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INTRODUCTION   

The economic aim of the manufacturing costs along with the technical requirements of the machining of hard materials 

requires an overall control and an optimization of the manufacturing processes. Compared to the classical experimental 

methods, the use of statistical approaches and artificial intelligence (AI)-based models such as artificial neural network 

models are leading the way to achieving technically and economically credible processes of efficient predetermination 

[1, 2]. n manufacturing processes, the integrity of a surface finish is of great importance to describe the quality of the 

work piece. Therefore, the surface roughness is an important technological parameter that characterizes the quality of a 

product and a criterion that greatly influences the manufacturing cost [3-5]. Furthermore, it should be mentioned that 

during the cutting of metal material, cutting power and dimensional accuracy are both influenced by the evolution of the 

cutting force components [6, 7].  

Several studies have been carried aiming to compare the predictive power of mathematical models resulting from 

various methods, particularly the RSM and ANN approaches when turning different materials. 

Tebassi et al [8] introduced predictive models involving both surface roughness and cutting force developed using 

both ANN and RSM methods when turning Inconel 718 with a coated carbide tool. The results showed that the (ANN) 

approach is very effective in detecting non-linear responses. The comparison was carried out in terms of the coefficient 

of determination (R2), Root Mean Square Error (RMSE) and Model Predictive Error (MPE). 

Chabbi et al [2] nvestigated the influence of cutting parameters on surface roughness, cutting forces, cutting power 

and productivity during polymer turning (POM C). Both RSM and ANN modelling techniques were used. The comparison 

resulted in finding greater values of (R2) for ANN than those of RSM, demonstrating the robustness and reliability of the 

ANN method. 

A comparative study involving the development of models for surface roughness (Ra), tangential stress (Fy), power 

(Pc) and material removal rate (MRR) obtained by both ANN and RSM approaches when turning EN-GJL-250 cast iron 

using a composite ceramic was performed by Laouissi et al [9]. The predictive capabilities of the ANN and RSM models 

were compared in terms of the Mean Absolute Deviation (MAD), the Mean Absolute Percentage Error (MAPE), the Root 

ABSTRACT – Nowadays, the relationships linking the cutting conditions to the different 
technological parameters are becoming a major industrial objective.  The present work deals with 
some machinability investigations involving surface roughness and cutting force in finish turning of 
AISI D3-hardened steel using carbide, ceramic and coated ceramic inserts. The combined effects 
of the cutting parameters represented by the cutting depth (ap), the cutting tool (Tool), the cutting 
speed (Vc), and the feed rate (f) on the output parameters illustrated by both the surface roughness 
(Ra) and the cutting force (Fy) are investigated using the analysis of variance (ANOVA).  The 
modelling of surface roughness and cutting force is carried out using both Response Surface 
Methodology (RSM) and Artificial Neural Network (ANN). In order to determine the most efficient 
technique, the models developed are compared in terms of the coefficient of determination (R2), 
the Root Mean Square Error (RMSE) and the Model Predictive Error (MPE). Furthermore, a multi-
objective optimization using the Desirability Function Analysis (DFA) has been performed. The 
obtained results show that the ANN models (For Ra: R²=93%, RMSE=0.02%, MPE=4.99% and for 
Fy: R²=94%, RMSE=2.52%, MPE=3.11%) performed better than those developed using the RSM 
approach (For Ra: R²=90.4%, RMSE=0.051%, MPE=18.21% and for Fy: R²=79%, RMSE=31.17%, 
MPE=55.92%). As a consequence, the achieved ANN models for (Ra) and (Fy) are exploited as 
objective function for the response optimization applying the DFA technique. The optimum level of 
the input parameters for the combined desirability is finally identified as ap1–Tool3–Vc3–f1 for both 
(Ra) and (Fy) with a maximum error of 2.94%.      
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Mean Square Error (RMSE) and the coefficient of determination (R2). They identified the ANN approach as more accurate 

than RSM approach. 

Zerti et al [10] considered the impact of the machining parameters (Vc, ap and f) on the surface roughness criteria (Ra, 

Rz and Rt) as well as on the cutting force components (Fx, Fy and Fz) when dry turning martensitic stainless steel (AISI 

420) treated at 59 HRC. Both the RSM and ANN approaches were applied to develop predictive models. Comparison 

between the experimental and predicted results in terms exhibited errors of the ANN models in the range of (0.01%-

5.62%) for (Ra) and (0.02%-3.99%) for (Fz). The errors pertaining to the models developed by RSM were found to be 

significantly lower i.e. 3.85%-67.09% for (Ra) and 0.19%-20.58% for (Fz). Similar results were achieved by Nouioua et 

al [11] when turning X210Cr12 steel, in a MQL, dry, and lubricated environments. 

Numerous other researchers identified the RSM approach as better than the ANN. Kumar and Chauhan [12] for 

example investigated the shooting of the hybrid composites Al7075/10/SiCp and Al7075. They concluded that the ANN 

prediction model produced larger errors than MSR with (R2) reaching 0.9957 and 0.9972 respectively. 

The present investigation starts by modelling the surface roughness (Ra) and cutting force (Fy) using both RSM and 

ANN methods. A comparative study is later carried out between the two approaches in terms of the coefficient of 

determination, the root mean square error and the model predictive error in order to determine the most efficient. An 

optimization of the cutting conditions using DFA approach is finally performed by applying the best identified model 

(RSM or ANN) as objective function. 

 

EXPERIMENTAL SETUP AND PROCEDURE 

Material, Inserts and Experimental Design 

Figure 1 displays the flow chart pertaining to the experimental procedure according to the response surface 

methodology (RSM). Four essential steps are adopted [13, 14]. 

 Step (1) conducting experiments: It mainly consists in designating the input parameters, their level of importance and 

adopting the appropriate experimental design. In this study, the cutting speed along with the feed, the depth of cut and 

insert material have been adopted as input process machining parameters, whereas both the surface roughness and cutting 

force were selected as the responses. The parameters and their corresponding levels are illustrated in Table 1. For the 

sequence of experimentation, a design matrix was developed in correspondence with Taguchi design of experiments. It 

comprises (18) experimental runs integrating the selected four parameters along with three levels. Table 2 presents the 

experimental input details and results. 

 

Table 1. Process parameters and levels 

Levels 
Vc 

(m/min) 

f 

(mm/rev) 
Tool ap (mm) 

1 100 0.08 1 0.25 

2 200 0.14 2 0.5 

3 300 0.2 3 / 

Tool : 1-(GC5015) ; 2-(CC6050) ; 3-(CC650) 

 

 

Table 2. Experimental design and results 

Runs 

Machining parameters Responses 

ap 

(mm) 
Tool 

Vc 

(m/min) 

f 

(mm/rev) 

Ra 

(µm) 

Fy 

(N) 

1 0.25 1 100 0.08 0.505 314.07 

2 0.25 1 200 0.14 1.035 373.64 

3 0.25 1 300 0.2 2.38 606.99 

4 0.25 2 100 0.08 0.32 185.82 

5 0.25 2 200 0.14 0.91 230.88 

6 0.25 2 300 0.2 1.82 261.39 

7 0.25 3 100 0.14 1.135 99.47 

8 0.25 3 200 0.2 1.715 128.55 

9 0.25 3 300 0.08 0.42 81.86 

10 0.5 1 100 0.2 2.855 782.99 

11 0.5 1 200 0.08 0.57 561.36 

12 0.5 1 300 0.14 1.26 1300.43 

13 0.5 2 100 0.14 0.98 323.76 
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14 0.5 2 200 0.2 1.79 379.72 

15 0.5 2 300 0.08 0.41 259.22 

16 0.5 3 100 0.2 1.31 186.8 

17 0.5 3 200 0.08 0.41 132.57 

18 0.5 3 300 0.14 0.895 161.39 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Schematic diagram of the experimental procedure and methodology. 

 

The experiments were performed using high alloyed steel AISI D3 in round bar having 74 mm in diameter and 380 

mm in length. AISI D3 is a tool steel that integrates a high proportion of chromium (12%) and presents a minimum risk 

of deformation and alteration of dimensions in heat treatments. Because of its excellent wear and high cutting resistances, 

it is widely employed in many applications such as high performance cutting tools, deburring or slitting tools, cutting 

tools for paper and plastics, stamping tools, and woodworking tools [15]. The experiments were performed on a lathe 

machine model SN40C exhibiting a spindle power of 6.6 kW. Table 3 summarizes the elemental composition of the work 

piece material in terms of weight percentage. Ceramic tools inserts reference CC6050 and CC650 along with carbide 
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reference GC4015 were used to machine the AISI D3 steel with a geometry represented by a rake angle of 6°, a clearance 

angle of 6° and an approach edge of 75°. 

 
Table 3. Elemental composition of AISI D3 steel (wt%). 

C Cr Mn Si P Cu Mo Ni S V 

2÷2.35 11÷13.5 0.6 0.6 0.03 0.25 0.20 0.3 0.03 1 

 
 Step (2) response measurement: For each cutting condition, the instantaneous measurements of the surface roughness 

(Ra) are performed using a Mitutoyo Surftest 201 roughness meter. The length examined is 4 mm with a cut-off of 0.8 

mm. In order to reduce uncertainties due to rework operations, the roughness is measured directly on the workpiece 

without dismounting the lathe. The measurements are repeated three times on the surface of the workpiece with three 

reference lines positioned at 120° (figure1), the final result represented by the average of these measurements. In order to 

measure the cutting force, the tool holder is mounted on a three-component piezoelectric dynamometer (Kistler 9257B) 

allowing measurements from -5kN to 5 kN. The measurement chain includes a charge amplifier (Kistler 5019B130) data 

acquisition hardware (A/D 2855A3) and a graphical programming environment (Dynoware 2825A1-1) for data analysis 

and visualization.  

 Step (3) response modeling: It deals with the development of the prediction models for the surface roughness (Ra) 

and cutting force (Fy). Both the response surface methodology and artificial neural networks modeling techniques were 

used. Two statistical software namely Minitab-16 and JMP-11 were used for the analysis of the data. In order to select 

the best model that will be used later as an objective function for the optimization procedure, a comparison between the 

models developed is performed in terms of R², RMSE and MPE.  

 Step (4) response optimization: The best mathematical model derived in the previous step is herein used as an objective 

function for the optimization process. The desirability Function Approach (DFA) is applied. 

 

RESULTS AND DISCUSSION 

Modelling using RSM Technique 

ANOVA Analysis 

Statistical analysis of the experimental results pertaining to surface roughness and cutting force are carried out through 

the application of Analysis of variance (ANOVA) at 95% confidence level (i.e. Significance level of 0.05). This would 

lead to evaluating the relative influence of each machining parameter on the responses [16, 17]. ANOVA results for 

arithmetic mean surface roughness (Ra) and cutting force (Fy) are illustrated in Table 4. 

 

Table 4. Analysis of variance for: a) Ra and b) Fy. 

Source DF SS MS F-Value P-value C.% Signif 

a) Surface roughness (Ra) 

Model 7 8.02 1.145 13.452 0.0002 90.4 Yes 

ap 1 0.00 0.0032 0.037 0.8502 0.03 No 

Tool 1 0.62 0.616 7.24 0.0227 6.95 Yes 

Vc 1 0.00 0.0005 0.006 0.9385 0.006 No 

f 1 7.11 7.107 83.467 0.0001 80.13 Yes 

Tool^2 1 0.11 0.114 1.344 0.2732 1.29 No 

Vc^2 1 0.06 0.0568 0.667 0.4331 0.64 No 

f^2 1 0.12 0.119 1.404 0.2634 1.34 No 

Resid 10 0.85 0.085     

Total 17 8.87      

b) Cutting force (Fy) 

Model 7 1229624 175661 5.40 0.0088 79.07 Yes 

ap 1 181116 181116 5.56 0.0400 11.65 Yes 

Tool 1 826267 286892 8.82 0.0141 53.13 Yes 

Vc 1 41371 41371 1.27 0.2859 2.66 No 

f 1 85075 85075 2.61 0.1370 5.47 No 

Tool^2 1 58285 58285 1.79 0.2105 3.75 No 

Vc^2 1 25109 25109 0.77 0.4004 1.61 No 

f^2 1 33477 33477 1.03 0.3344 2.15 No 

Resid 10 325458 32546     

Total 17 1555082      
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Table 4 (a) displays the ANOVA results for the arithmetic mean surface roughness (Ra) and indicates that feed and 

tool type represent the dominant parameters affecting the surface roughness as their P-value is less than 0.05 than their 

larger F-value. Feed rate has the most important significant influence on surface finish with a contribution of 80%. The 

second most significant parameter based on F-value is the tool type with 7.24 for (Ra) which is larger than the standardized 

F-table value (4.96) at the 5% level of significance. It affects the roughness parameter (Ra) by 6.95%. The other 

parameters (i.e. cutting speed and depth of cut) do not show any statistical influence on (Ra) because of their low 

contribution (0.03% and 0.006% respectively). P-value is not less than 0.05 (i.e. larger P-value) and lastly calculated F-

value is not more than F-table value. 

For the cutting force (Fy), ANOVA results are indicated in Table 4 (b). They show that the tool type affects (Fy) in a 

significant way (53.13%), the next factor being the depth of cut with 11.65% contribution. The cutting speed and feed 

rate do not present any statistical significance on (Fy) because of their low contribution (2.66% and 5.47% respectively). 

 

Regression Analysis 

The RSM technique is an empirical modelling approach developed for the determination of a relationship between 

various process parameters and responses. Its objective is to explore the influence of these parameters on responses and 

therefore optimize them [18-20]. In the present work, the RSM-based second-order mathematical model is expressed as: 

 

 

(1) 

 

where (b0) is the free term of the regression equation, and the coefficients (b1, b2 … bk) along with and (b11, b22 … bkk) are 

the linear and quadratic terms [21, 22]. The empirical models expressed in the form of a quadratic regression equation 

that predicts the surface roughness and cutting force in terms of the depth of cut, tool type, feed rate and cutting speed are 

presented in Eqs. (2) and (3). 

 

 

(2) 

 

[R² = 90.4%] 

 

 

(3) 

 
[R² = 79.07%] 

 
These equations are used to predict the response for given levels of each factor, and its accuracy can be evaluated. In 

the present case, (R2) is found equal to 90.4% for (Ra) and 79.07% for (Fy). 

 

Modelling using ANN technique 

Artificial neural network is usually more relevant to the prediction operations. It may be used as solution to the 

polynomial regression based modelling tool that provides the modelling of complex nonlinear relationships [23-25]. 

In this work two different ANN structures are applied for the surface roughness (Ra) and cutting force (Fy) with a 

different number of neurons in the hidden layer. The number of neurons in the input layer was fixed at four (depth of cut, 

tool type, cutting speed and feed rate) and the number of neurons in the output layer was fixed at one and represents either 

the response (Ra) or (Fy). A neuron or node is defined as a single processor calculation that sums up junctions and transfer 

functions. In addition and according to Hagan et al. [26], the information sent between neurons are represented by a 

change in weight (w) and biases (b). 

The first step in the design of a neural network is designing its structure. It was herein set up as 4-H-1 thus describing 

the four input neurons representing the machining process variables (depth of cut, tool type, cutting speed and feed rate) 

with (H) representing the number of neurons in a single hidden layer and (1) the output neuron describing the response 

investigated (surface roughness or cutting forces). 

The optimal neural network structure was chosen on the basis of the optimal coefficient of determination (R²) and 

lower root mean square error (RMSE) between all architectures. This was performed through varying the number of 

neurons (H) in the single hidden layer and consequently obtaining its value [27]. 

The experiments comprised two steps represented by a training session comprising 12 tests, and a validation 

integrating 6 tests with a leaning rate of (0.01). The activation function adopted is a hyperbolic tangent which is a sigmoid 

 
= =

++=
k

1i

k

1i

2
iiii10 .b.bb 

² f 48.032 + 5Vc²-10×1.192 + tool² 0.169                 

f 0.623 - Vc 0.0047 - tool 0.904 - ap 0.107 + 1.543  (µm) Ra

+

=

 ² f 25412 - Vc² 0.0079 + tool² 120.712              

 + f 8242.51 + Vc 2.520 - tool 745.25 - ap 802.476 + 519.672 = (N)Fy 
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function. According to Sall et al. [28], the hyperbolic tangent (TanH) results are comprised in the range [-1,+1]. It is 

expressed in Eq. (4) where (x) is a linear combination of the (X) variables. 

 

 

(4) 

 

Surface Roughness Modelling 

Several network structures were tested (cf. Table 5). According to the determination coefficient and the root-mean-

square error for training and validation tests, the adopted structure is 4-8-1 (Figure 2). It consists of four nodes in the 

input layer, corresponding to the number of cutting parameters, eight nodes in the hidden layer having a hyperbolic tangent 

transfer function form, and one node in the output layer having a linear transfer function form. 

 

Table 5. Performance of ANN structures of (Ra) model. 

Inp_Hid_Oup RMSE R² 

4_3_1 0.19 0.93 

4_4_1 0.37 0.74 

4_5_1 0.35 0.77 

4_6_1 0.28 0.85 

4_8_1 0.0001 0.99 

4_9_1 0.22 0.91 

4_12_1 0.31 0.82 

 

 
Figure 2. Neural structure chosen for (Ra). 

 

The ANN model surface roughness is expressed by Eq. (5) with R²=90.4% : 

 

 (5) 

 

where, 

        4.518)) + f×6.029 - Vc×0.009 - Tool×0.906 + ap×9.805 (- ×(0.5 tanh = H5

      0.982)) + f×13.815 + Vc×0.005 - Tool×0.150 - ap×3.749 (- ×(0.5 tanh = H4

     7.525)) - f×12.564 + Vc×0.019 + Tool×1.055 + ap×1.862 (- ×(0.5 tanh = H3

    3.872)) - f×11.524 + Vc×0.018 - Tool×0.532 - ap×(17.745 ×(0.5 tanh = H2

 2.746)) + f×2.448 + Vc×0.017 + Tool×0.605 - ap×12.980 (- ×(0.5 tanh = H1

 

5.026)) - f×56.004 + Vc×0.007 - Tool×0.327 - ap×1.500 (- ×(0.5 tanh = H8

        5.365)) + f×6.681 + Vc×0.007 - Tool×1.629 - ap×7.230 (- ×(0.5 tanh = H7

  3.691)) + f×11.410 - Vc×0.0007 - Tool×1.714 + ap×7.901 (- ×(0.5 tanh = H6

 

1e

1e
TanH

x2

x2

+

−
=
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Cutting Force Modelling 

The same steps are considered for the modelling of the cutting force. The statistical results of the tested network 

structures are presented in Table 6. According to the determination coefficient and the root-mean-square error for both 

the training and validation tests, the adopted structure is 4-3-1. The chosen architecture for the ANN model is illustrated 

in Figure 3. 

 

Table 6. Performance of ANN structures of (Fy) model. 

Inp_Hid_Oup RMSE R² 

4_3_1 42.84 0.94 

4_4_1 64.15 0.87 

4_5_1 45.63 0.93 

4_6_1 69.24 0.85 

4_7_1 109.95 0.62 

4_8_1 81.87 0.79 

 

 
Figure 3. Neural structure chosen for (Fy). 

 
The ANN model cutting force is expressed by Eq. (6) with R² = 94%: 

 
 (6) 

 
where, 

2.963)) + f×9.039 - Vc×0.008 - Tool×2.238 + ap×6.912 (- ×(0.5 tanh = H2

2.975)) + f×6.366 - Vc×0.005 - Tool×1.482 +ap×4.784 (- ×(0.5 tanh = H1
 

1.1)) - f×0.0088 - Vc×0.00049 + Tool×0.0287 + ap×(0.205 ×(0.5 tanh = H3  

 

RSM and ANN Models Comparison 

In order to evaluate the accuracy of the fitting and prediction of the constructed models, coefficients of determination, 

performance function error analyses of root mean square error and model predictive error comparisons were carried out 

between the experimental and predicted data for both surface roughness and cutting force. The coefficients (R2), (RMSE) 

and (MPE) were calculated as cited by Rajendra et al. [29] and García Gimeno et al. [30]. They are expressed in the 

equations below: 

 

 
(7) 

 

1035.97 + H3×1387.52- H2×1195 + H1×2758.18 - = (N)Fy 





=

=
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(8) 

 (9) 

                                       
where (n) is the number of experiments, ; (yi,e) is the experimental value of the (ith) experiment, (yi,p) is the predicted value 

of the (ith) experiment determined by the model and (yaverage) is the average value of experimentally determined results. 

Table 7 displays the comparison results of both (Ra) and (Fy) models developed by applying response surface 

methodology and artificial neural networks methods. In order to study and compare RSM and ANN models and determine 

which one can accurately predict surface roughness and cutting force, RSM and ANN models predicted results are plotted 

(Figure 4 and Figure 5) against the corresponding actual values. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 4. Experimental, RSM, and ANN predicted results for (Ra). 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 5. Experimental, RSM and ANN predicted results for (Fy). 
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Table 7. Comparison of RSM and ANN results. 

Responses Ra Fy 

Terms R² MPE RMSE R² MPE RMSE 

RSM 0.904 18.218 0.051 0.79 55.92 31.17 

ANN 0.933 4.990 0.020 0.94 3.11 2.52 

Error 0.029 13.228 0.031 0.15 52.81 28.65 
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From Table 7 and Figures 4 and 5, it may be seen that the predicted values of the ANN models are closer to the 

experimental values than those of the RSM models. Three goodness metrics are usually used to evaluate the effectiveness 

of the developed models, and are represented by the determination coefficient (R²), the root mean square error (RMSE) 

and the model predictive error (MPE). Concerning (Ra), Table 7 shows that (R²), RMSE, and MPE for ANN models reach 

93.3%, 0.02% and 4.99%, respectively. They are found superior to those exhibited by RSM models (R²= 0.4%, 

RMSE=0.051% and MPE=18.21%). Similar results are displayed for the cutting force (Fy) where the ANN models again 

demonstrate better results (R²=94%, RMSE=2.52% and MPE=3.11%) compared to RSM (R²=79%, RMSE=31.17% and 

MPE=55.92%). These results prove the robustness and reliability of the ANN technique and demonstrate the dependence 

of the surface roughness and cutting forces on the diverse cutting parameters. Consequently, the proposed ANN models 

pertaining to both surface roughness and cutting force will be employed as objective functions when carrying out the 

response optimization using the DFA technique. 

 

Optimization using DFA Technique 

The desirability function approach capable of simultaneously optimizing multiple responses was originally proposed 

by Derringer and Suich. It essentially translates the functions to a common scale (0, 1) then combines them using the 

geometric mean and finally optimizes the overall metric. DFA is usually preferred because of its ability to solve a multi 

response optimization problem by converting it into single response optimization one enabling the sorting out of the 

computational work [31-33]. The concept of desirability function involves the translation of the responses from their 

individual desirability to scale of composite desirability (overall desirability function). The DFA optimization process is 

used to perform through the following steps: 

Step 1: Define the independent input parameters of the experimental design and the desired responses (yi,p) to be 

optimized. 

Step 2: Adopt an experimental design plan and conduct experiments for the designed parameter combinations. 

Step 3: Calculate individual desirability (di) for each response (yi,p) using desirability functions. 

• Larger–the–Better:  For the objective of finding out a maximum, the individual desirability is expressed 

as: 

 

 

(10) 

 

• Smaller–the–Better: For the objective of finding out a minimum, the individual desirability is expressed 

as: 

 

 

(11) 

 
Step 4: Select the parameter combination that will maximize the composite desirability (Dc), and determine the 

optimal parameter and its level combination based on the higher value of composite desirability (Dc). 
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 (12) 

 

where, (di) is the individual desirability of the response (i), (yi,p) is the predicted value of each response, (yi,p max) and (yi,p 

min) is the max and the min value of each predicted response and (P) is the number of response in the measure. The 

desirability ranges from zero to one. 

 

DFA Optimization for (Ra) and (Fy) 

During the optimization process, the aim was to find the optimal values of machining parameters in order to produce 

the lowest surface roughness and lowest cutting force (Ra and Fy). At first, the evaluation of individual desirability has 

been carried out for each response (yi,p) based on function Smaller–the–Better given in Eq. (11), which is used to minimize 

the response. Then, individual desirability of each response characteristics are fluxed into the composite desirability by 

using Eq. (12). As indicate previously, ANN models of surface roughness and cutting force are employed as objective 

function for response optimization. Table 8 shows the evaluated individual desirability and composite desirability values 

for each of the experimental trials. 

Composite desirability has computed and the ranks are assigned to them in ascending order and it is found that the  

higher  composite  desirability  value is (Dc = 99.8% for both Ra and Fy)  obtained  for  the  9th   trial  of  the  experiment. 

The optimum cutting combination is (ap1–Tool3–Vc3–f1) for Ra and Fy. At this stage, the optimized machining 

parameters for minimizing surface roughness and cutting force in hard turning of AISI D3 steel are: cutting depth 0.25 

mm, Tool type 3, cutting speed 300 m/min, and feed 0.08 mm/rev, with estimated surface roughness Ra = 0.42 µm and 

cutting force Fy = 78.92 N. 

The contour plot of composite desirability has been plotted between the two most significant parameters (f and Tool) 

by keeping the other terms constant as shown in (Figure 6). The multiple responses characteristic (Dc) found maximum 

where f ranges from 0.08 – 0.16 mm/rev with Tool type from 1 – 3 for Ra and Fy. This enclosed region indicates the 

optimum zone where Ra and Fy will be minimized. 

 

Table 8. Evaluated individual desirability and composite desirability with their rank for (Ra) and (Fy). 
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idDc














=

=

Runs 

ANN predicted value (yi,p) 
Individual 

desirability (di) 

Composite 

desirability 

(Dc) (%)  

Rank 

  

Ra pred (ANN) 

(µm) 

Fy pred (ANN) 

(N) 

Ra Fy 

(%) (%) 

1 0.51 327.21 0.96 0.80 0.874 5 

2 1.04 343.46 0.74 0.78 0.763 10 

3 2.38 610.49 0.19 0.56 0.330 16 

4 0.58 179.06 0.93 0.92 0.925 4 

5 0.91 232.68 0.80 0.87 0.833 6 

6 1.77 262.77 0.44 0.85 0.614 14 

7 1.29 105.12 0.64 0.98 0.791 8 

8 1.66 124.33 0.49 0.96 0.687 13 

9 0.42 78.92 1.00 1.00 0.998 1 

10 2.86 777.68 0.00 0.42 0.000 17 

11 0.57 566.29 0.93 0.60 0.747 12 

12 1.26 1290.47 0.65 0.00 0.000 18 

13 0.98 322.62 0.77 0.80 0.783 9 

14 1.79 372.56 0.44 0.76 0.574 15 

15 0.41 253.60 1.00 0.86 0.925 3 

16 1.31 184.34 0.63 0.91 0.760 11 

17 0.46 127.57 0.98 0.96 0.971 2 

18 1.07 185.79 0.73 0.91 0.815 7 
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Figure 6. Contour plot of composite desirability (Dc) for (Ra) and (Fy). 

 

Confirmation of Optimization Results 

The predicted results based on the optimum level (ap1–Tool3 –Vc3–f1 for both Ra and Fy) are evaluated and compared 

to associated experimental results in terms of percentage error. The errors are found to be within permissible limits, and 

Table 9 shows the maximum percentage error found equal to 2.94%.  

 
Table 9. Confirmation of optimization results. 

Responses 
Predicted Experimental Error 

(%) (ap1–Tool3 –Vc3–f1) (ap1–Tool3 –Vc3–f1) 

Ra (µm) 0.42 0.42 0 

Fy (N) 78.92 81.86 2.94 

 

CONCLUSIONS 

The present study carried out a comparison between both RSM and ANN techniques in terms of their modeling, 

prediction and generalization capabilities using the experimental data based on the Taguchi design for the surface 

roughness (Ra) and the cutting force (Fy). Determination of the optimum cutting conditions that lead to minimum surface 

roughness (Ra) and cutting force (Fy) are performed through the application of the DFA approach. The results achieved 

led to the following conclusions: 

 

1. The ANOVA analysis proved the feed rate and tool type (with respective contributions of 80% and 6% respectively) 

are the most influential parameters of the surface roughness. Furthermore, the cutting force is significantly affected 

by the depth of cut and tool type with contributions of 11% and 53% respectively. 

2. The (RSM) prediction model developed for (Ra) presents a coefficient of determination of 90.4, a root mean square 

error of 0.051 and a model predictive error of 18.21%. The (ANN) developed also for (Ra) presents a coefficient of 

determination of 93, a root mean square error of 0.020 and a model predictive error of 4.99%. Concerning (Fy), 

coefficient of determination, root mean square error and the model predictive error were found to be 79.07, 31.17 

and 55.92% for RSM and 94, 2.52 and 3.11% for ANN. 

3. The comparisons undertaken led to conclude the ANN approach to be more precise in terms of the prediction of 

both the surface roughness and cutting force within the range of experiments performed. A better correlation and 

lower errors are drawn demonstrating the robustness and the reliability of the ANN technique. Consequently, the 

developed ANN models for both surface roughness and cutting force are adopted as objective function for the 

response optimization using DFA. 

4. The Desirability Functional Approach is found to be most appropriate for dealing with multi-response optimization 

problems and leading to the optimal cutting conditions. The optimal cutting parameter combination for composite 

desirability achieved are ap1–Tool3 –Vc3–f1 which corresponds to cutting depth of 0.25mm, tool type 3, cutting 

speed of 300 m/min, and feed rate of 0.08 mm/rev for both (Ra) and (Fy). 

5. From the confirmation results, it is shown that ap1–Tool3 –Vc3–f1 is the best parameter combination for surface 

roughness and cutting force with 2.94% accuracy. 
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