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INTRODUCTION  

Rotary regenerators, also known as Ljungstroms, Rotary Air Heaters (RAH) or heat wheels, have played a critical 

role in waste heat recovery during past decades. They were used widely in thermal power plants and HVAC applications. 

In steam power plants, they improve the thermal efficiency of a boiler by capturing a portion of heat content from flue 

gas before exhausting to atmosphere and then give it to the fresh air. This preheating of the air entering the burners (for 

example from 30°C to 300°C) is identical to a significant amount of fossil fuel saving. Warren [1] discussed the history, 

principal design features, and reliability of RAHs and confirmed a minimum reduction of 7.9 to 21.4% in power plants 

fuel consumption base on the experimental results. The main part of a rotary regenerator heat exchanger is a cylindrical 

porous media named matrix or rotor. The matrix rotates slowly between two hot and cold streams flowing continuously 

in opposite directions. The energy transfer between two streams accomplished by heat transfer from hot gases to solid 

matrix walls and then from walls to the cold air. Rotary regenerators are simple and suitable for gas to gas heat transfer 

when a little mixing of two streams is acceptable. But the main disadvantage of rotary air heaters is the unavoidable 

leakage of cold stream (air) to hot stream (gas) which influences their performance negatively. 

Many researchers have paid attention to heat wheels in the past years through numerical, analytical or experimental 

studies [2-18]. Most of attempts in this area were focused on modeling rotary regenerators to calculate their effectiveness, 

outlet temperatures, matrix temperature distribution, and leak flows. Besides, the main focus of many articles were on 

two areas: (1) regenerators with HVAC application that are usually smaller and often have faster rotation speed and (2) 

Ljungstroms with power plant usage that are bigger and have slower rotational speed. In the following paragraphs, some 

of the researches will be addressed in order of the dimension of their models (i.e. zero, one, two and three dimensional).  

Mathematical modeling was the most used method in the literature. These zero dimension models often delivered a 

good estimate of overall parameters such as effectiveness and outlet temperatures. A model by concept of NTU-ε was 

developed and the results were compared to experimental data showing a ±5% deviation in the heat transfer effectiveness 

[14]. There are many other attempts of zero dimensional modeling of RAHs in the literature [8, 13]. In an article, three 

matrix surfaces (monolith, woven screen, and spherical particles) were compared to each other from pressure drop and 

thermal effectiveness point of view [5]. It was concluded by their mathematical modeling that a large diameter regenerator 

with a high porosity woven screen or monolith (which had a significantly smaller pressure drop) is preferable. In another 

study [17], a mathematical method was introduced by proposing a Nusselt number correlation. The correlation was 

developed to take into account various cross sections (circular, square, triangular, rectangular, and parallel plates) at 

laminar flow regime. An analytical algorithm was also developed to model a rotary regenerator by considering flow 

leakage [15]. Although the model is unclear (for instance how the heat transfer coefficient was calculated), a regenerator 

was divided into two layers (hot end and cold end) which is a good approach. 

One dimensional approach to a rotary regenerator brought some extra capability to a regenerator model. For example, 

the heat transfer rate per unit of frontal surface area was maximized by adjusting the length and porosity of a matrix [4]. 

ABSTRACT – Reduction of fuel consumption in power plants is an important issue due to their 
high rate of fuel usage. In the present article, this was done by optimizing rotary regenerator which 
have a great role in recovering thermal energy in power stations. Heat transfer and pressure drop 
through 13 popular flow passages of power plant's rotary regenerators were obtained by CFD 
simulations. The outcomes were used in a mathematical model of the rotary air heater by 
considering air leakages. The model was capable of distinguishing between different heating 
surfaces. Then it was used for optimizing a regenerator by genetic algorithm. Rotational speed and 
dimensions of all three layers (hot end, intermediate layer, and cold end) were optimized to achieve 
the highest fuel saving. These dimensions were: hydraulic diameters, heating profile type, and 
length of each layer. Results showed that redesigning these parameters to the optimal values leads 
to saving of 443 kg of natural gas per hour for one regenerator. A 10 meter regenerator also had 
the highest reduction in fuel consumption (660 kg/hr). Finally, the influence of air and hot gas 
temperatures, and air mass flow rate on fuel saving and optimum values of design parameters was 
discussed.   
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Authors assumed a constant Nusselt number through a regenerator built from parallel channels. Medium-small size rotary 

regenerators were also studied numerically to check the effect of matrix porosity on total heat transfer for a fixed pressure 

drop or pumping power [11]. Authors utilized a correlation for heat transfer assuming a triangular passage for matrix. It 

was found that an optimum porosity value exists which increases by decreasing pumping power. In another investigation 

a Nusselt number was used for developing flow inside corrugated sinusoidal channels [16]. The one dimensional method 

is valuable and could be used to find out transient solutions due to its high calculation speed [3, 19]. However, transient 

solutions even could be achieved by zero dimensional approaches [6]. Two and three dimensional analyses may be used 

only if more details are expected. 

Two dimensional models can give temperature distribution along a regenerator but they also use a simple correlation 

for all types of heating surfaces. For example in an article, a simple correlation was used for accounting the heat transfer 

coefficient which was required in a transient 2D modeling of a desiccant wheel [10]. Nevertheless, 3D simulations have 

been more welcomed comparing to 2D models. For instance, a rotary regenerative heat exchanger in flue gas 

desulfurization was simulated by 3D-CFD using a porous media approach [12]. For calculating the heat transfer 

coefficient, laminar flow inside a single corrugated sinusoidal channel was firstly modeled by CFD. Another 3D-CFD 

simulation of a rotary air preheater in a 300 MW power station was conducted by assuming a CU heating profile [9]. 

Authors validated flue gas outlet temperature with measured data (1.2 °C deviation) and design values (7.7 °C). Bearing 

in mind that they ignored flow leakage, it indicates that a CFD simulation (with methods and assumptions they used) may 

over predicts the heat transfer in a RAH. In another research [2], the authors demonstrated by a 3D numerical method in 

laminar regime that circular and square passages have a better overall system performance (heat transfer to pumping 

power) comparing to a triangular passage. Temperature distribution over a rotary regenerator was obtained in another 

work by CFD modeling and considering the matrix as a porous media [7]. 

One of the most attractive goals of modeling rotary regenerators is to optimize them. An optimized rotary regenerator 

was obtained with at least 26.5% less weight while thermal outputs remained unchanged [20]. Ghodsipour and Sadrabeli 

[21] used a numerical method based on NTU-ε by calculating the heat transfer and friction factor along a regenerator 

using a correlation proposed by Kays & London [22] for three matrix surfaces including rectangle, square and triangle. 

A regenerator with randomly staked woven screen matrix was modeled by NTU-ε implementing empirical correlations 

for heat transfer coefficient and friction factor [23]. Then six design variables (frontal area, matrix rod diameter, matrix 

thickness, rotational speed, split, and porosity) were optimized by a self-learning algorithm to maximize the regenerator 

effectiveness and minimize the pressure drop simultaneously.  

One of the main drawbacks of zero, one and two dimensional methods is that they use a simple correlation to calculate 

Nusselt number inside the regenerator. In fact, they do not distinguish between various heating surfaces, no matter the 

regenerator is built from CU profiles or DU profiles. The difference between flow passages on performance of a RAH 

was considered in a few articles [2, 5, 17, 21]. These articles studied heating surfaces such as circular, rectangular, 

triangular, square, parallel plates, monolith, woven screens, and spherical particles. Almost all of them used the 

correlations for laminar flow. However, some investigations have used CFD simulation to find out the heat transfer and 

pressure drop in a rotary regenerator [9, 12]. But they have modeled only one heating surface. Many other articles have 

studied different geometries in heat exchangers in general [24-26]. But their outcomes could not be directly used for 

thermal wheels; or they only have focused on pressure drop of one geometry [27]. In fact, there are a small number of 

research attempts applicable to power plants' RAHs that have compared various passages via CFD simulation. For 

example, corrugated plates with different aspect ratios and inclination angles were studied numerically at turbulent regime 

[28]. It was suggested that an aspect ratio equal to 1.125 with highest angle can lead to the best heat transfer considering 

pressure drop. In another attempt, five types of flow passages were simulated numerically [29]. Three of them are the 

same as our investigation (notched flat, flat notched crossed, and corrugated undulated).  

Regarding above descriptions, modeling a rotary regenerator has been well developed. But authors did not found any 

research which considers various heating surfaces in modeling the rotary regenerators of power stations (i.e. by taking 

into account common surfaces in Ljungstrums). This gap was detected in an industrial project, where optimum heating 

surface was requested. Therefore, the main objective of this research was to optimize a rotary regenerator by considering 

different geometrical parameters and especially the heating surface types. The other motivation for conducting this 

research was to study three common layers in power plant's regenerators (hot end, intermediate, and cold end) separately. 

This helps us to achieve a better optimal RAH by allocating a specific geometry to each layer. 

METHODS  

This study involves three steps of calculations, each of them has a different methodology. These steps are CFD 

modeling of various profiles, mathematical modeling of a RAH, and optimization of the RAH. 

CFD Modeling of Profiles 

The profiles which have been studied are: Notched Flat (NF), Corrugated Plate (CP), Corrugated Undulated (CU), 

Double Undulated (DU), and Flat Notched Crossed (FNC). Figure 1 shows each profile and Table 1 demonstrates their 

main geometrical data. The parameters P and H are illustrated in Figure 1 for NF and corrugated plates and S is the curve 

length between start and end points of each pitch. The inclination angle of the corrugated, undulated, and notched elements 

is another parameter for all profiles except NF. The NF profile has a simple geometry and usually is used on the cold end 

of the RAH to slow down the fouling and corrosion. The inclination angle is measured from the flow direction. For the 
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corrugated elements in CP profile, three angles of 0, 20, and 30 degrees and for the undulated elements in CU and DU 

and notches in FNC profile, three angles of 20, 30, and 50 degrees have been considered. Besides, the inclination angles 

of two undulated elements in DU and two flat notched elements in FNC profile are transverse. 

To simulate the flow and heat transfer within the heat exchanger, the governing equations (continuity, momentum, 

and energy) which are 5 equations containing 5 unknowns (velocity in 3 directions of x, y, and z, pressure, and 

temperature) were solved. For solving these equations, domain was first meshed by tetrahedral mesh. In Figure 2, a sample 

of meshing is presented for DU profile. The steady, incompressible, and turbulent air flow in the computational domain 

was expressed by Navier-Stokes equations. A commercial software (FLUENT) was used for simulation while a k-ε 

method was chosen for turbulence modeling. This turbulence model reproduced velocity of the fluid flowing inside a 

rotary air heater with rectangular profiles quite accurately comparing experimental measurements [27]. After solution of 

these equations, friction factor and convection heat transfer coefficient were calculated.  

To be ensure about grid independency of the CFD simulations, number of computational cells was increased from 

160,000 to 6,800,000. Grids were refined near walls and wherever a sharp gradient of velocity or temperature was 

detected. In more complex profiles (e.g. CU), the heat transfer and pressure drop indicators were not changed significantly 

for a grid number larger than 3,333,184 (Figure 3). Therefore, a grid number almost equal to 3 million cells was employed 

for all profiles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Geometry of considered profiles (a) NF, (b) CP, (c) CU, (d) DU, and (e) FNC. 

 

Table 1. Geometric dimensions of the profiles. 

  

 

 

 

 

 

 

 

 

 

 

 

 

In Figure 1 and Table 1, P refers to transverse distance between repeated patterns in a basket (m), H is height of a 

profile (m), S stands for Curve length of profile (m), and Dh is hydraulic diameter of profile (m). 

Geometry P (mm) H (mm) S (mm) P/H Dh (mm) 

NF 30 20 53.26 1.5 18.43 

CP 20 5.8 23.85 3.45 7.11 

      

CU 
Corrugated 22 13.13 36.98 1.68 

13.72 
Undulated 22 3.65 23.23 6.03 

 

 

DU 

Notched 30 20 52.81 1.5 21.58 

      
Undulated 1 20 2.5 20.8 8 

 
Undulated 2 35 4 36.18 8.75 

      
FNC 20 10 29.58 2 16 
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Figure 2. Tetrahedral mesh used for a DU profile 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Mesh independency of the CFD simulation for CU30 (Re=6600). 

 

In general, the convective heat transfer coefficient can be calculated by surface heat flux and its temperature difference 

with a contractual reference temperature like far field temperature or mixed mean temperature. In the numerical solutions 

performed here, the surface temperatures considered constant and the cross section mean temperature has been used as 

reference temperature to calculate the heat transfer coefficient. 

Thus after obtaining the mean flow temperature at inlet and outlet cross sections (𝑇𝑚,𝑖 and 𝑇𝑚,𝑜) from CFD simulation, 

the convective heat transfer coefficient was calculated by [30]: 

 

ℎ̅ =
�̇�𝑐𝑝

𝑃𝑟𝑒𝑚𝐿
𝑙𝑛
𝑇𝑠 − 𝑇𝑚,𝑖
𝑇𝑠 − 𝑇𝑚,𝑜

 
(1) 

 

where �̇� stands for mass flow rate (kg.s-1), cp for specific heat capacity at constant pressure (J.kg-1.C-1), Ts for surface 

temperature (°C), ℎ̅ for mean convective heat transfer coefficient (W.m-2.C-1), while L and Prem are profile's length (m) 

and wetted perimeter of profile (m), respectively. Then the dimensionless Nusselt number (Nu) can be calculate using 

fluid properties: 

 

𝑁𝑢 = ℎ̅𝐷ℎ 𝑘⁄  

 

(2) 

where k is thermal conductivity of fluid (J.m-1.C-1). For calculation of the friction factor (f), mean pressure in inlet and 

outlet sections of a profile were derived from CFD and their difference (ΔP) was used as below: 

 

f =
ΔPDh
1
2
ρU2L

 
(3) 

 

Parameter U refers to velocity of fluid entering the profile (m.s-1) and ρ is density of fluid (kg.m-3). 
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RAH Modeling 

An iterative method has been used to calculate the heat exchanger efficiency. First the ideal efficiency of heat 

exchanger (without leakages) was calculated using a correlation given by Kays and London [22]. Then the pressure loss 

in different layers of the RAH was calculated and the values of leakages were acquired from relations given by Shah and 

Sekulic [31] and Skiepko [32]. In the next step, values of the energy losses by these leakages were computed and then 

subtracted from the total heat transfer rate of the ideal regenerator. So the actual heat transfer rate could be obtained. 

Using this actual heat transfer rate, the actual efficiency and outlet temperatures of each stream were calculated. In a new 

iteration, after updating the properties of fluids, the effect of leakages flow rates on inlet mass flow rates was considered. 

The iterative process continued until convergence of the results. 

Ideal RAH 

The correlation used to calculate the ideal efficiency of a rotary regenerative heat exchanger is based on the ε-NTU 

method. According to this method the efficiency of a heat exchanger (ε) is defined as the ratio of actual heat transfer rate 

(q) to maximum possible heat transfer rate (qmax): 

 

ε =
q

qmax
=
Ch(Th,i − Th,o)

Cmin(Th,i − Tc,i)
=

Cc(Tc,o − Tc,i)

Cmin(Th,i − Tc,i)
 

(4) 

 

where Th,i, Th,o, Tc,i and Tc,o are temperatures of hot stream at inlet and outlet and temperatures of cold stream at inlet 

and outlet of the RAH, respectively. Ch stands for heat capacity of hot stream, Cc for heat capacity of cold stream, and 

Cmin refers to Lower value of Cc and Ch. In this method, the efficiency of rotary regenerator is a function of four non-

dimensional parameters which are defines as below: 

 

NTU =
UoverallA

Cmin
=

1

Cmin
[

1

1/(h̅A)h + 1/(h̅A)c
] 

 

(5) 

 

C∗ = Cmin Cmax⁄  (6) 

 

Cr
∗ = Cr Cmin⁄  (7) 

 

(hA)∗ =
(h̅A) on  the Cmin  side 

(h̅A) on  the Cmax  side
 

 

(8) 

 

NTU is number of heat transfer units, Uoverall  is the overall heat transfer coefficient, A is heat transfer area, Cmax is 

higher value of Cc and Ch, 𝐶∗ is the ratio of Cmin to Cmax, 𝐶𝑟
∗ is heat capacity rate ratio of RAH, and Cr is heat capacity rate 

of solid material of RAH which can be calculated by Mmet.Cmet.N/60. Here, Mmet stands for mass of solid material of RAH 

(kg), Cmet for heat capacity of solid material of RAH, and N for RAH's rotational speed in rpm. Heat transfer coefficients 

were calculated using outcomes of CFD simulation (Equation. (1)). An empirical correlation was suggested for computing 

the effect of  𝐶𝑟
∗  [22]: 

ε = εcf [1 −
1

9(Cr
∗)1.93

] 
(9) 

 

where 𝜀𝑐𝑓 is the counter flow heat exchanger efficiency: 

 

εcf =

{
 
 

 
 

1 − exp[−NTU(1 − C∗)]

1 − C∗ exp[−NTU(1 − C∗)]
                 C∗ < 1

NTU

1 + NTU
                                                     C∗ = 1

   

(10) 

 

For gaseous heat exchangers the sum of the flow pressure drops as it moves through the heat exchanger could be 

summarized as friction between walls and moving fluids and also losses occur because of expansions and contractions in 

fluid motion in the flow path. In general the core friction term is the dominant term and almost includes 90% of total 

pressure drop in gaseous heat exchangers [31]. The entrance effect results in pressure loss and the exit effect in most cases 

represents a pressure rise; thus the net effect of entrance and exit pressure losses is usually compensating and can be 

neglected. So the pressure loss in a RAH was written as below to take into account only momentum and core friction 

effects: 

 

∆P =
G2

2ρi
[(1 + σ2) (

ρi
ρo
− 1) + 𝑓

2 L

Dh
ρi (

1

ρ
)
m

] 
(11) 
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where σ is the matrix porosity, G is the fluid mass velocity based on minimum free-flow area (kg.m-2), L is length of 

layer, and ρi, ρo and ρm stand for the fluid density at inlet section, outlet section and the mean value of density along RAH. 

Using above equation, both the hot and cold streams' pressure drops are computable and by knowledge of inlet pressures, 

the exit and middle pressures can be computed. These pressures are needed later in calculation of pressure leakage 

quantities. 

Considering leakage effects 

Leaking the cold fluid to hot flow is an inherent characteristic of a rotary airheater. This is due to pressure difference 

between cold and hot streams, and carrying over the trapped fluid inside baskets for the rotational movement. Pressure 

leakages usually take place at the inlet and outlet areas where there is a gap between the rotor and casing. Radial sealing 

try to prevent mixing the cold and hot flows at entrance and exit sections. Axial sealing has the role of closing the passages 

which flow prefer to choose them instead of going through matrix that have higher flow resistance. Another sealing is for 

preventing the circumference escape of cold (high pressure) fluid into hot fluid [33]. 

All types of leakages should be calculated and then their influences on the ideal efficiency of the airheater should be 

considered. In this study, seven leakages were calculated: (1) hot end radial leakage, (2) cold end radial leakage, (3) hot 

side circumferential leakage, (4) cold side circumferential leakage, (5) axial leakage, (6) carry over leakage of air, and (7) 

carry over leakage of gas. Some of these leakages result in one or more of these consequences: decreasing RAH's 

efficiency, wasting the heat, and extra work of fan. These leakages are illustrated in Figure 4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. All types of leakages in a rotary regenerator (except carry over leakage). 

  

To obtain a mathematical model for determination of flow of fluids through sealing system, the method introduced by 

Skiepko [32] has been used. According to this method, the thermodynamic process of flow through seals is supposed to 

be isentropic, so the pressure leakage stream through seals can be measured using Bernoulli and continuity equations 

supplemented with thermodynamic relations for gas flow through the leakage area. The formula driven in this manner for 

a specific leakage mass flow rate (�̇�𝑠𝑒𝑎𝑙) is governed by the coefficient of discharge (Cd) which would be determined 

experimentally: 

ṁseal = CdAo,sY√2ρΔP (12) 

 

where Ao,s is seal clearance flow area and Y refers to expansion factor through the seal. Here, it was assumed that Y=1 

and Cd=0.8 based on data given by Migai [34]. To determine the carry over leakage mass flow rate, this formula was 

used: 

�̇�𝑐𝑜 = 𝐴𝑓𝑟(
𝑁

60
) ρm [∑(𝐿𝑖𝑖𝜎𝑖𝑖)

𝑛

𝑖i=1

+ 𝛥𝐿] 
(13) 

 

In Equation. (13), Afr is frontal area of rotor, ΔL is height of radial seals attached to the rotor, n is number of layers of 

RAH, while σ and L are matrix porosity and length of each layer. 

Optimization 

Fuel saving due to preheater usage has been spotted as the optimization objective function so that the effect of 

efficiency and pressure drop could be applied simultaneously. The fan work required for flowing the air and gas through 

the RAH was calculated based on pressure drop in hot and cold sides by considering the effects of leakages. Keeping in 

mind the fact that the energy consumption by a fan (Wfan) is in electrical form, it is rational to divide it by the net energy 
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efficiency of the power plant (η). So it could be comparable with thermal energy recovered by the RAH (Qrec). Therefore, 

by assuming the healing value of natural gas equal to 45391 KJ/kg, the function which should be maximized is: 

 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 3600 ×
(𝑄𝑅𝑒𝑐 −𝑊𝑓𝑎𝑛/𝜂)

4.5391 × 107
 

(14) 

This function computes the mass of saved fuel in one hour of full load operation. Using this parameter, it will be 

possible to implement a single objective optimization instead of multi objective optimization. The objective function was 

maximized by finding the best rotational speed, and some geometrical parameters (hydraulic diameter, profile type and 

its inclination angle) for hot end, intermediate, and cold end layers. Further optimizations were carried out by considering 

length of each layer (cold end, intermediate and hot end) and also outer diameter of the RAH.  

A Genetic algorithm was used to find the optimum values by means of MATLAB. Population size was changed to 

find the best performance. In most cases, a population size was good enough when it was in the range of 9-13 times of 

number of design variables. Range of design parameters assumed to be 1-100 mm for hydraulic diameters, 0.1-4 m for 

length of layers, and 0.1-20 rpm for rotational speed. In addition, as mentioned earlier, 13 different profiles were 

considered in this study. 

For the corrugated elements in CP profile, three angles of 0, 20, and 30 degrees and for the undulated elements in CU 

and DU and notches in FNC profile, three angles of 20, 30, and 50 degrees have been used. The inclination angle is 

measured from the flow direction. 

RESULTS AND DISCUSSION 

Comparing Various Profiles 

As was mentioned in the introduction, each heating surface has a specific heat transfer and flow resistance 

characteristics. Finding these specifications was an important part of this research. The heating profiles involved in this 

article are: corrugated plate (CP), notched flat (NF), corrugated undulated (CU), double undulated (DU), and flat notched 

cross (FNC). Heat transfer coefficient and pressure drop were found based on the CFD simulation. Results are illustrated 

in Figure 5 by comparing the ratio of Nu/f 1/3 for each profile. Using this parameter makes it easier to find out about the 

balance between heat transfer and pressure drop characteristics of profiles at a glance. Although the CP, CU, DU, and 

FNC profiles were modeled for three different inclination angles, the CFD simulation results are presented only for 30° 

to minimize the obscurity and complexity of Figure 5. It is clear that CU30, FNC30 and DU30 are superior in low 

Reynolds numbers (the common range for most of RAHs). In higher Reynolds the performance of FNC30 dropped 

dramatically. From heat transfer point of view, CU30 and then DU30 significantly performed better. But a lower pressure 

drop for FNC30 made it competitive at low Reynolds numbers.  

CFD Results Validation 

As was mentioned in the introduction, few articles have compared the effectiveness of various heating surfaces of 

rotary regenerators. However, some of them have unusable outcomes. For example, it was claimed that FNC has the 

highest efficiency [29]. The main reason for achieving a small efficiency for a CU comparing to FNC is that authors 

computed heat and flow for a straight CU. While the main benefit of these profiles is their high level of mixing caused 

from both wavy plates and inclination angle. So it is important to check the validation of CFD results both quantitatively 

and qualitatively. 

To find the accuracy of CFD simulations, they were compared to available experimental data. An experiment which 

is comparable with studied profiles was done by Sastiek [35]. He measured and calculated the heat transfer coefficient of 

some corrugated plates. A combination of his CP and US geometries (CP/US) is identical to our CU profile. A comparison 

of simulation results and experimental data is illustrated at Figure 6 for three different undulated angles. In another 

published paper, experimental data for a double undulated profile with and undulated angle equal to 30 ° is presented 

[18]. A comparison between the numerical simulation and their experimental results is shown in Figure 7. Of course, the 

experimental data which were expressed by Colburn j-factor (a common method of presenting the heat transfer 

characteristics of fixed and rotary regenerators [36]) were converted to Nusselt number. 
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Figure 5. Fully developed (Nu/f 1/3) for five profiles from CFD simulation results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Comparing CFD simulation to experiment [35] for CU profile. 

 

These figures show that our CFD simulation overestimates heat transfer coefficients. It was mentioned in the 

introduction that a 3D_CFD simulation of a regenerator with CU profiles overestimated the performance [9], too. The 

difference between experiment and CFD results becomes lower at higher Reynolds numbers. However, the differences 

are not still negligible at high Reynolds. For example, at Re=10000 the CFD simulation resulted in Nusselt numbers of 

50%, 40%, 30% and 56% larger than experimental data for CU20, CU30, CU50 and DU30, respectively. 

Regarding the overestimation of CFD simulation, it is predictable that the model of rotary air heater also calculates 

higher heat transfer between cold air and hot gas. Nevertheless, using the heat transfer and pressure drop correlations 

derived from CFD simulations (as Figure 5) still has advantages. They give us the opportunity of comparing the utilization 

of various heating surfaces (profiles) from heat transfer effectiveness and pressure drop viewpoints. It is because CFD 

has predicted successfully the trend of effectiveness of various heating surfaces comparing to each other (as is obvious 

from Figure 6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Comparing CFD simulation to experiment [18] for DU30 profile. 
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RAH Model Validation 

The model was compared with the design data of  a rotary air heater in a boiler of a 320 MW power plant. There are 

eight units of this boiler in Iran. So optimizing their air heaters would reduce fuel consumption and air pollution 

significantly. The rotor and hub diameter of the RAH are equal to 7.93 and 2.16 meters and rotational speed of the matrix 

is 1.4 rpm. Air flow enters the air heater at a temperature of 27 °C and leave it at 303 °C. The inlet and outlet temperatures 

of hot flue gas are 380 and 145 °C, respectively. The RAH is divided to three layers in flow direction: hot end layer, 

intermediate layer, and cold end layer. Dimensional parameters of different layers in this Ljungstrom is demonstrated in 

Table 2.  

Table 2. Specifications of the rotary air heater layers. 

 
Profile Dh (mm) Layer length (m) 

hot end DU30 12 0.8 

intermediate DU30 12 0.45 

cold end NF 20 0.305 

 

The developed model was used to estimate this RAH performance. The model resulted in an air and gas outlet 

temperatures equal to 309 and 138.6 °C. Comparing to real data, the model was capable of forecasting the thermal 

behavior of the RAH by an error close to 6 °C. One of the most possible reasons for this overestimating could be the 

higher Nusselt numbers predicted by CFD simulations. 

Optimization Scenarios 

Optimization results are entirely dependent to the choice of objective function and constraints. These two are defined 

by what we want from optimization. In this study, three scenarios were considered which will be addressed as "Opt". 

Each one was obtained based on a different level of modifications. In other words, more changes should be implemented 

in the RAH in Opt3 comparing to Opt1. These three scenarios would answer to research questions in different levels of 

details. As was stated in the introduction, the main goal is to find out an optimized RAH and the best heating surfaces. 

The results are presented in this section. It is worth mentioning that in this paper, optimal hydraulic diameters of flow 

passages are often presented instead of porosity. It is obvious that increasing hydraulic diameter is equivalent to 

decreasing the porosity when the wall thickness remains constant. 

The objective function is the same for all cases, but the constraints and independent variables are dissimilar. Two 

constraints are applied for all three scenarios. The first is restricting the optimized profile type for the cold end to NF and 

CP0. Not using the more advanced profiles is due to the ease of cleaning and avoiding the plugging of passages in the 

cold end layer. Second constraint is fixing the hot gas temperature entering the cold end layer. By calculating the current 

RAH, it was found that the hot gas temperature is equal to 158°C when entering the cold end layer. This value is probably 

near 6°C lower than the real temperature due to the model error. Despite this error, the value is important because shows 

a temperature at which the designers decided to introduce the cold end layer. In fact, it is better to allocate thicker and 

corrosion resistance material for passages which are exposed to gas flow with a temperature below 158 °C. Therefore, all 

the optimizations were performed by fixing the gas temperature at cold end layer entrance to 158±2 °C. This constraint 

prevents an optimum design with a risk of corrosion at intermediate layer and also avoids the low efficient cold end layer 

to be larger than what is required. 

"Opt1": The first optimization was implemented to find the best profile types and hydraulic diameters for all three 

layers of a RAH in addition to the rotational speed. This optimization could be carried out only by replacing baskets and 

adjusting rotational speed. In fact, dimensions of RAH would not be changed and only the internal components would be 

modified. In addition, length of each layer remained unchanged. The optimization outcomes are presented at Table 3. The 

fuel saving of Opt1 is equal to 437 kg/hr per RAH. Since there are 8 similar units of this power plant in Iran, applying the 

optimization for all of them will prevent wasting approximately more than 50,000 tons of natural gas annually. 

Comparing to design values (Table 2), Opt1 suggests smaller hydraulic diameters especially for hot and intermediate 

layers. This is almost equal to doubling the porosity in these layers. In the literature it was claimed that increasing the 

porosity at center could increase the heat transfer in an RAH [4]. Present study shows that by considering pressure drop 

and using a non-constant Nusselt number, lower porosity at center is still beneficial. However, Table 3 also recommend 

a high porosity in hot end. 
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Table 3. Results of three scenarios of optimization. 

 
Opt1 Opt2 Opt3 

Profile type 

Hot end FNC20 FNC20 FNC20 

Intermediate layer FNC20 FNC20 FNC20 

Cold end NF NF NF 

     

Hydraulic diameter of 

passages (mm) 

Hot end 5.9 7.7 7.3 

Intermediate layer 6.2 8.1 5.5 

Cold end 18 20.6 16 

     

Length of each layer 

(m) 

Hot end 0.8 1.25 0.84 

Intermediate layer 0.45 0.7 0.47 

Cold end 0.305 0.28 0.24 

     
Rotational Speed (rpm) 1.83 1.36 1.17 

RAH outer diameter (m) 7.93 7.93 ~ 10 

Fuel Saving (kg/hr) 437 443 660 

 

Before explaining Table 3 completely, it is worth mentioning that in most of optimizations the FNC20 was selected 

by the algorithm as the premium heating surface for hot and intermediate layers. While NF performed better than CP0 in 

cold end layer. Only in some cases, CU30 or CP0 was selected in cold end layer. This proves that Nu/f 1/3 which was 

presented at Figure 5 is not a perfect indicator for choosing appropriate heating surfaces. Because based on Nu/f 1/3 the 

CP0 was better than NF, and CU30 had a better performance comparing to FNC30 in a wide range of Reynolds number. 

But a question still remains: what if it was possible to change the length of hot, intermediate and cold layers? Figure 

8 Shows the amount of fuel saving of the optimum sets by varying the length of only one layer while the lengths of two 

other layers remain unchanged. When length of hot end or intermediate layers is short, the hydraulic diameter becomes 

very small. The consequence is a higher flow resistance and hence a lower fuel saving. This is true for longer hot end or 

intermediate layer because of their significantly higher leakage flow from air to gas. Thus, there is a length that pressure 

drop, heat recovery and leakage ratio are in their best balance. This behavior was not observed for cold end layer at least 

in the studied range of lengths. These best optimums are highly desirable due to their reasonable length and hydraulic 

diameters. In other words, their length is not so large that causes supporting difficulties, and they are not so narrow causing 

plugging problems to become an everyday issue for operators. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Fuel saving at optimum design parameters by changing length of only one layer. 

 

"Opt2": Regarding to Figure 8, another dimension of the RAH which assumed to be constant in Opt1 was the length 

of each layer. Length of each layer has a straight influence on the heat transfer and pressure drop. There is a specific 

length at which the heat transfer and pressure drop are in their best economical balance. In Opt2, these optimum lengths 

were calculated. The most important issue of Opt2 is the possibility of changing the RAH length from practical viewpoint. 

In addition to considering available space, some extra modifications on bearing and supporting structure are also needed.  

However, a simplification was employed in Opt2. There was not found any specific criteria for separating the hot end 

from intermediate layer, like the temperature range (158±2 °C) that was used for separating the cold end from the 

intermediate layer. It seems that manufacturers use two layers (hot and intermediate) instead of only one hot layer to make 

replacing damaged baskets easier by this modular format. Thus, this optimization performed by assuming that length of 

intermediate layer is proportional to length of hot end. This ratio was fixed to the current ratio (0.45/0.8). The assumption 

reduced the independent parameters of Opt2 from 10 to 9. 
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The final outcomes for this case did not improve fuel saving significantly, as stated in Table 3. Heat recovery increases 

but with an equivalent rise in fan power. Nevertheless, 6 kg/hr more fuel consumption was achieved by 0.675 meter 

increasing in overall length of the RAH. Higher value for hydraulic diameter of intermediate layer is also an advantage. 

"Opt3": Further optimizing the RAH will have more modification costs while a higher value of fuel saving will be 

guaranteed. In Opt3, overall dimensions of RAH were also considered to be modified. These dimensions are length of 

each layer (cold, intermediate, hot) similar to Opt2, and outer diameter of the RAH. Obviously, these adjustments are not 

always applicable in a power plant due to for example lack of additional space. 

Figure 9 shows the fuel saving for various optimized sets with different outer diameter of the rotary air heater. Inner 

diameter remained constant in these calculations. Every single point in Figure 9 was obtained by optimizing all design 

parameters of the RAH for a specific outer diameter. It is acceptable that increasing the frontal area (or outer diameter) 

should improve the performance of a regenerator [5]. A RAH with larger frontal area can transfer the same amount of 

heat with a lower pressure drop due to its smaller length (total surface ~ frontal area × length). So in theory it is better to 

have a RAH with a diameter as large as it is possible. But the Figure 9 demonstrates that fuel saving becomes close to 

constant after an outer diameter. An optimum RAH with outer diameter equal to 19 m has only 2% and 19% more hourly 

fuel saving capability comparing to RAHs with outer diameters of 13 m and 10 m, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Fuel saving for different outer diameter of the rotary air heater (each point is an optimized case). 

 

By moving from small to large diameters in Figure 9, optimum values of design parameters changed significantly. 

For example, the rotational speed dropped from 2 to 0.6 and total length of RAH fell from 2.4 to 0.25. For a RAH with 

highest value of frontal area, the optimum set showed that there is even no need for a cold end layer. Another point 

relevant to optimum sets of Figure 9 is that the matrix passages become narrower for a bigger diameter. In other words, 

the optimized RAH with larger frontal area resulted surprisingly in smaller hydraulic diameters. This was perhaps to 

prevent the heat transfer coefficient from dropping severely. These narrow flow passages (near 3 mm for hot end) are not 

preferable because of plugging risk. From this viewpoint, a RAH with outer diameter less than 10 m is more acceptable 

due to higher hydraulic diameters (bigger than 7 mm) of hot end layer. 

From practical point of view, changing the outer diameter of a RAH of an existing power plant is impossible in most 

of cases. In addition to lack of sufficient space, a bigger RAH may experiences a large amount of air leakage, changes in 

driving motor requirements, problem of bending the structure especially at the circumference, and new bearing 

considerations. The optimum RAH with a diameter of 19 m (right point in Figure 9) resulted in a leakage more than 20% 

of the air flow that is a huge value for design point. In addition, an optimum RAH with an outer diameter equal to 16 m 

is 2.3 times heavier than an optimum RAH with an outer diameter of 7.93 m (current value). Furthermore, a large outer 

diameter is equivalent to high moment of inertia for rotary regenerator. By considering the relation of kinetic energy of a 

rotating cylinder, the optimum RAH with outer diameter of 19 m requires 5.6 times more energy to reach its rotating 

speed comparing with the optimum RAH with diameter of 7.93 m. Thus a stronger driving motor may be necessary. 

The optimal outer diameter for the rotary air heater discussed in this article still needs an engineering decision. But 

keeping these energy indicators and practical issues in mind, it seems that optimum outer diameter of this RAH should 

be close to 10 m. A 10 meter rotary air heater would decrease fuel consumption significantly while leakage will be low 

enough (almost 2% higher than optimum RAH with diameter of 7.93 m), weight will increase slightly, required energy 

for reaching design speed from no-speed will be only 50% higher, and the hydraulic diameter will not be too small.  

Parametric Study 

In this section, influences of some parameters on the optimized RAH are discussed. Because a unique value for 

optimum outer diameter could not be chosen (just close to 10 m), this section studied the effect of parameters on "Opt2" 

with a fixed outer diameter of 7.93 m. Changing the power plant's efficiency, ambient temperature, hot gas temperature 

and air mass flow rate were considered. 
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Efficiency of the power plant 

As was stated in the method section, fan power consumption was divided by power plant's efficiency to make it 

possible comparing it with recovered heat. For all calculations, the efficiency was assumed to be 40%. Now, it is valuable 

to check how the efficiency can influence the optimization. It is logical that decreasing the unit's efficiency increases the 

cost of fan power comparing to thermal energy. Therefore, a smaller pressure drop at lower unit's efficiency should be 

more desirable to reduce the fan work. Reviewing the results indicates that wider matrix passages are chosen in 

optimization process. In fact, at smaller efficiencies of power plant, pressure drop of optimum set was lowered by bigger 

hydraulic diameters and shorter total length of regenerator. But the interesting point is that fuel saving at the optimal case 

did not changed for power plant's efficiencies from 30% to 45%. In other words, reducing a multi objective optimization 

to a single objective optimization problem by introducing a "fuel saving" parameter, did not influence the fuel saving. 

However, different power plant's efficiencies result in different optimum sets of design parameters. These sets are 

equivalent to Pareto Optimal Solutions if the problem was considered by maximizing effectiveness and minimizing 

pressure drop with a multi objective approach. The optimal sets are presented at Table 4. 

 

Table 4. Optimum sets for different power plant's efficiency. 

η (%) 30 35 40 45 

Q (kW) 52164 52218 52488 52751 

Fan (kW) 1701 1710 1816 1936 

Fuel saving (kg/hr) 444 444 443 444 

Leakage (%) 9.99 9.94 10.27 10.34 

Speed (rpm) 1.5 1.45 1.36 1.48 

Dh hot (mm) 7.3 7.7 7.7 7 

Dh mid (mm) 7.7 7.8 8.1 7.9 

Dh cold (mm) 24.1 18.2 20.6 21.5 

Profile _hot FNC20 FNC20 FNC20 FNC20 

Profile _mid FNC20 FNC20 FNC20 FNC20 

Profile _cold NF NF NF NF 

L hot+mid (m) 1.65 1.8 1.95 1.85 

L cold (m) 0.37 0.19 0.28 0.38 

 

Ambient air temperature 

Air temperature entering a rotary air heater is an important parameter in designing a RAH. In particular, it has a direct 

effect on geometry of cold end layer. It is expected that higher ambient temperatures decrease the thermal load and so the 

size of required regenerator. In this section, influence of cold air temperature on optimum values of design parameters 

was studied. Figure 10 summarized the results. The optimal rotational speed for a RAH working in a hot climate is slightly 

higher (Figure 10a). In this situation, flow leakage also decreases which is a merit. Total heat transfer reduces for higher 

ambient temperatures (Figure 10d). As a consequence, because optimum fan power almost did not change, the potential 

of fuel saving declines. 

As mentioned earlier, in our calculations, hot gas temperature at the entrance of cold end layer was fixed to avoid a 

poor design which causes an acid corrosion in matrix. Therefore, as seen in Figure 10c, a considerable reduction in 

optimum length of cold end layer has occurred at high ambient temperatures. Whereas, a decrease in optimal hydraulic 

diameter is evidenced, too (Figure 10b). However, for the highest air temperature, hydraulic diameter of cold end layer 

rises suddenly. This sudden enlargement in Dh of cold layer happened because the need for a cold end layer decreased as 

the risk of acidic corrosion was reduced. In these conditions, cold end reached to its lower limit of length (see optimization 

sub-section in method section) and genetic algorithm increased the hydraulic diameter instead. Of course, the same 

reduction in length and a minor drop in hydraulic diameters are observable for hot and intermediate layers, too.  

In summary, when a rotary regenerator works in a cold or hot climate it is better to change some design parameters to 

make the highest benefit from it. Eight similar units in Iran that use this type of RAH are located near three cities each of 

them has a different climate. Redesigning their RAH based on most frequent ambient temperature would lead to a big 

difference in fuel saving. This is observable in Figure 10 that air temperature can influence the optimal values of all 

considered design parameters (rotational speed, hydraulic diameters and length of all three layers) remarkably. 
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Figure 10. Variation of optimal parameters vs. ambient temperature. (a) rotational speed and leakage flow, (b) 

hydraulic diameters of hot, intermediate, and cold layers, (c) length of hot+intermediate and cold layers, (d) total 

recovered heat, fan power, and fuel saving. 
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Figure 11. Variation of optimal parameters vs. hot gas temperature. (a) rotational speed and leakage flow, (b) hydraulic 

diameters of hot, intermediate, and cold layers, (c) length of hot+intermediate and cold layers, (d) total recovered heat, 

fan power, and fuel saving. 

Hot gas temperature 

Temperature of hot gas entering a RAH is also very determinative. In fact, this temperature is a direct indicator of 

heat recovery potential or thermal load of the heat exchanger. Figure 11 shows the results of changing hot gas temperature. 

As it was expected, total heat transfer from hot gas to cold air increased. Hence the fuel saving was raised (Figure 11d). 

Leakage drops at higher inlet gas temperatures. Optimum rotational speed gradually increased by rising the gas 

temperature (Figure 11a).   

In general, higher temperature of gas means that the risk of acidic corrosion is lower. This is reflected at Figure 11c 

where length of cold layer dropped for a hotter inlet gas. In fact, by increasing the inlet gas temperature, gas will reach 

later to 158 °C (which was used to find the beginning of cold end layer) and the cold end layer will be shorten. Therefore, 



Hamid Abroshan et al. │ Journal of Mechanical Engineering and Sciences │ Vol. 14, Issue 1 (2020) 

6318   journal.ump.edu.my/jmes ◄ 

when temperature of hot gas is larger, it is better to use a shorter cold end layer with wider flow channels. Characteristics 

of hot end and intermediate layers were not influenced notably.  

In general, if the hot gas temperature increases permanently (for example due to malfunction of burners, economizers 

or superheaters), an increase in rotational speed and reducing the length of cold end while its flow passages become wider 

helps to attain an optimum heat recovery. 

Mass flow rate of air 

Another parameter which can determine the thermal load of a RAH is mass flow rate of inlet air. In power plant 

applications, this value is obtained from required air for combustion in boiler. Here, a natural gas fired boiler was assumed 

with an excess air equal to 10%. Afterwards, the hot gas flow rate was also calculated from mass flow rate of inlet air.  

As it is obvious from Figure 12d, by increasing the air mass flow rate from 100 to 200 kg/s, total heat transfer doubles 

while the pressure drop becomes 3.5 times higher. The net effect is the increasing of fuel saving by air mass flow rate a 

little weaker than what happened for total heat transfer. Meanwhile, leakage percentage falls down from near 13.5% to 

9% and optimal rotational speed oscillates between 1.25 and 1.55 (Figure 12a). It is worth noting that increasing the air 

mass flow rate for a fixed RAH leads to a lower efficiency [7]. Fuel saving increasing that is presented in Figure 12 has 

a different meaning. In fact, an optimization had performed for every single value of air flow rate. So by increasing the 

air flow rate, the design of RAH has been changed. 

Figure 12b shows that increasing the mass flow rates from 100 to 200 kg/s by keeping constant the other parameters 

of a RAH (i.e. outer diameter, inlet temperature of air and hot gas), results in hydraulic diameters 1.5 and 2.2 times bigger 

for hot and intermediate layers, respectively. While the Dh of flow passage at cold end layer remains close to 22 mm. The 

same pattern is detectable for optimum length of layers (Figure 12c).  

In general, if the air flowing to a boiler changes permanently (for example by aging or switching to a new fuel), it is 

recommended to adopt the hydraulic diameters and lengths of hot and intermediate layers to improve the RAH from 

energy viewpoint. It is also a good guidance for designing a new RAH for power plants that are a little smaller or bigger 

than the discussed case. Of course, optimal outer diameter remained constant in these calculations. 
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Figure 12. Variation of optimal parameters vs. mass flow rate of air. (a) rotational speed and leakage flow, (b) 

hydraulic diameters of hot, intermediate, and cold layers, (c) length of hot+intermediate and cold layers, (d) total 

recovered heat, fan power, and fuel saving. 

CONCLUSION 

Rotary air heaters (RAH) are simple equipment which are popular in power plants or air conditioning applications. 

They can improve thermal efficiency of systems by recovering heat content of flue gas. Thus, optimizing their design 

parameters could minimize wasting the energy. In this paper, a rotary regenerator was modeled by combining 

mathematical modeling and CFD simulations. Three dimensional CFD was implemented to find out the heat transfer and 

pressure drop through 5 types of heating surfaces by considering various inclination angles (13 flow passage in total). 

Then the RAH was modeled mathematically using the correlations for heat transfer and friction factor derived from CFD. 

Three layers of a regenerator (hot end, intermediate, cold end) were taken into account by assigning specific geometrical 

parameters to each of them. Afterward, the RAH was optimized by genetic algorithm and optimal design parameters were 

obtained (i.e. rotational speed, and heating surfaces/hydraulic diameters/lengths for all three layers). 

To optimize a rotary regenerator, it is required to maximize the heat transfer while minimizing pressure drop. These 

two parameters are in conflict, so multi objective optimization is usual. However, a single optimization was used in this 

article by introducing a fuel saving parameter that reflects both pressure drop and heat transfer. The optimization was 

performed by assuming three scenarios. In the first one (called opt1), the RAH was optimized by changing the types and 

hydraulic diameters of heating surfaces and the rotational speed. Second scenario (opt2) optimized the length of each 

layer in the RAH in addition to the previous parameters. In the third scenario (opt3), the outer diameter was also optimized. 

Finally, influence of power plant's efficiency, cold air temperature, hot gas temperature and air mass flow rate were 

discussed on the optimum RAH. Main findings of this paper could be pointed as below: 

 

(1)  Optimizing the RAH will save 437, 444, and 660 kg of natural gas at one hour for only one rotary air heater for 

opt1, opt2, and opt3, respectively. The highest fuel saving needs major changes in power station which may be 

impractical but replacing the matrix baskets with suggested optimum heating surfaces is completely practical. 

(2)  Although plotting Nu/f 1/3 for different flow channels showed that corrugated undulated (CU) is the best heating 

surface for all considered Reynolds numbers, in most of optimization sets the FNC (flat notched crossed) was 

preferred for hot and intermediate layers. For cold end, only two passages were considered due to ease of cleaning: 

notched flat (NF) and a straight corrugated plate (CP0). In most of cases the NF was selected by optimization 

algorithm maybe for its significantly lower pressure drop. 

(3)  Increasing the outer diameter of a rotary regenerator is not necessarily equivalent to improvement in performance 

of it. In fact, the fuel saving does not change after a specific outer diameter. Regarding the problems with large 

outer diameters which were mentioned in the article, optimized RAH with an outer diameter close to 10 m (instead 

of 7.93 m) could intensify the amount of fuel saving significantly.  

(4)  When the RAH works at higher ambient temperature or air inlet temperature was increased by a steam preheater, 

the fuel saving potential decreases. However, the risk of acidic corrosion reduces. In higher air temperatures, it is 
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recommended to design a rotary regenerator with higher rotational speed, shorter hot and intermediate layers while 

diminishing the cold end layer (increasing its hydraulic diameter and reducing its length). 

(5)  Influence of increasing the hot gas temperature, due to any permanent change in operation of boiler, leads to 

improvement in fuel saving if the RAH was redesigned to new optimum design values. The optimal RAH for 

higher hot gas temperature has a little higher rotational speed and a shorter cold end layer. Other parameters does 

not change significantly. 

(6)  Increasing the mass flow rate of air flow resulted obviously in better fuel saving. Keeping in mind that hot gas 

flow was also changed based on calculating required air for combustion of natural gas, some changes are suggested. 

In this case, hydraulic diameters and length of hot end and intermediate layers should be increased to remain at 

optimum conditions. 

 

The optimization method and these findings could be used widely by design engineers and also operational engineers 

of power plants to boost thermal efficiency of power units. For future activities, it is recommended to set up an experiment 

to measure accurate values for heat transfer and pressure drop through various heating surfaces. This would increase the 

reliability of results from quantitatively point of view. 
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