
Journal of Mechanical Engineering and Sciences  

ISSN (Print): 2289-4659; e-ISSN: 2231-8380 

Volume 13, Issue 4, pp. 5938-5960, December 2019   

© Universiti Malaysia Pahang, Malaysia 

DOI:  https://doi.org/10.15282/jmes.13.4.2019.15.0471 

 

5938 

High mixing performances of shear-thinning fluids in two-layer crossing channels 

micromixer at very low Reynolds numbers 

 

A. Kouadri 1,2*, Y. Lasbet 2 and M. Makhlouf 1 

 
1Department of Mechanical Engineering, Djillali Liabes University,  

22000 Sidi Bel Abbes, Algeria  
2LDMM Laboratory, Djelfa University, 17000 Djelfa, Algeria 

*Email : kouadriamar@yahoo.fr 

Phone : +213698968998 

 

 

ABSTRACT 
 

In a recent study, the Two-Layer Crossing Channels Micromixer (TLCCM) exhibited good 

mixing capacities in the case of the Newtonian fluids (close to 100%) for all considered 

Reynolds number values. However, since the majority of the used fluids in the industrial 

sectors are non-Newtonians, this work details the mixing evolution of power-law fluids in 

the considered geometry. In this paper, the power-law index ranges from 0.73 to 1 and the 

generalized Reynolds number is bounded between 0.1 and 50. The conservation equations of 

momentum, mass and species transport are numerically solved using a CFD code, 

considering the species transport model. The flow structure at the cross-sectional planes of 

our micromixer was studied using the dynamic systems theory. The evolutions of the 

intensity, also the axial, radial and tangential velocity profiles were examined for different 

values of the Reynolds number and the power-law index. Besides, the pressure drop of the 

power-law fluids under different Reynolds number was calculated and represented. 

Furthermore, the mixing efficiency is evaluated by the computation of the mixing index (MI), 

based on the standard deviation of the mass fraction in different cross-sections. In such 

geometry, a perfect mixing is achieved with MI closed to 99.47 %, at very small Reynolds 

number (from the value 0.1) whatever the power-law index and generalized Reynolds 

numbers taken in this investigation. Consequently, the targeted channel presents a useful tool 

for pertinent mass transfer improvements, it is highly recommended to include it in various 

microfluidic systems.  

 

Keywords: Micromixer; chaotic advection; mixing index; shear-thinning fluids; low 

Reynolds number. 

 

 

INTRODUCTION 

 

The flow at low Reynolds number and small scales are necessarily laminar where the particle 

trajectories are regular. So, this type of flows is unfavourable for achieving a perfect and 

rapid mixing in the transfer phenomena (heat and mass) prevailing in the ducts. To overcome 

this difficulty, we had to disturb the flow, either spatially or temporally, in order to affect the 

trajectories of fluid particles from regular to chaotic. This task becomes more complicated in 
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the case of creeping flows (Re of the order of 0.1). Temporary perturbation concerns two-

dimensional flows where solid boundaries and/or initial conditions are disturbed over time. 

Regarding the spatial perturbation, it makes the geometry twisted in the three directions of 

space. These perturbations break the flow regularity and so the chaotic flow is generated. For 

this subject, it became necessary to focus the efforts on the development of micromixers used 

in the different industrial domains such as bioengineering and chemical engineering, 

chemical synthesis, emulsion processes, polymerization [1], DNA analysis, two-phase flow 

separation [2], detection and analysis of chemical or biochemical content [3-4-5]. We can 

distinguish two main types of micromixers: active and passive micro-mixers [6]. Active 

micromixers use external energy sources to accentuate the flow agitation by, for example, a 

magnetic field, pressure field, and electrical field, etc. These types of micromixers are very 

efficient in terms of mixing [7] but they are more complex and expensive than passive 

micromixers. In addition, they required more detailed in terms of fabrication. Besides, 

passive micromixers are of great importance due to their simple structures and easy 

manufacturing [8]. Thus, the secondary flows resulting from the chaotic advection are very 

intense and many vortices of different sizes are generated. The large vortices improve the 

macroscopic mixing against the small ones act microscopically on the homogenization. All 

these reasons encourage researchers to focus their efforts on the design and realization of 

new micromixers operating in chaotic advection especially in the case where the working 

fluid is a non-Newtonian fluid because it is the most used in the industry. Niederkorn and 

Ottino [9] characterized the mixing of non-Newtonian fluids that was modelled by Carreau 

model in a 2D periodic flow between two eccentric cylinders. The authors showed that the 

shear thinning behaviour of the fluid decreases the velocity of the flow so consequently the 

mixing was extended. The velocity of flow is also extended in 2D and 3D cavities stirred 

periodically where the Carreau model is adopted by Anderson et al. [10]. Chao et al. [11] 

carried out a numerical investigation of the mixing of non-Newtonian shear-thinning and 

shear-thickening fluids driven electrokinetically through microchannels containing 

rectangular and wavy blocks. They studied the impact of diverse parameters on the mixing 

efficiency like the power-law index, the wave amplitude, the width and length of the blocks, 

and the applied electric field potential. The results indicated that for both types of fluid, the 

mixing performance improved by increasing the amplitude of the wave, increasing the length 

and width of the blocks, and increasing the magnitude of the heterogeneous surface potential.  

Afzal and Kim [12] performed a numerical simulation to investigate the mixing 

behavior of Newtonian (water) and non-Newtonian (blood) fluids through T-shaped right and 

serpentine microchannels. They found that the serpentine channel showed higher mixing 

performance for all flow regimes. Tsai et al. [13] studied the mixing evolution of Newtonian 

fluid (deionized water (DI)) and non-Newtonian fluid carboxymethyl cellulose (CMC) 

solutions in three serpentine-type micromixers composed of repeated C-shaped units. They 

outlined that the mixing efficiency of a micromixer with a lower centerline radius is better 

compared to that obtained for a larger centerline radius. So, the curvature-induced vortices 

improve considerably fluid mixing. A numerical study was checked out by Shamsoddini et 

al. [14] in order to investigate the effects of the power-law index and stirrer frequency on the 

mixing of non-Newtonian fluids in an active micromixer using an oscillating stir-bar. They 

considered two Reynolds numbers, 20 and 72. Their results showed that this active 

micromixer is not useful for shear-thickening fluids. While for the shear-thinning fluids the 
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mixing is more efficient and fast. Therefore, the mixing index increased steadily with the 

increase of the power-law indices.  

Islami, Khezerloo, and Gharraei [15] carried out a numerical study on the mixing of 

shear-thinning fluids, using six models of curved micromixers for a wide range of the 

Reynolds numbers with different values of power-law indices. The mixing index decreased 

with the decrease of the power-law index. Recently, Islami and Khezerloo [16] studied 

numerically the mixing of non-Newtonian shear-thinning fluids in a curved micromixer with 

grooves integrated on the bottom wall surface. They showed that the grooves revealed the 

generation of chaotic advection and the enhancement of the mixing performance where the 

300 is the optimal orientation. Xia et al. [17], employed micromixer for Newtonian fluids 

providing good mixing at low Reynolds numbers. The micromixer consisted of two-layer 

crossing channels, together with numerical and experimental investigations show that the 

micromixer is more efficient, which showed excellent mixing performance over a wide range 

of Reynolds numbers. A mixing index of 0.96 was obtained for Re=0.2. In a recent paper, 

Hossain et al. [18] characterized the mixing performance of Newtonian fluids in two-layer 

crossing channels micromixer for Reynolds number ranging from 0.2 to 40. Their results 

outline that the mixing index reached 0.90 with variations of the geometric parameters even 

at creeping flow, Re = 0.2.  

Thereafter Hossain et al. [19], invented an improved geometry model that can achieve 

a higher mixing index of 0.99 with Reynolds number less than 10, the superiority of the 

micromixer has been demonstrated both numerically and experimentally.  

The purpose of this study is to highlight the performance of the geometry proposed 

by Hossain et al [19] in terms of mixing in the case of non-Newtonian pseudo plastic fluids 

after having proved his great abilities to achieve a perfect mixing of Newtonian fluids. 

Knowing that the literature review showed that the mixing index obtained at low Reynolds 

number (0.1 to 50) in the various proposed systems does not exceed 50% in the best of cases. 

Analyses of the mixing process are done by using the CFD numerical tool in the case of 

power-law fluids, carboxymethyl cellulose (CMC) solutions. The power-law index ranging 

from 0.73 to 1 and the generalized Reynolds number varies from 0.1 to 50.  

 

 

GEOMETRY OF THE MICROMIXER 

 

The main geometry adopted in our study is called TLCCM and it is detailed in Figure 1. It is 

initially proposed by Hossain et al. [19]. This micromixer is composed of two twisted 

channels of identical dimensions, the upper and lower channels are arranged periodically. 

The fluids in channels are interconnected through the mediums of the shapes "X" and vertical 

sections. The successive arrangement of the mixing units results in repetitive patterns of 

elongation, fragmentation, and recombination of the fluid streams. The dimensions of the 

micromixer geometry are presented on Figure 1, where the width of the micromixer H is 

equal to 1.07 mm, the width of the diagonal channel W=0.3 mm, the length of the vertical 

channel b=0.15 mm, the pitch between the transverse channels P=0.64 mm, the height of 

diagonal channel d=0.15 mm and the number of mixing units is equal to 9. The total length 

of the micromixer is 7.5 mm; the cross-sections of the inlets and outlet are 0.15 × 0.3 mm2 

and 0.3 × 0.3 mm2 respectively.  
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Figure 1. Description of the TLCCM micromixer. 

 

 

MATHEMATICAL AND NUMERICAL MODELING 

 

Governing Equations 

Steady conservation equations of incompressible fluid are solved numerically by using a 

CFD code. These equations can be expressed as follows: 

∇ ∙ V = 0                                                                                        (1) 

ρ(V ∙ ∇)V = −∇P + ∇ ∙ τ̿                                                           (2) 

where V, ρ, P and τ̿ represent the velocity, fluid density, static pressure, and the shear stress 

tensor, respectively.  

The species transport equation is given by Equation. (3): 

(V ∙ ∇)C = D∇2C                                                                         (3) 
where D is the diffusion coefficient and C is the concentration. 

A generalized form of the shear stress tensor is written under the following form, see 

Equation. (4): 

τ̿ = μa γ̿̇                                                                                       (4) 

With γ̿̇ is the shear rate tensor, see Equation. (5): 

γ̿̇ =
1

2
(∇V + ∇VT )                                                                    (5) 

Exponent T indicates the transposed operator. 

In our study, the power-law viscosity model was used to study the rheological behavior of 

CMC solutions. In this model, the apparent viscosity μa is calculated as:  

μa = mγ̇n−1                                                                               (6) 
where m denotes the consistency coefficient and n denotes the power-law index of the fluids.  

Shear rate γ̇ is defined as:   
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γ̇ = √1/2(γ̿̇ ∶ γ̿̇)                                                                         (7) 

As boundary conditions, no-slip velocity condition is imposed at the wall, a constant uniform 

velocity is imposed at the inlets cross-section and pressure outlet condition is established at 

the outlet section. The mass fraction at the inlet 1 equals to 0 while in the inlet 2 is equal to 

1. 

The Semi-Implicit Method for Pressure Linked Equations-Consistent (SIMPLEC) 

algorithm was used to solve the pressure-velocity coupled equations. A high resolution 

second-order upwind scheme was used for the discretization of the momentum equations as 

well as the species transport equation. The convergence criterion in all simulations is taken 

less than 10−6. 

 

Physical Properties of Fluids 

In this work, the working fluid is CMC solutions. The density of CMC solutions (Srisamran 

et al., [20]) used in this work was 1000 kg/m3, the consistency coefficient and the power-law 

index of CMC solutions are listed in Table 1 (Fellouah et al., [21], Whitelaw et al., [22]). The 

diffusion coefficient of the CMC solutions was assumed to be 3.6×10-10 m2/s (Das et al., 

[23]). This value is chosen so that the molecular diffusion is negligible, so, to highlight the 

chaotic advection.  

 

Table 1. Properties of fluids [21,22]. 

 

CMC (%) n (-) m (Pa.sn) 

0 1 0.000902 

0.1 0.9 0.0075 

0.2 0.8 0.06 

0.3 0.73 0.15 

 

To quantify the mixing performance of the micromixer, the mixing index (MI) in each cross-

sectional plane perpendicular to the flow direction is calculated as follows: 

MI = 1 −
σ

σ0
                                                                                 (8) 

σ represents the standard deviation of the mass fraction at cross-section defined as: 

σ2 =
1

N
∑(ci − c̅)2

N

i=1

                                                                    (9) 

where σ0 is the standard deviation at the inlet section, N denotes the total number of sampling 

points in transversal cross-section, ci is the mass fraction at a sampling point i, and c̅ is the 

mean mixing mass fraction of ci and it is equal to 0.5. For unmixed fluids, MI = 0 and for a 

perfect mixing MI = 1.  

The generalized Reynolds number Reg for a power-law fluids flow model through 

rectangular cross section for different aspect ratios is defined by Metzner and Reed relation 

[24], see Equation. (10): 
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Reg =
ρu̅2−ndh

n

m{(24n + ξ)/(24 + ξ)n}n ξn−1
                              (10) 

With u̅  is the mean velocity flow and ξ is the dimensionless geometrical parameter. 

We note that the dimensionless geometrical parameter ξ, is equal to 7.774 for an aspect ratio 

equal to 0.5 [25]. 

 

Grid Independency Test 

In order to check the sensitivity of the results to the mesh grid and to find the appropriate cell 

size, an unstructured grid with tetrahedral cells is implemented (Figure 2a), so five grid mesh, 

ranging from 437 × 103 to1534 × 103, are tested in the TLCCM micromixer. In this 

examination, the power-law index and the generalized Reynolds number are taken 0.49 and 

50 respectively. For this aim, the evolutions of the mixing index on different cross-sections 

along the channel for different grid mesh are presented, see Figure 2b. The difference 

between the grid mesh (1 534 339 and 1 323 058) don’t exceed 1% and subsequently, the 

choice is assigned to the grid with 1 323 058 cells in order to optimize the memory size. In 

addition, according to the sensitivity test results, the grid with 1 323 058 cells corresponds to 

a cell of 16 μm in size, is sufficiently refined to find accurate results with a reduced 

calculation time. 

 

 
(a) 
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Figure 2. (a) Example of tetrahedral grid, (b) Mesh independency test for the evolution of 

mixing index (Re = 50, n = 0.49). 

 

 

RESULTS AND DISCUSSION 

 

Validation Tests 

Before using the CFD software, ANSYS FLUENT 16.0, validation tests must be carried out 

to ensure the reliability of the choice of calculation parameters. Such tests are done for both 

case studies; Newtonian and non-Newtonian fluids. A quantitative comparison was made 

with the existing results in the literature related to the mixing index and average apparent 

viscosity. They allow us to test and validate the Fluent calculation code by comparing our 

numerical results with those obtained in the literature in different geometries. For the 

Newtonian fluid, the mixing index calculated at the exit of the TLCCM micromixer for a 

Reynolds number between 0.2 and 120 was compared with the numerical and experimental 

results obtained by S. Hossain et al. [19], see Figure 3. The three evolutions are perfectly 

superimposed and the observed difference between the different results is barely remarkable. 

Where the maximum relative error with the numerical results is 6.16% while the maximum 

error with the experimental results is 4.59%. The gap between the different evolutions 

remains in the range of the numerical method precision. 

Concerning the non-Newtonian fluid case, the ratio of the average apparent viscosity 

of the CMC solutions to the viscosity of the deionized water (Newtonian fluid) and the 

mixing index were calculated and compared to that evaluated by Rei-Tang Tsai et al. [13] in 

the SCSM-90/34 micromixer, see Figure 4a. This comparison is done for a 500 ppm CMC 

solution where n = 0.8229. 

The evolution of the average apparent viscosity ratio as a function of the mean 

velocity is presented on Figure 4b. The two evolutions are completely identical and the 

difference between the two curves is not at all observed, such as the maximum relative error 
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is observed and only for the last velocity value which equal to 5.17%. Figure 4c presents the 

evolution of the mixing index at the exit of the end of each unit of form C for mean velocity 

equal to u̅ = 0.2187 m/s in the SCSM-90/34 micromixer. Once again, the curves are in very 

good agreement with a maximum value of relative error equal to 12.47% and consequently, 

the relevance of the validation tests is shown. 
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Figure 3. Evolutions of the mixing index as a function of Reynolds number for a 

Newtonian fluid for the current research and compared with S. Hossain et al [19]. 
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Figure 4. Comparison of the results for non-Newtonian fluid:  

(a) Micromixer geometry [13], (b) Average apparent viscosity ratio as compared 

with [13], (c) Mixing index at the exit of each C-shaped unit compared with [13]. 

 

Investigation of the Results 

Dynamic behaviour 

In the dynamic systems theory, the flow structure is complex if there is at least one unstable 

element somewhere in the phase’s space. These unstable elements in the phase’s space are 

hyperbolic points, unlike elliptic points [26]. Hyperbolic and elliptical points are schematized 

in Figure 5. The region formed by an elliptical point and its close vicinity represents an 

obstacle to an effective mixing. As for the hyperbolic point, we associate two local behaviors: 

one stable Ws and the other unstable Wi, ("s" for stable and "i" for unstable) [10]. The stable 

directions, Ws, and unstable, Wi, respectively correspond to the physical directions of 

compression and stretching, see Figure 6.  

 

                         
      

Figure 5. Elliptic and Hyperbolic Points [26]. 



A. Kouadri et. al / Journal of Mechanical Engineering and Sciences 13(4) 2019   5938-5960 

5947 

 
Figure 6. Stable behavior Ws and unstable behavior Wi for hyperbolic points [26]. 

 

This behaviour is a strong sign of the appearance of chaotic advection in the flow [9]. 

The intersection of the stable and unstable elements in the three planes even at low Reynolds 

numbers is clearly visualized in our micromixer, see Figure 7, where the velocity vectors are 

plotted on the y-z planes at the nodes of the cross-sections in the mixing channel for Re = 0.1 

and n = 1, this figure visualizes the flow pattern with a saddle-shaped [17], which is an 

important factor in the formation of chaotic advection. The saddle-shaped consists as an 

hyperbolic which split into four zones of fluid streams, with two parabolic segments (up and 

down) and two helical (left and right) flow patterns, thus result from the two-layer crossing 

while the fluids are driven from the bottom-layer channel to the top-layer channel and the 

reverse, it causes the stretching and compression of the fluids. In all planes (P1-P9), the fluid 

interface is narrowed along diagonal line, while that of the other diagonal line is stretched, 

as shown by the direction of the arrows of velocity vectors, this phenomenon compression 

and stretching is one of the key mechanisms for expanding the interfacial layer of fluids, 

which improves mixing. Therefore, the strong flow structures at the nodes of the crossing 

channels gave excellent mixing performance for the present micromixer. This figure also 

reveals that the distribution of velocity vectors in all crossing planes remains almost identical 

and stable. 

 

Plane P1   Plane P5    Plane P9 

 

 

Figure 7. Velocity vectors on y-z planes at the nodes cross-sections for Re = 0.1 and n = 1. 

 

Figures 8 and 9 show the secondary flows in planes 5, AA and BB for two power-law 

indices 0.73 and 1 and two generalized Reynolds numbers 0.1 and 50. The contour of the 

velocity vectors describes both the crossing of the flows at plane 5 arriving from the top and 

the bottom of the channel and the formation of the two great vortices in the cross-sections 

y 

z 
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AA and BB, even at low power-law indices and low generalized Reynolds numbers (creeping 

flows). The crossing flows occurring inflows resemble the collision of two jets fluids. Fluid 

jets are very effective means to improve the mixing in a fast way even at low Reynolds 

numbers [17]. By increasing the Reynolds number, the vortices formed at the cross-sections 

are more intense and have a different vortex structure [19]. The crossing of the streamlines 

and the descending and ascending flows are prevailing by the tangential and radial velocity 

profiles as shown on the Figures 10 and 11 respectively. In addition, the maximum of the 

velocity is located close to the wall for all cases of studies considered. This allows stagnant 

fluids near walls to move to the core of the cross-section. The axial velocity profiles show 

that the flow is decelerated in the center of the pipe and is accelerated near the side walls. 

This reveals that the secondary flow is generated and it is more or less important depending 

on the values of the Reynolds number and the power-law index, see Figure 12.  

 

           
 

 
     A-A    B-B  A-A    B-B 

(a)                                     (b) 

 

Figure 8. Velocity vector plots on y-z planes n = 1, (a) Re = 0.1, (b) Re = 50. 
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(a)      (b) 

 

Figure 9. Velocity vector plots on y-z planes, n = 0.73, (a) Re = 0.1, (b) Re = 50. 
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Figure 10. Tangential velocity profiles at P5 plane for n = 0.73 and 1, (a1,a2) Reg = 0.1, 

(b1,b2) Reg = 50. 
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Figure 11. Radial velocity profiles at P5 plane for n = 0.73 and 1, 

(a1,a2) Reg = 0.1, (b1,b2) Reg = 50. 
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Figure 12. Axial velocity profiles at P5 plane for n = 0.73 and 1, 

(a1,a2) Reg = 0.1, (b1,b2) Reg = 50. 

 

The intensity is defined by the following equation:  

I =
√Vy

2 + Vz
2

|V|
                            (11) 

Equation (11) estimated the degree of agitation of the flows in a cross-section. It represents 

a local criterion for characterizing how much the axial flow is decreased, see Figure 13. This 

parameter shows that the secondary flow represents more than 80 percent of the total flow 

and this is true for all values of the Reynolds number and the power-index with however a 

slight accentuation of the secondary flow for small values of n so for great values of the 

apparent viscosity. The increase of secondary flows for large apparent viscosity values is 

explained by the fact that the viscosity decelerates the flow by the friction. Thus, the viscosity 

allows the fluid particles to move in bloc motion. In low viscosity flows (perfect fluid for 

example), the fluid particles move individually and freely.  
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Figure 13. Evolutions of the intensity I in the P5 plane with generalized Reynolds number 

for different power-law index (n = 0.73 to 1). 

   

The mixing performances of the TLCCM micromixer 

Figure 14a shows the evolutions of the mixing index with the generalized Reynolds numbers 

which vary from 0.1 to 50 at the exit cross-section of the TLCCM micromixer for different 

values of the power-law index ranges from 0.73 to 1. It can be seen that high mixing quality 

is reached even at very low generalized Reynolds number (from 0.1) of which the mixing 

index exceeds 96% in the adopted range of generalized Reynolds number and for any values 

of the power-law index less than 1. Figure 14(b-h) illustrated the local evolutions of the 

mixing index along the duct for all values of the generalized numbers and power-law indices. 

Remarkably, the curves which correspond to each n are distant from each other mainly for 

0.1 and 1 values of Reg where the mixing is better for the large values of n. By increasing the 

Reynolds number, the curves get closer because the motion of the particles by advection is 

more highlighted and intense, so the difference between the curves is scarcely measured and 

the effect of n is canceled and Figure 15 illustrates the mass fraction contours in several cross-

sections for two generalized Reynolds numbers (0.1 and 1) according to a power-law index 

less than 1. By lengthening the pipe, the mixing arises after a short distance traversed by the 

fluid in the channel. So, these contours revealed the efficient mixing even at creeping flow 

as soon as we are not really far from the entrance. In addition, the mixing is proportional to 

the power-law index as mentioned above in Figures 14 and 15. This is explained by the fact 

that the increase of the power-law index induces the decreases of the apparent viscosity and 

subsequently the agitation of the fluid becomes easier, see Figure 16. The diminution of the 

viscosity (augmentation of n) introduces in the flow low shear rates, see Figure 17. Low shear 

rates increase mixing in quality and speed. 

However, the apparent viscosity for a Newtonian fluid maintains almost constant 

values whatever the Reynolds number (Figure 18). 
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Figure 14. (a) Variation of mixing index at the exit. (b) to (h) Evolutions of mixing index 

along the mixing channel for different power-law indices and various Reynolds numbers. 
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(a)      (b) 

Figure 15. Mass fraction contours at different cross-sections for various power-law indices, 

(a) Re = 0.1, (b) Re = 1. 
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Figure 16. Apparent viscosity profiles on the line z = 0 at the exit plane for different power-

law indices. 
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Figure 17. Shear rate profiles on the line z = 0 at the exit plane for different power-law 

indices. 
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Figure 18. Apparent viscosity profiles on the line z = 0 at the exit plane for different 

Reynolds numbers. 
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The mixing performance of other typical micromixers contains shear-thinning fluids 

involving T-shaped and serpentine microchannels (Afzal A et al. [12]), micromixer with C-

shaped units (Tsai RT et al. [13]), micromixer with curved units (Islami SB et al. [15]), 

micromixer with Curved and Grooved units (Islami SB et al. [16]), E-shape split-and-

recombine micomixer (He M et al. [30]), and the micromixers contains Newtonian fluids, 

involving two layers with OH-shaped units (Hossain S et al. [28]), and recently two layers 

OX-shaped units (Raza W et al. [29]). A quantitative comparison has been carried out to 

compare the mixing index of our micromixer with those of recent studies on various 

micromixers as shown in Table 2. It’s indicated that the mixing index can be more than 90% 

under certain Reynolds number for these micromixers. However, the present micromixer 

have a greater values of mixing index which varied from 0.96 to 0.99 at very low and 

moderate Reynolds numbers (Re ≥ 1), which clearly shows the superiority of our 

micromixer. 

 

Table 2. Comparison of the TLCCM for the mixing index with recent micromixers. 

 

Micromixers  n Re MI Authors 

T-shaped and 

serpentine 
(n < 1) 0.05–100 0.37–0.98 Afzal A et al. [12] 

C-shaped units 0.82–0.95 0.021–57.76 0.14–0.94 Tsai RT et al. [13] 

Curved units 0.49–1 0.1–300 0.07–0.99 Islami SB et al. [15] 

Curved and Grooved 

units 
0.49–1 0.1–300 0.05–0.97 Islami SB et al. [16] 

E-shaped split-and-

recombine 
0.69–1 0.05–100 0.95–0.99 He M et al. [30] 

Two layers with OH-

shaped units 
1 0.1–120 0.61–0.88 Hossain S et al. [28] 

Two layers with OX-

shaped units 
1 0.1–120 0.87–0.99 Raza W et al. [29] 

TLCCM 0.73–1 0.1–50 0.96–0.99 Present study  

 

A high mixing performance of the micromixer is usually accompanied by a high-

pressure drop. The pressure difference between the inlet and the outlet cross-sections of the 

channels was calculated and presented according to the Reynolds number for the different 

values of the power-law index as presented in Figure 19. By increasing the Reynolds number, 

the pressure drop increases with Reynolds number and decreases with the increase of the 

power-law index (the decrease of the apparent viscosity) because it is proportional to the 

apparent viscosity. The latter generates friction on the one hand between the fluid layers and 

on the other hand between the fluid and the wall. The contribution of the apparent viscosity 

to the increase in friction is shown in Figure 20.  

 



A. Kouadri et. al / Journal of Mechanical Engineering and Sciences 13(4) 2019   5938-5960 

5957 

0 10 20 30 40 50

0E+00

5E+04

1E+05

2E+05

2E+05

3E+05

3E+05

P
re

ss
u
re

 d
ro

p
 (

P
a)

Re

 n=1

 n=0.9

 n=0.8

 n=0.73

 
Figure 19. Variation of Pressure drops with the Reynolds numbers for different power-law 

indices. 

 

To examine the compromise between the pressure drops and the kinetic energy, we are 

interested to calculate the friction factor f which is defined by the following equation: 

f =
∆P

1

2
ρu̅2 

 
Dh

L
                          (12) 

Where ΔP is the pressure difference between the inlet and outlet sections, Dh is the hydraulic 

diameter of the micromixer and u̅ is the average flow velocity. It has a decreasing tendency 

according to the Reynolds number, see Figure 20. 

Figure 20 shows the evolutions of the friction factor with Reynolds number for 

different power-law indices. We observe that the friction factor decreases with increasing 

Reynolds number and their values are almost identical for all the fluids considered. 
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Figure 20. Variation of friction factor with the Reynolds numbers for different power-law 

indices 
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The Poiseuille number is too used for the characterization of the pressure losses. It is equal 

to the product between the local friction factor f and the Reynolds number according to the 

Equation. (13): 

Po = f. Re                            (13) 
Figure 21 presents the evolution of the Poiseuille number with the Reynolds number for 

different values of the power-law indices n. This curve revealed that the Poiseuille number 

evolves continually/inversely with the power-law index/viscosity apparent, respectively.  We 

can also observe that the evolution of the Poiseuille number starts with low values of the 

Reynolds number ranging between 0.1 and 10 and then rapidly increasing. The Poiseuille 

number calculated in this geometry does not exceed 40 whereas the Poiseuille number 

according to a straight tube of the square section is equal to 60. Therefore, the pressure losses 

in the TLCCM geometry are not in fact considerable. 

 

0 10 20 30 40 50
20

25

30

35

40

P
o

 

Re

 n=1

 n=0.9

 n=0.8

 n=0.73

 
Figure 21. Variation of friction factor with the Reynolds numbers for different power-law 

indices. 

 

 

CONCLUSIONS 

 

Numerical simulations are performed to investigate the flow structure and mixing 

performance of shear-thinning fluids (n < 1) in a chaotic micromixer with two-layer 

serpentine crossing microchannels as a function of generalized Reynolds numbers ranging 

from 0.1 to 50. The proposed mixer is of small size, millimeter size, which facilitates its 

insertion in different industrial applications. The study of the dynamic behavior of the flow 

shows the existence of hyperbolic points in the flow even at low Reynolds numbers, of the 

order of 0.1. This reflects the sensitivity of this flow to the initial conditions and 

subsequently, the flow is considered chaotic. The mixing is quantified by a parameter called 

mixing index MI. The MI index is bounded by two values, 0 and 1. For perfect mixing, MI 

tends to 1. In our micromixer, this criterion exceeds 96 % for all the simulations considered 

in this study. So our system is of great competences even at the creeping flow (Reynolds very 

low). The pressure losses, presented by the Poiseuille number, evaluated in this micromixer 
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do not really present a disadvantage because they are, in the worst cases, less important than 

those measured in a straight tube in the case of an established flow. 
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