration at 

various identified Re and Z/dh mentioned. The flow restriction on test element is made with help of confinement tube 

arrangement A concave tube of diameter 65 mm with thickness 2.5 mm and length same as of test element is used, so 

that the jet flow in well-defined channel after the impingements on test element as shown in Figure 2(a). Complete 

experiment is to be performed under a steady state condition at identified parameter given in Table 1. Different plots are 

drawn for the obtained values to conclude the study. The coaxial swirl jet configuration having hydraulic diameter 11.8 

mm is shown in Figure 3. 
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(a) Confined flow 

 

 
 

(b) Unconfined flow 

Figure 2. Schematic view of jet flow over convex element. 

 

 

 

 

 

Figure 3. Schematic view of swirl-coaxial jet configuration. 
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Table 1. Parameters considered in the study. 

Test 

element 

Jet Reynolds 

Number (Re) 

Circumferential 

angle (θ) 

Nozzle to test 

section (Z/dh) 
Flow Type 

Convex 70,000 to 45,000 0° to 50° 1 to 4 
Confined and 

Unconfined Flow 

 

RESULTS AND DISCUSSION 

In the present study, the experimental impingement of coaxial air jet on convex element is conducted at various 

parameters like dimensionless nozzle exit-to-test surface (Z/dh), circumferential angle of test surface (θ) and Reynolds 

number given in Table 1. The measurement Pc & Pco on test element is done with high precision using calibrated devises 

under study state condition. Results obtained are used to draw different plots are drawn for analyses and also the results 

of confined flow are compared with unconfined flow. 

 

 
Co-axial swirl jet, Z/dh=1, D/dh= 3.125 

 

 
Co-axial swirl jet, Z/dh=2, D/dh= 4.237 

Figure 4. Variation of pressure coefficient along the curvature for unconfined flow. 

 

Influence of Jet Reynolds Number (Re) on Wall Static Pressure 

The non-dimensional Reynolds number helps to describe the flow of an any fluid. In present study, at various jet 

Reynolds number the non-dimensional value of PC and PCO are identified at different Z/dh for both confined and 

unconfined jet flow. Figure 4 and 5 shows the Pc distribution along circumferential distance θ of test element at Z/dh = 1 

and 2. The plot Pc vs θ shows independent behaviour of pressure coefficients for all jet Reynolds number, as all the curves 
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take same nature for all jet Re (70,000-45,000) and Pc value decreases with increase in θ, similar independence nature of 

jet Re over Pc and Pco are seen in early studies [22, 23, 28]. The coaxial jets provide multiple mixing zones which is key 

factor for primary and secondary peaks in the heat and pressure distribution study, which is clearly highlighted by Ahmed 

et al. [18]. At stagnation point the pressure coefficients (PCO) will be in the rage of 1.1 to 0.5 but, in the present study 

significant peaks in the distribution of Pc are observed between 5° to 10° and these values are much higher compared to 

stagnation point values and these values are in the range of 1.45 to 0.75. Based on the remarks from Markal [20, 21], peak 

values are seen in each mixing zones and the shear rate in these zones is the key parameter for these peaks. It is also 

observed that the Pc and PCO are dependent on flow restriction and jet exit distance (Z/dh) which are discussed in further 

sections. 

 

 
Co-axial swirl jet, Z/dh=1, D/dh= 4.237 

 

 
Co-axial swirl jet, Z/dh=2, D/dh= 4.237 

Figure 5. Variation of pressure coefficient along the test element curvature for confined flow. 
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Co-axial swirl jet, Re = 65000, D/dh = 4.237 

 

 
Co-axial swirl jet, Re = 50000, D/dh = 4.237 

Figure 6. Variation of pressure coefficient with jet exit-to-test element spacing at different Z/dh for unconfined flow. 

 

Influence of Circumferential Angle (θ) and Jet Exit-to-Test Element (Z/dh) Distance on Pressure Coefficient 

The other critical parameters that influences the distribution of Pc and Pco on any element are jet exit-to-test element 

distance (Z/dh) and circumferential angle or inclination (θ) of test element. The smoke wire flow visualization helps to 

understand the spreading of jet on convex element [6]. From Figure 6, 7 and 8 it observed that as the Z/dh value increases 

the Pc and Pco drops to a lower value, that is at Z/dh = 4 the smaller value of Pc and Pco are obtained for both the 

confined and unconfined flow, that is with increase in the Z/dh around 15% to 23% drop in the Pc & Pco seen. As the jet 

exit-to-test element distance increases the drop in the jet velocity is seen due to the spreading of jet, which leads to a drop 

in the kinetic energy of the jet and at same time jet shifts from sub-atmospheric to atmospheric zone due to which lower 

value of Pc and Pco are seen at higher Z/dh.  

Similar drop in the Pc and Pco are seen with change in θ. As the θ change the stagnation streamline of jet gets deviated 

from the centerline of the test element as result Pc drops and this jet will be more effective when its potential core zone 

is between θ = 0°-5°, due to this zone around 45% to 57% higher value compared to other points. The drop in the Pc are 

seen when θ changes from 0° to some other inclination. When θ = 0° maximum velocity of jet impinges on test element, 

as result this velocity from jet helps to get maximum dynamic pressure, as result stagnation point will reach the maximum 

value of Pc compared adjacent θ on the test element. Similar Pc profiles are seen in some of research works [20, 21]. The 

significant peaks in the distribution of Pc are observed between θ = 5° to 10° which are 67% to 74% higher compared to 

other pressure coefficient values. Figure 6, 7 and 8 shows sub atmospheric regions between θ = 22° to 31°. For jet 

Reynolds number and Z/dh and D/dh sub atmospheric regions appeared on convex test surface. As stated by Ozmen [30], 

sub atmospheric zone is the evidence of a recirculation region, which is also supported by the results of Burak [20, 21] in 

which the negative values observed. Therefore, the local static pressure and stagnation pressure (Pc and Pco) on the 

convex surface decreases with increasing distance between the nozzle exit and the convex surface for all the values of jet 
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Reynolds number considered. Towards the outer regions of the surface, the nozzle-to-convex surface distance losses its 

effectiveness and the values of the wall jet pressure each atmospheric value. 

 

 
Co-axial swirl jet, Re= 65000, D/dh = 4.237 

 

 
Co-axial swirl jet, Re= 50000, D/dh = 4.237 

Figure 7. Variation of pressure coefficient with jet exit-to-test element spacing at different Z/dh for confined flow. 

 

 
Unconfined flow D/dh = 4.237 
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Confined flow D/dh = 4.237 

Figure 8. Variation of stagnation pressure coefficient with curvature at various jet exit-to-test element spacing. 

 

Comparison of Wall Static Pressure for Confined and Unconfined Flow 

The number studies on coaxial jets are carried using unconfined flow and only few studies are done on confined flow. 

In the present study, an attempt is made to know the effect of confinement on Pc and Pco by restricting the flow of jet in 

defined channel using confinement tube arrangement as shown in Figure 2. A significant change is seen for Pc and Pco 

profile due to this restriction in the flow, the jet will get additional energy in potential zone within the impingement 

channel which is shown as the evidence of a recirculation region [30]. This recirculation accelerates the kinetic energy of 

jet as results higher value of Pc & Pco are seen for confined flow similar observations seen by Burak [20, 21]. These 

confinement tubes are more effective of pressure distribution when Z/dh is below 2 and around 61% to 64% of 

enchantment in the Pc & Pco is observed by the use of confinement tube. The comparison plots of Pc for confined and 

unconfined flow at Z/dh 1 & 4 for Re = 50,000 for coaxial configuration is shown in the Figure 9. 
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Figure 9. Comparison of pressure coefficient Pc for confined and unconfined flow 

 

CONCLUSIONS 

In the present study, the wall pressure distribution (Pc & Pco) on convex test element by impinging air jet for confined 

and unconfined turbulent flow from swirling coaxial nozzle configuration is investigated experimentally. The results from 

the study can be summarized as below, which will help in the study of heat transfer and plays significant role in the design 

and analysis of gas turbine blades, Burners, combustion chambers etc.  

• The pressure coefficients Pc & Pco are independent of Reynolds number (Re) of flow on impingement of swirling 

coaxial air jet on convex element for all Z/dh as all curves takes same nature of curve for all Z/dh and Re. 

• For all the dimensionless Re and Z/dh, two peak value in the pressure distribution appear on convex surface in both 

confined and unconfined flow. Coaxial swirl jet provides multiple mixing zones which causes increase in the share 

rate of jet at as result significant peaks in the pressure coefficients are seen by impinging coaxial swirl air jet on 

convex element between θ = 5°-12° at all Z/dh for both confined and unconfined flow. 

• For all the dimensionless Re and Z/dh a sub atmospheric region is created on convex test surface as result at some 

point the pressure coefficient drops to negative values. The pressure coefficients drop in considerable range when 

circumferential angle θ in between 20°-30° and same nature is seen for all flow condition. 

• For the same flow condition, the pressure coefficients Pc & Pco are high for Lower jet exit-to-test element distance 

(Z/dh = 1) as the jet will be in the effective potential core region, further with increase in Z/dh around 15% - 23% 

drop in the Pc & Pco is seen and same trend is observed in both confined and unconfined flow. 

• The use of confined tubes helped to get 61% to 64% higher Pc & Pco values when compared to unconfined flow.  

The use of coaxial swirl jets provide good results compared to the conventional jet for both the uniformity and intensity 

of pressure distribution due its better mixing and also the presence of confinement creates recirculation of jet which will 

be more effective in the heating and cooling of any surface by reducing thermal stress in respective region. 
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