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INTRODUCTION   

An effective cooling mechanism is one of the major concerns in electronic industry to remove high heat flux from 

electronic components substrate in order to improve the performance of such systems. Microchannel liquid cooling is 

one of the potential candidates for this purpose. It has a large surface area to volume ratio for heat transfer. However, it 

requires a high pressure head to flow the working fluid in channel. Tuckerman and Pease [1] used microchannels and 

showed high heat removal of approximate 790 W/cm2. They analysed the thermal performance and flow characteristics 

using various substrate materials, different aspect ratios and working fluids. The effect of microchannel shape and 

significance of ribs and cavities on heat transfer enhancement has been carried out [2]. A comprehensive review on 

various methods of heat transfer enhancement in microchannel has been carried out by Dewan and Srivastava [3].  

Dewan and Kamal [4] investigated the effect of aspect ratio on heat transfer characteristics in an interrupted 

microchannel. Xie et al. [5] investigated the effects of different geometrical parameters of channel, such as, overall 

thickness, substrate thickness, and flow rate on heat transfer characteristics using the standard k-ε model. They showed 

that thermal performance could be improved by using a narrow and deep channel with thin bottom surface thickness 

with a high but acceptable pumping power. Srivastava et al. [6] investigated the effects of ribs and cavities on 

convergent-divergent shaped microchannel in laminar flow condition and showed that a uniform and lower substrate 

temperature could be achieved with a lower pressure drop penalty. Duryodhan et al. [7] performed experimental 

investigation on the shape of a microchannel and concluded that a converging microchannel had a better performance 

compared to a diverging one under similar conditions. The effects of bifurcation plate were investigated by Srivastava 

and Dewan [8] as a heat transfer enhancement method with a lower and uniform bottom surface temperature.  

Nanofluids have also been considered for thermal performance enhancement in microchannels. A nanofluid is 

prepared by dispersing particles of metal or metal oxides with sizes of 100 nm or less, in a base liquid, such as, water to 

achieve large values of the heat transfer coefficient. Hussein et al. [9] presented a review paper on heat transfer 

enhancement with nanofluids and concluded that the concentration of nanofluid, the operating temperature, the particle 

size and shape, and the material of the nanoparticle had significant influence on the heat transfer coefficient. Sangmesh 

et al. [10] investigated the convective heat transfer for MWCNT based nanofluids flowing in fluid pockets within the 

base of the heat sink and heat transfer effectiveness was measured in terms of a reduced junction temperature of the 

LEDs. They observed a reduction in the thermal resistance by 15%. Abidin et al. [11] reported an experimental study on 

forced convective heat transfer performance of the CNF-based nanofluid in a laminar flow through a mini heat transfer 

test rig and showed that the presence of nanoparticles increased the heat transfer coefficient.  

Some researchers reported turbulent heat transfer characteristics in a microchannel. Menni et al. [12] presented flow 

and heat transfer characteristics in rectangular cross section channels with various models of S-shaped baffles using air 

as the working fluid at Reynolds numbers ranging from 12000 to 32000. They observed that the channel containing the 
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S-obstacles with a large Re had higher heat transfer, friction loss, and thermal enhancement factor than the one with a 

smaller Re. Liu and Garimella [13] conducted a test on microchannel and observed a good agreement with correlations 

data and friction factor data for turbulent flow. They inserted dye in flow to observe the critical Reynolds number. 

Wang and Peng [14] carried out experiments on microchannels with rectangular cross-section and showed that the 

Dittus - Boelter correlation could be used for a fully developed turbulent heat transfer. They also concluded that heat 

transfer was strongly affected by flowing fluid flow rate and its temperature. Adams et al. [15] used the classical 

Gnielinski Nusselt number correlation to predict heat transfer characteristics for a turbulent flow and concluded that a 

threshold value for the hydraulic diameter could be used for the determination by the conventional correlations. Li and 

Olsen [16] carried out experiments using Microscopic Particle Image Velocimetry (micro-PIV) on square 

microchannels. They used fluorescent seed particles with water and found fully turbulent flow for Re ranging from 2600 

to 2900. They also reported detailed results on velocity fluctuations and Reynolds stresses using micro-PIV data. Oumer 

et al. [17] investigated the effects of the inlet temperature on heat transfer characteristics of supercritical fluids in mini-

channels and compared their results with the experimental results. Both the results showed that the wall temperature 

increased along the tube length due to a high convective heat transfer occurring at the entrance of the heated section of 

the pipe. Rahman [18] designed two different channel patterns (I-channel and U-channel) to assess the effects of flow 

branching, channel length and fluid velocity. It was observed that heat transfer was enhanced by an interruption of the 

velocity boundary-layer due to the surface roughness of the etched channel structure. Al-Naema et al. [19] used 

serpentine rectangular microchannels with four different geometrical configurations and observed a good agreement 

between numerical predictions and experimental results. Adib et al. [20] presented three-dimensional flow pattern of 

blood through an S-shaped artery and it was shown that the flow at the entrance accelerated rapidly until arriving at 

certain nodes with the maximum velocity. This modeling of the geometrical S-shaped artery is suitable for 

understanding the pattern of blood flow under a constant normal blood pressure. 

Interruption and mixing of main flow using microstructures, and change in geometrical configurations have also 

been used by many researchers to augment turbulent heat transfer. Cheng et al. [21] used four different tapered 

microchannels for Re ranging from 1300 - 3400. Their results showed that an early turbulence could be achieved at low 

values of Re leading to a good heat transfer. Chan et al. [22] investigated the effects of Reynolds number on heat 

transfer enhancement in straight and serpentine channels of semi-circular cross-section with the hydraulic diameter 10 

µm and showed that the heat transfer coefficient was enhanced in the region of serpentine bends due to an increase in 

dean vortices with Re. Wang et al. [23] used microchannel with pillar for Re range of 100 - 5600 and showed that a 

double value of heat transfer coefficient could be achieved using pillar in microchannel compared to that without a 

pillar. They also concluded that a triangular pillar performed the best among all geometries considered. Rezaie et al. 

[24] used semi-truncated and semi-attached ribs in rectangular microchannel and investigated the effect of forms and 

numbers of ribs on heat transfer characteristics. They concluded that flow turbulence could be increased and velocity 

distribution could be affected by the existence of ribs in flow direction leading to an increase in convection heat 

transfer. Sharma et al. [25] used truncated prismatic ribs to interrupt the flow field and showed the effect of rib 

configurations on flow pattern and heat transfer characteristics for Re ranging from 9400 - 58850. They observed an 

increase in Nusselt number of approximately 25% with 55% pressure drop penalty. Abdulrajjak et al. [26] investigated 

the effects of different angles of triangular ribs with Re varying from 20000 to 60000 on heat transfer characteristics.     

The above-mentioned literature review shows that the reported studies have focused on various heat transfer 

augmentation methods using pillars, ribs, cavities and changes in shapes of microchannel. The individual effects of 

shapes of microchannel and flow disruption techniques on thermal characteristics were analysed by many researchers. 

In the present paper, turbulent heat transfer characteristics are analysed in a convergent-divergent shaped microchannel, 

which creates sudden expansion and contraction of the flow area leading to a strong mixing of cold and hot fluids. 

Further the effects of ribs and cavities present in the fluid domain, which interrupt the boundary layers, on flow and heat 

transfer characteristics, are analysed. The present authors have earlier carried out an investigation on the effects of the 

channel shape with different flow disruption techniques for a laminar flow and have also studied combined effects of 

shape change and flow disruption [6]. A similar study for turbulent flow has not been reported, which motivated the 

present authors to carry out this study.   

In the present paper combined effect of flow disruption using ribs and cavities with change in shape of microchannel 

using a CD shape has been investigated for Re ranging from 2500 to 7000. In the following sections the microchannel is 

first introduced followed by the mathematical description and performance comparison in terms of the average Nusselt 

number and thermal resistance.  

GEOMETRY AND MATHEMATICAL DESCRIPTION 

Dimensional Details 

Convergent-divergent microchannels with the following four geometries were considered in the present study to 

investigate the effects of channel shape with ribs and cavities. 

Case 1. Rectangular microchannel 

Case 2. Rectangular microchannel with ribs and cavities  

Case 3. Convergent-divergent microchannel  

Case 4. Convergent-divergent microchannel with ribs and cavities 
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A schematic of the convergent-divergent shaped microchannel with ribs and cavities along the flow direction is 

shown in Figure 1. In the present study, 10 microchannels were arranged in a substrate with the bottom size of 10 mm x 

1 mm (length x width) and a depth of 0.9 mm. The geometric parameters of each computational domain are given in 

Table 1.  

 

Table 1. Dimensions of microchannel (all dimensions are in mm) shown in Figure 1. 

L H W Hf Wf 

10.0 0.9 0.1 0.057 0.03 

 

Figure 2 shows detailed geometrical configuration of each microchannel that was investigated. Silicon was taken as 

the heat sink material and water as the working fluid was pumped into the microchannel. The fluid was heated through 

the bottom surface which was held at a uniform heat flux of 90 W/cm2. The inlet velocity ranged from 29.07 m/s to 

81.39 m/s with the corresponding Reynolds number from 2500 to 7000. One branch of microchannel was taken as the 

computational domain. Detailed geometrical dimensions of one branch of microchannel are given in Table 1. A section 

view in a x-y plane at z = 0.36 mm of each microchannel is shown in Figure 2.  

 

 

 

             

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Computational domain (convergent-divergent microchannel with ribs and cavities). 
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Figure 2. The cross-section of unit cells of different geometries: (a) rectangular, (b) rectangular with ribs and cavities, 

(c) convergent-divergent and (d) convergent-divergent with ribs and cavities. 

 

Governing Equations 

A single-phase, turbulent incompressible flow was considered in a microchannel. The effects of gravity and 

radiative heat transfer were assumed to be negligible. The associated conservation equations may be expressed as 

 

Continuity: 

𝜕

𝜕𝑥𝑖

(𝜌𝑓𝑢𝑖) = 0 (1) 

Momentum: 

𝜕

𝜕𝑥𝑖

(𝜌𝑓𝑢𝑖𝑢𝑗) = −
𝜕𝑝

𝜕𝑥𝑗

+
𝜕

𝜕𝑥𝑖

[𝜇𝑓 (
𝜕𝑢𝑗

𝜕𝑥𝑖

+
𝜕𝑢𝑖

𝜕𝑥𝑗

)] (2) 

 

Energy: 

𝜕(𝜌𝑓𝑢𝑖𝑐𝑝𝑓𝑇)

𝜕𝑥𝑖

=
𝜕

𝜕𝑥𝑖

(𝑘𝑓

𝜕𝑇

𝜕𝑥𝑖

) (3) 

 

Turbulent kinetic energy equation (SST k-ω turbulence model): 

𝜕

𝜕𝑥𝑖

(𝜌𝑓𝑘𝑢𝑖) =
𝜕

𝜕𝑥𝑖

[(𝜇𝑓 +
𝜇𝑡

𝜎𝑘

)
𝜕𝑘

𝜕𝑥𝑖

] + 𝐺𝑘 − 𝜌𝜀 

 

(4) 

 

 Conservation of turbulent dissipation rate (SST k-ω turbulence model): 

𝜕

𝜕𝑥𝑖

(𝜌𝑓𝜀𝑢𝑖) =
𝜕

𝜕𝑥𝑖

[(𝜇𝑓 +
𝜇𝑡

𝜎𝜀

)
𝜕𝜀

𝜕𝑥𝑖

] +
𝜀

𝑘
𝑐1𝐺𝑘 − 𝑐2𝜌𝜀 

 

(5) 

 

where k denotes the turbulent kinetic energy, 𝜀 the turbulent dissipation rate, Gk the generation of turbulent kinetic 

energy and µt the turbulent viscosity, respectively. 

𝐺𝑘 =  −𝜌𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅
𝜕𝑢𝑗

𝜕𝑥𝑖

 

 

(6) 

 

µ𝑡 =
𝜌𝐶µ𝑘2

𝜀
 (7) 
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where, the model constants Cµ = 0.09, C1 = 1.44, C2 = 1.92, 𝝈k  = 1.0 and 𝝈𝝴 = 1.3. 

 

The energy equation for solid may be written as: 

𝜕

𝜕𝑥𝑖

(𝑘𝑠

𝜕𝑇

𝜕𝑥𝑖

) = 0 (8) 

 

where ρ denotes the density, p the static pressure, T the static temperature, k the thermal conductivity of solid, µ the 

dynamic viscosity and cp the specific heat capacity. 

Boundary Conditions 

A constant heat flux of 90 W/cm2 was provided at the bottom surface of the microchannel. A uniform fluid was 

pumped at the inlet with a constant inlet temperature of 293 K. Silicon was taken as the material of the heat sink with a 

temperature dependent thermal conductivity as shown in Table 2 and thermo-physical properties of water are given in 

Table 3.  

Table 2. Thermal conductivity of silicon substrate. 

Temperature (K) 200 250 300 350 400 

Thermal 

Conductivity (W/m.K) 
264 191 148 119 98.9 

 

Table 3. Thermo-physical properties of water. 

T (K) ρ (kg/m3) Cp (J/kg.K) K (W/m.K) 
µ 

(Pa.s) 

293 998.1 4183 0.599 0.001004 

303 995.7 4174 0.618 0.0008015 

313 992.2 4174 0.635 0.0006533 

323 988.1 4174 0.648 0.0005494 

 

In the present study, the governing equations for three-dimensional flow with the two equations SST k-ω turbulence 

model were used to determine velocity, pressure and temperature fields. The following boundary conditions were used 

to solve the governing equations.  

Velocity inlet boundary:  
A uniform inlet velocity with a constant temperature of 293K was pumped in the microchannel. Table 4 presents the 

inlet velocity ranged from 29.07 m/s to 81.39 m/s with the corresponding Reynolds number from 2500 to 7000. 

 

x = 0: uf = uin, Tf = Tin (9) 

 

Table 4. Inlet fluid velocity considered in the present investigation. 

Sr. No. 1. 2. 3. 4. 5. 6. 7. 8. 

Inlet Velocity (m/s) 29.07 32.00 34.88 40.70 46.51 58.14 69.77 81.39 

 

Pressure outlet boundary:  
An atmospheric pressure was chosen as the outlet pressure of the microchannel 

x = 10 mm, pf = pout (10) 

where pout = 0 (gauge pressure). 

 

For inner wall/fluid contact surface: 

u = v = w =0; Ts = Tf 
(11) 

 

−𝑘𝑠 [
𝜕𝑇𝑠

𝜕𝑛
]

𝑤
= −𝑘𝑓 [

𝜕𝑇𝑓

𝜕𝑛
]

𝑤
 (12) 
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where n denotes the local coordinate normal to the wall.  

 

Constant heat flux boundary:  
A constant heat flux q = 90 W/cm2 was applied on the base of the microchannel 

 

Left and right side wall condition:  
Adiabatic boundary condition was used for the two sides of the computational domain 

Top surface:  
Top surfaces were considered as adiabatic  

−𝑘𝑓
𝜕𝑇𝑓

𝜕𝑧
= 0 or  −𝑘𝑠

𝜕𝑇𝑠

𝜕𝑧
= 0 (16) 

 

where uin denotes the inlet fluid velocity. The subscripts f and s refer to fluid and solid, respectively. 

 

Solution Method and Code Validation                 

ANSYS Fluent 15 was used as a CFD solver to determine heat transfer and flow fields. The SIMPLE algorithm was 

adopted to deal with linkage between pressure and velocity. The scaled residues for continuity, momentum, energy, 

turbulent kinetic energy and dissipation were less than 1𝑥10−6, 1𝑥10−6, 1𝑥10−9, 1𝑥10−9and 1x10−9, respectively, to 

ensure convergence. A grid sensitivity study was performed using different grid sizes for all geometries for Re = 2500. 

The deviations in thermal resistance was 6%, 0.3% and 0.2%, respectively, for 1.3 million, 2.0 million, 2.5 million and 

3.3 million cells, respectively as shown in Table 5. Therefore, the third grid system with 2.5 million cells was chosen 

for further simulations as shown in Figure 3. 

The code validation was carried out by comparing the thermal resistance using k-ε and k-ω turbulence models with 

the results obtained by Xie et al. [5], who used a classical correlation. They analysed a microchannel heat sink as a two-

dimensional flow through a narrow rectangular channel with a constant heat flux boundary condition at the base of the 

heat sink considering the capacity resistance and the conductive resistance. They performed comparisons between 3D 

numerical simulations using the k-ε turbulence model and the conventional correlation as mentioned above and showed 

the effect of the inlet velocity on the thermal resistance. The corresponding Reynolds number was calculated based on 

the hydraulic diameter of the microchannel heat sink, which comes out ranging from 2500 to 8000. In the present study, 

the thermal resistance was calculated using k-ε and k-ω turbulence models for Re ranging 2500 - 8000 and compared 

with the results obtained by the above-mentioned conventional correlation. The results obtained by the k-ω turbulence 

model were closer to the results by the conventional correlation with a deviation of approximately 12% (Figure 4). A 

possible reason for this deviation is the presence of transition flow region in the microchannel while the conventional 

correlation is valid for a fully turbulent region. In addition, considering the limitations of the RANS approach [27] the 

present deviation is quite reasonable. Further a 3D RANS simulation is useful because it can account for complex flow 

resulting from a complicated geometry due to a convergent–divergent cross-section with ribs and cavities and thus 

provide a good physical understanding of heat transfer and fluid flow processes. Therefore this result is used to select 

the k-ω model turbulence model in the present study.   

Table 5. Details of mesh for grid independence study. 

Mesh 
Mesh 

size (million) 

Thermal resistance, 

R (K.cm2/W) 

Deviation in 

R 

Mesh I 1.3 0.0395 --- 

Mesh II 2.0 0.0396 6% 

Mesh III 2.5 0.03949 0.3% 

Mesh IV 3.3 0.03958 0.2% 

 

z = 0,  𝑘𝑠
𝜕𝑇𝑠

𝜕𝑧
= 𝑞 (13) 

y = 0,  
𝜕𝑇𝑠

𝜕𝑦
= 0 

(14) 

 

y = 0.10 mm,  
𝜕𝑇𝑠

𝜕𝑦
= 0 (15) 
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Figure 3. Computational grid for convergent divergent microchannel with ribs and cavities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Comparison of present results with the reported correlation. 

 

Parameters Considered    

The Reynolds number at the inlet is defined as 

𝑅𝑒 =
𝜌𝑓𝑢𝑖𝑛𝐷ℎ

µ𝑓

 

 

(17) 

 

 

where Dh denotes the hydraulic diameter of the channel and uin the inlet fluid velocity.  

 

 

The average fanning friction factor may be expressed as  

𝑓̅ =
𝛥𝑝𝐷ℎ

2𝜌𝑓𝐿𝑢𝑖𝑛
2  

(18) 

 

 

The average Nusselt number (𝑁𝑢̅̅ ̅̅ ) was calculated from the average heat transfer coefficient (ℎ̅) and expressed as 

 

𝑅𝑒 =
𝜌𝑓𝑢𝑖𝑛𝐷ℎ

µ𝑓

 (19) 

𝑁𝑢̅̅ ̅̅ =
ℎ̅𝐷ℎ

𝑘𝑓

 (20) 
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where, q, n, Ab, Acont, 𝑇𝑤
̅̅ ̅  and 𝑇�̅�  denote the heat flux, the number of microchannels, the bottom area, the solid-fluid 

contact area, the area averaged bottom surface temperature and the bulk fluid temperature, respectively. 

 

Thermal resistance and pumping power are calculated by the expressions: 

 

𝑅 =
𝑇𝑚𝑎𝑥 − 𝑇𝑖𝑛

𝑞
 (21) 

 

where Tmax and Tin are the substrate maximum and inlet fluid temperatures, respectively. 

 

𝑅 =
𝑇𝑚𝑎𝑥 − 𝑇𝑖𝑛

𝑞
 (22) 

where Ac denotes the inlet cross-sectional area per channel.  

RESULTS AND DISCUSSION 

The numerical results for each case including the average Nusselt number and thermal resistance are presented in 

this section. Thermal resistance has been taken as a performance evaluation criterion and it has been compared for 

various configurations for different values of Re ranging from 2500 to 7000.  

Flow Pattern 

In a rectangular microchannel, a thick boundary-layer forms due to parallel streamlines and it deteriorates its 

thermal performance. When ribs and cavities are incorporated in the flow domain, velocity decreases in the cavities and 

a full heat exchange occurs between water and heated wall. If retention of fluid in cavities is long, heat transfer 

decreases. It can be seen from Figure 5 that the presence of ribs and cavities changes flow field as compared to the 

rectangular microchannel in which streamlines are parallel. However, incorporation of ribs between the cavities 

increases the velocity and there is a strong mixing of hot and cold fluids. The maximum velocity occurs at the centre in 

the rectangular channel while in the case of rectangular channel with ribs and cavities, minimum velocity occurs at the 

cavity location. However, the maximum velocity occurs when flow passes through ribs. As shown in Figure 5, a 

periodic interruption of boundary-layers and local fluid mixing was observed near cavities and ribs. In the CD shaped 

microchannel, flow is accelerated in the convergent segment and attains the maximum velocity followed by a constant 

velocity in the uniform cross section zone with finally getting decelerated in the diverging segment. When ribs and 

cavities are used with the convergent-divergent shaped microchannel, fluid flows to cavity at the entrance of the 

contraction region, causing mixing of fluid and then fluid is again accelerated when it passes over the ribs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Velocity in z-x plane in the middle of fluid region along the channel length for Re = 2500. 

 

Figure 6 shows the velocity and temperature distributions for microchannels in a x-y plane located at the centre of 

the channel height (z = 0.36 mm) at Re = 2500. As shown in Figure 6(a), the streamlines are parallel to fluid flow 

direction and the peak velocity occurs at the channel centre. Due to thickening of thermal boundary-layer, heat transfer 

is small from the solid domain to the fluid domain which can be observed from the temperature contours. When ribs 

and cavities are incorporated in a rectangular microchannel, the peak velocity occurs while passing through the ribs and 
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minimum velocity occurs in the cavities. This is due to a sudden expansion and contraction of flow area. Such change in 

velocity creates a strong mixing of cold and hot fluids leading to an enhancement in heat transfer from the solid domain 

to the fluid domain. It is also observed from Figure 6(b) that the temperature of the solid domain is more than that of the 

rectangular channel. In the convergent - divergent shaped microchannel, the maximum velocity occurs after the 

converging section and flow is retarded in the diverging section as shown in Figure 6(c). In the CD-RC microchannel, 

cavities in the converging segment and ribs in the divergent segment make periodic interruption of velocity and thermal 

boundary-layers leading to a developing flow in the microchannel as shown in Figure 6(d). It improves the heat transfer 

in terms of an increased average Nusselt number and uniform temperature distribution in the substrate material.  
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(d) 

Figure 6. Temperature and velocity distributions along the channel length at Re = 2500 at z = 0.36 mm: (a) rectangular, 

(b) rectangular with ribs and cavities, (c) convergent-divergent and (d) convergent-divergent with ribs and cavities. 

 

Pressure Drop and Friction Factor 

When fluid flows in a rectangular channel, there is a pressure drop along the flow to overcome mainly frictional 

losses. In the case of a convergent-divergent shaped microchannel the pressure drop takes place due to fluid friction and 

flow passage configuration. Furthermore ribs and cavities disrupt the flow causing blocking effect and recirculation, 

thereby resulting in a higher pressure drop. Variations in pressure drop along the flow direction at Re = 2500 are 

presented in Figure 7(a). It is well known that for a smooth microchannel, the pressure decreases gradually along the 

channel length. In a CD microchannel flow is forced to flow in different cross-section segments while ribs and cavities 

disturb the core flow field periodically. It is clear from Figure 7(a) that the effect of convergent-divergent shape on 

pressure drop is more dominant than ribs and cavity. The pressure drop for the CD-RC microchannel is highest in all 

cases considered due to flow disruptions. The effects of flow rate on the pressure drop are shown in Figure 7(b). There 



P. Srivastava and A. Dewan et.al │ Journal of Mechanical Engineering and Sciences │ Vol. 14, Issue 1 (2020) 

6354   journal.ump.edu.my/jmes ◄ 

is a linear pressure drop for all cases considered up to some value of Re and thereafter it increases rapidly. The pressure 

drop increases with Re significantly. The pumping pressure for the CD-RC microchannel is the highest among all the 

cases considered. 

The total frictional loss can be obtained by summing different losses occurring in a microchannel. The major loss is 

due to a change in the channel shape where a periodic expansion and contraction takes place. Other losses are due to 

recirculation in cavities and flow blockages between ribs. A variation in friction factor with flow rate is shown in Figure 

8. It is observed that the frictional loss is the highest for the CD-RC microchannel among all the cases considered.  
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Figure 7. (a) Pressure drop along the channel length for Re = 2500 and (b) pressure drop variation with Re. 
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Figure 8. Variation in average friction factor with Reynolds number. 

 

Heat Transfer Characteristics 

In this section the effects of channel shape with ribs and cavities on heat transfer characteristics are presented. A 

change in the shape of a microchannel changes the flow direction so that it interrupts boundary-layer and hence a restart 

of boundary-layer takes place leading to an increase in heat transfer. Ribs and cavities are mainly used to enhance local 

heat transfer. This enhancement in heat transfer is not only due to an increase in the contact area but also due to a strong 

mixing of fluid. As fluid enters the cavity, velocity decreases and more time is available for heat transfer. At the same 

time, a longer retention of fluid into cavity also decreases heat transfer due to a poor mixing of fluid. Figure 6 shows the 

temperature distribution in an x-y plane located at the middle of the fluid domain depth (z = 0.36 mm) at Re = 2500. It 

can be observed from Figure 6(a) that the temperature of the substrate for the rectangular channel is the highest among 

all the cases considered. This behavior is due to a poor heat transfer from the solid domain to the fluid domain. As the 

shape is changed using a convergent-divergent geometry, as shown in Figure 6(c), flow is accelerated in the convergent 

section and then decelerated in the divergent section leading to an interruption of boundary-layer and a strong mixing of 

cold and hot fluids. Such periodic change in velocity leads to lower the thermal resistance resulting in an enhancement 

of heat transfer. Figures 6(b) and 6(d) show the effect of ribs and cavities on rectangular and CD shaped microchannel. 

Interruption and redevelopment of boundary-layers takes place due to flow disruption by ribs leading to heat transfer 

enhancement. 

Figure 9 shows the temperature distributions in x-z plane of microchannels at the middle of the fluid domain (y = 

0.050 mm) for Re = 2500. It can be observed from Figure 9(a) that the thermal boundary-layer thickens resulting in a 

poor heat transfer from the solid domain to fluid domain in the rectangular shape. The maximum temperature of fluid 

occurs in the centre of fluid and it is the highest among the all cases considered. However, Figure 9(d) shows the 

combined effects of CD shaped with ribs and cavities which lower the maximum temperature of the solid substrate due 

to a significant heat transfer between the solid and fluid domains. 
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(d) 

 

Figure 9. Temperature distributions along the channel length at Re = 2500 at z = 0.36 mm (a) rectangular  

(b) rectangular with ribs and cavities (c) convergent-divergent and (d) convergent-divergent with ribs and cavities. 

 

Due to a change in the channel shape with ribs and cavities, sudden expansion and contraction of flow area takes 

place which creates a strong mixing of cold and hot fluids leading to an enhancement in heat transfer from the solid 

domain to the fluid domain. In the CD-RC microchannel, the presence of cavities in the converging segment and ribs in 

the divergent segment result in hydraulic and thermal-boundary layer interruptions leading to an improvement in heat 

transfer in terms of an increased average Nusselt number. This increase in the averaged Nusselt number is due to a 

developing flow in the CD-RC microchannel. It is observed from Figure 10 that the average Nusselt number for the 

CD-RC microchannel is the highest among all the cases considered. An increase of 16% - 40% in the average Nusselt 

number was observed in the CD-RC microchannel compared to the rectangular shape for the range of Re considered. 
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Figure 10. Variation in average Nusselt number with Reynolds number. 

 

The substrate temperature is given the most attention in chip cooling as a chip is directly mounted on this surface. 

Figure 11(a) shows variations in the area-weighted bottom wall temperature along the channel length at Re = 2500. It 

can be observed from Figure 11(a) that the bottom surface temperature rises linearly with Re in the case of the 

rectangular channel, while the rectangular channel with ribs and cavities has a lower value and it periodically increases 

and decreases at the locations of ribs and cavities. In the CD microchannel, the substrate temperature lowers in the 

converging section and increases in the diverging section. At the same location the substrate temperature of the CD-RC 

channel is the minimum among the all cases considered due to an increase in temperature encountered in the CD shape. 

Figure 11(b) shows a variation of the area weighted bottom surface temperature with the flow rate. It can be seen that 

the average bottom surface temperature decreases with flow rate for all the cases considered. The rate of decrease of the 

average bottom surface temperature reduces with Re. A small temperature variation with the least substrate temperature 

was observed in the CD-RC microchannel.  
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Figure 11. (a) Bottom wall temperature along the channel length for Re = 2500 and  

(b) bottom wall temperature variation with Re. 

 

Overall Thermal Performance Evaluation 

Thermal resistance, which is the ratio of the temperature difference of the substrate and inlet temperature to heat 

flux, is a commonly used parameter for the performance evaluation in chip cooling. Figure 12 shows variations in 

thermal resistance with Re in the range of 2500 – 7000. It can be observed that with an increase in Re, the thermal 

resitance drops quickly for all the cases. This behaviour is due a decrease in the convective resitance with an increase in 

Re. The increase of heat transfer coefficient eventually increases the average Nusselt number with Re leading to a 

decrease in the convective resistance. It is observed that for a given Re the thermal resistance of the CD-RC 

microchannel is much lower than that of the rectangular microchannel. Further decrease in the thermal resistance is the 

highest for the CD shape of channel than for ribs and cavities only as shown in Figure 12. It can also be obseved from 

Figure 12 that a further increase of flow rate makes less contribution to a decrease in the overall thermal resistance and 

hence its effectiveness is gradually lost at higher flow rate.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Variation in thermal resistance with Reynolds number. 
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CONCLUSIONS 

The individual effects of different shapes of microchannel, such as, I, U, serpentine, etc. and the use of pillars, 

baffles, prismatic ribs and their configurations, on thermal characteristics were analysed by many researchers to 

augment turbulent heat transfer. In the present paper, turbulent heat transfer characteristics are analysed in a Convergent 

- Divergent (CD) shaped microchannel with Ribs and Cavities (RC) for Re ranging from 2500 – 7000. Due to a change 

in the channel shape, sudden expansion and contraction of flow takes place which creates a strong mixing of cold and 

hot fluids leading to an enhancement in heat transfer from the solid domain to the fluid domain. In the CD-RC 

microchannel, the presence of cavities in the converging segment and ribs in the divergent segment results in 

interruptions of the hydraulic and thermal-boundary layers leading to an improvement in heat transfer in terms of an 

increased average Nusselt number. The investigation shows that the average Nusselt number increases from 16% to 

40% with an increase in the flow rate considered.  The combined effects of the CD shape with ribs and cavities produce 

an enhanced fluid mixing with periodic interruptions of boundary-layer leading to an improved thermal performance of 

the microchannel. It is also observed that the CD-RC microchannel has the least overall thermal resistance and it 

decreases by 30% over the range of Re considered. Lower and smaller variations in the heated surface temperature are 

also observed which are essential for an electronic cooling. At the same time, the CD shaped microchannel requires 

more pumping power to remove the same amount of heat as compared to a rectangular microchannel and therefore a 

trade-off between overall thermal resistance and pumping power is observed. A parametric study dealing with effects of 

the substrate thickness along with the curvature of the convergent-divergent section on overall thermal resistance may 

be further performed to obtain an optimum overall thermal performance.  
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