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INTRODUCTION   

In recent decades, robotic researches have become great attention and has N number of applications in every field of 

research such as industrial, medical, agriculture and so on and so forth[1]. In industrial applications, robots are used for 

packaging, segregating, assembling, etc. In Agriculture used for picking, collecting and segregating fruits, vegetables, 

flowers, etc. In medical research used as assistive robots, surgical robots, etc.[2] For every application, the requirement 

of robot configuration differs. Therefore, Robotic manipulators were developed with various types of joints such as 

rectangular, cylindrical, spherical, revolute and horizontal joints to perform different tasks. The task comprises some 

trajectory or path and the robot is expected to maneuver or follow that required trajectory [3–5]. Different control schemes 

are used to follow that required trajectory because there exists the nonlinearity, uncertainty, external disturbances, strong 

coupling and time varied of the robotic system. There are Linear and nonlinear control schemes such as PD (Proportional-

Derivative) Control, PID (Proportional Integration Differentiation) Control, CTC (Computed Torque Control), Adaptive 

control Fuzzy Control and so on [6–10].  This paper focuses on CTC, which is nonlinear feedback control. 

The most commonly used robot in industrial and medical applications is SCARA (Selective Compliance Assembly 

Robot Arm) although the first robot was invented by Japan more than half-decade still it is an indispensable element in 

the automation industries. Speed, reliability, small workspace and cost-effectiveness make this robot widely used all over 

the world. The Selective Compliance Assembly Robot Arm (SCARA robot) can be seen in Figure 1 manufactured by 

Rexroth is considered an object of interest, which is a four-axis horizontal joined articulated arm configuration. The first 

two joints of the robot are revolute to establish the horizontal position of the robot. The third joint is the prismatic joint 

which defines the vertical position of the end tool. Finally, the last joint will provide the tool orientation. Therefore it has 

RRPR Configuration with the cylindrical workspace [11].  

Building up a new robot model, analyzing and verification of the model should be taken care of before constructing 

up in the real world. The simulation is more popular because of the low cost of the computer, which is helpful in analyzing 

feasibility studies, the presentation with animation, layout evaluation, and offline programming. Therefore, the simulation 

tool like MATLAB, ADAMS, Vrep, and ROS and so on can be used to simulate robot to analysis robot motion [12]. 

During the surgical simulation for preoperative planning of maneuvering the robot to operate the patient, the joint control 

of robot for trajectory tracking is required. In order to achieve more accurate, precise trajectory tracking control, the 

classical PD and PID controller are compared with PD CTC control to calibrate the performances of joint control for the 

proposed system.   The purpose of this paper is to illustrate, analyze and simulate the kinematic, dynamic analysis and 

control of the robot using the MATLAB simulation software [13]. The four cases for the PD-CTC controller are taken 

into consideration with different gain values the best from which is compared with the tuned PD and PID control in order 

to achieve the desired joint trajectory. The CTC control technique used to produce tracking control with minimum error. 

 

 

 

ABSTRACT – In the current paradigm, the development in robotic technology has a huge impact 
to revolutionize the medical domain. Surgical robots have greater advantages over surgeon such 
as reduced operating time, reduced tremor, less blood loss, and high dexterity. To perform different 
operations during surgery a base robot is required with the task-specific end effector. In this paper, 
the selective compliant assembly robot arm (SCARA) has been considered as the base robot and 
the complete mathematical modeling of the robot is illustrated. The equation of Kinematics is 
derived from the D-H notation. SCARA dynamic model is derived from Euler Lagrange. In order to 
achieve trajectory tracking the Computed Toque Control technique (CTC) applied to the SCARA 
manipulator. The performance of the CTC technique for trajectory tracking of each joint of the 
SCARA robot has evaluated in contrast with tuned PD and PID controller. The simulation results 
were discussed and verified using MATLAB simulation software.          
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Figure 1. Selective Compliance assembly robot arm (SCARA robot) 

 

KINEMATIC MODELING OF SCARA 

The SCARA Manipulators are widely used in various assembly applications like Cutting, Selecting, Segregating, Pick 

and Place, etc. It has a horizontal jointed articulated arm configuration manipulator called Selective Compliance 

Assembly Robot Arm (SCARA). The end tool of the robot can be modified to perform various surgical tasks such as a 

holding camera and smart tools like endostitch, endosew, etc [14]. The frame assignment of the SCARA manipulator can 

be seen in Figure 2. 

 

 

Figure 2. Mechanical Structure of 4-DOF SCARA (RRPR) manipulator arm 

 

To identify the dynamics and kinematics of the manipulator the mass, link length and moment of inertia parameter is 

required. Therefore, Table 1 illustrates the parameters taken into consideration during the modeling of the manipulator in 

simulation. 
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Table 1. SCARA robot parameters 

Parameters Value 

Mass of Link 1 (
1m ) 3.1 kg 

Mass of Link 2 (
2m ) 0.85 kg 

Mass of Link 3 ( 3m ) 0.56 kg 

Mass of Link 4 (
4m ) 0.24 kg 

Link1 Length (
1l ) 0.5 meter 

Link1 Length (
2l ) 0.2 meter 

Link 1 Offset (
1d ) 1.9 meter 

Link 3 Offset ( 3d ) 0.24 meter 

Link 4 Offset (
4d ) 1.3 meter 

Moment of Inertia  for link 1 ( 1I ) 0.5728 kg.m2 

Moment of Inertia  for link 2 (
2I ) 0.2130 kg.m2 

Moment of Inertia  for link 3 ( 3I ) 1.64 kg.m2 

Moment of Inertia  for link 4 (
4I ) 0.567 kg.m2 

Acceleration Due To Gravity  (g) 9.8 m/sec2 

 
The Denavit-Hartenberg (D-H) parameter of the SCARA robot are defined in Table 2. 

 

Table 2. D-H Parameter of the SCARA Manipulator 

Axis 𝜽𝒊 id  ia  𝜶𝒊 

1 1  
1d  

1l  Π 

2 2  0 2l  0 

3 0 3d  0 0 

4 4  
4d  0 0 

 
The Ai represents the generalized Transformation Matrices of link 𝑖 can be seen from Eq. (1) to Eq. (3). 
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(3) 

The joint parameters as given in the D-H table and the transformation matrix defined as A-matrix for each joint has 

defined as follows from Eq. (4) to Eq. (7). 
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The Forward Kinematic Equation of the manipulator can be written as stated in Eq.(8). 
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On comparing the above Eq. (8) with Eq. (9): 
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where, the arbitrary parameters used in Eq. (9) were illustrated in below from Eq. (10) to Eq. (17). 
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431 dddd z −−=  (17) 

 

where, 𝑑𝑥, 𝑑𝑦, 𝑑𝑧 represents the end-effector position and can be called as d matrix with a 3x1 matrix dimension and 

similarly R as a rotation matrix with a 3x3 dimension.  

 

The Inverse Kinematics given by the set of solution of the equations as follows: 
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Since four DOF of SCARA matrix will not have a definite solution unless R is in the form as stated in Eq. (19). 
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In this case, 
421  −−  can be determined by Eq.(20) and respective  Eq.(21) defined 

2 . 
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where, the arbitrary constant 𝑟2 is stated n Eq. (22) and Eq. (23) illustrate the computation of  𝜃1.  
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The tool roll angle 𝜃4  from Eq. (20) can be defined as stated in Eq. (24) and Eq. (25). 
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The prismatic joint variable 𝑑3 is associated with a sliding tool up and down with a tool roll axis. The vertical component 

of tool motion is uncoupled from horizontal components. Finally, the prismatic joint 𝑑3 has given as stated in Eq. (26).  

43 ddd z +=  (26) 

 

SCARA ROBOT MANIPULATOR DYNAMIC FORMULATION 

In this section, the dynamic model of the SCARA manipulator is discussed. The Newton Euler and Euler Lagrange 

are the two common methods used for finding the dynamic equation. The dynamic equation of the SCARA robot 

manipulator is derived from the Newton Euler Method. The generalized dynamic expression for N degree of freedom 

robot manipulator can be expressed as below in Eq. (27). 

=++ )(),()( qGqqqNqqM   (27) 

where generalized force vector (n x 1 dimension) is expressed as 𝜏, 𝑀 is Inertia Matrix with the dimension of n x n. 𝑀(𝑞) 

is a positive symmetric matrix, 𝑁 is Centrifugal and Coriolis Forces (n x 1 dimension),𝐺  is a Gravitational Force Vector, 

𝑞̇ is Joint Angular Velocity Vector and 𝑞 is Joint Position Vector.  

 

The Inertia Matrix of the SCARA 4 DOF is as stated in Eq. (28). 
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and Coriolis ( )(qN ) Matrix is calculated as the following Eq. (29). 
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Gravity Matrix (G) can be written as Eq. (30). 
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The SCARA parameters are as follows mentioned in Eq. (31) to Eq. (37). 
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where 𝐼i is the moment of Inertia around the centroid, 𝑚𝑖 is the mass,  𝑙𝑖 is the length of link i.  The SCARA manipulator 

Jacobian, With respect to the robot base frame, is as mentioned in Eq. (38). 
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CONTROL: COMPUTED TORQUE CONTROLLER ANALYSIS 

The most widely used nonlinear and powerful controller used for almost all schemes for robot control in robot 

manipulators is Computed Torque Control (CTC) [13]. It has a special application on the different nonlinear systems 

based on feedback linearization by the use of nonlinear feedback law it would able to compute required torque in the arm 

[15-18]. It performs significantly well when all dynamic and physical parameter of the system is known [19-23]. The 

CTC like control appears in Robust, Adaptive and Learning Control [19,23,24]. Figure 3 provides the block diagram for 

PD-CTC Controller, which illustrates that it’s a feedback control system. The notation representing in the block diagram 
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𝑞̈𝑑 , 𝑞̇𝑑 and 𝑞𝑑 are desired acceleration, desired velocity and desired position respectively were provided as the input to 

the system and acquires actual position (𝑞𝑎) and velocity(𝑞̇𝑎) as an output. 

 

 

Figure 3. Block Diagram of PD–Computed Torque Control (PD-CTC) 

 

Originally this algorithm is called as feedback Linearization Controller. It has assumed that the desired trajectory of 

the manipulator is 𝑞𝑑(𝑡) and 𝑞𝑎(𝑡) is the actual trajectory of the manipulator. The Tracking error can be defined as 𝑒(𝑡) 

in Eq. (39), i.e. displacement error: 

)()()( tqtqte ad −=  (3939) 

The derivative of displacement error 𝑒(𝑡), we would be able to achieve velocity error denoted as 𝑒̇(𝑡) stated in Eq. (40). 

)()()( tqtqte ad
 −=  (40) 

Similarly, on taking derivative of velocity error from Eq. (40) we would be able to achieve acceleration error represented 

as 𝑒̈(𝑡) stated in Eq. (41). 
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Rewriting Eq. (27) with reference to actual angle denoted as 𝑞𝑎. The resultant is represented in Eq. (42). 
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If an alternative linear state space equation in the form 𝑥̇ = 𝐴𝑥 + 𝐵𝑈 can be, defined as Eq. (43). 
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The Brunousky canonical form state that  𝑈 = −𝑀−1(𝑞). 𝑁(𝑞, 𝑞̇) + 𝑀−1(𝑞). 𝜏 with the help of Eq. (42) and Eq. (43) the 

Brunousky canonical form can be seen in Eq. (44) written in terms of state 𝑥 = [𝑒𝑇 𝑒̇𝑇]𝑇. The 𝑈 is represented as Eq. 

(45). 
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With, 
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Taking the inverse of the equation (45), the computed torque for the required arm as stated in Eq. (46). 

),())(( qqNUqqM d
 +−=  (43) 

On selecting the proportional–plus-derivative (PD) feedback for control input U (t) results in PD computed torque control 

that guarantees the tracking of the desired trajectory as mentioned in Eq. (47).  

),())(( qqNeKeKqqM pdd
 +++=  (44) 

Equation (49) shows the resulting linear error dynamics from Eq. (47) and Eq. (48). 
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q='  (45) 

eKeKqq pdd ++=   (46) 

Or with  𝑒̈ = 𝑞̈𝑑 − 𝑞̈𝑎 

0=++ eKeKe pd
  (47) 

where, Kd and Kp are the Velocity and Position  gain. For the critical damping performance of each joint, the Eq. (51) 

states the relationship between Kd and Kp . 

pd KK 2=  (48) 

The computed torque control is used to linearize the error dynamics using nonlinear feedback, which provides better 

tracking performance in comparison with linear controllers. The computational cost is more as compared to linear 

controllers and inaccuracies in the dynamic model and other parameters limit the performance of the manipulator. 

 

RESULTS AND DISCUSSIONS 

The computed torque controller (CTC) control implemented for step responses. The simulation is implemented using 

the MATLAB/ Simulink Software. In this paper, the simulation results of the SCARA robot with 4 DOF is discussed 

moving the robot from its home to the final position taking consideration of different Kp and Kd values.  

 

Performance Estimation 

As stated in refer [15,16]; the performance estimation of the controller is estimated by its trajectory tracking. In PD-

CTC controller the proportional and derivative gain directly affects the performance of the controller. The Performance 

of the PD-CTC controller is computed by tuning gains using trial and error. The CTC cases were considered with the 

different gain coefficient of the controller and their respective responses with respect to steady-state error and Root mean 

square error that can be seen in Table 1.  

In PD-CTC controller two-gain coefficient have considered i.e. Proportional Gain (Kp) and Derivative gain (Kd). The 

proportional gain is directly proportional to the error. Therefore, if there is an increase in error we should increase the Kp 

value in the same proportion. To make a robot move in the desired trajectory the large value of Kp should be kept which 

will make the robot follow the desired trajectory or tries to reduce the error. The lower value of Kp makes the system 

sluggish, the reaction is slow to lead the heading change and it can happen it never reaches the desired values. Higher Kp 

made the system to respond rapidly and smoothly to reach the desired values. Too higher Kp will provide high control 

command even for smaller errors which leads to the system overshoot. Increasing Kp even after too higher value makes 

the system oscillating. As per the dynamics of the system, it may cause unnecessary vibrations to the system. The 

Derivative gain is the rate of change of error, which implies an increase in Kd will make the system to respond faster. 

Right value Kd reduced overshoot caused by increased Kp and system smooth and faster. 

Considering the above tuning conditions of Kp and Kd the below mention cases are considered for PD-CTC Tuning. 

In Table 3, the case of PD-CTC with their respective Root mean square error and Steady-state error at each joint is 

calibrated. The trajectory tracking responses of each case can be seen in Figure 4. 

 

Case 1: Kd =60, Kp =360 

As the value of Kp is higher and respectively the value of Kd is less than Kp but relatively higher than in other cases. 

The selected values of Kp and Kd made the system to respond faster and follow the smoother trajectory to reach the desired 

angle without any overshoot. 

 

Case 2: Kd =2, Kp =10 

The value of Kp and Kd are lower with respect to case 1 but the value of Kp is higher than Kd similar to case 1. The 

lower value of Kp and Kd made system sluggish is response with respect to case 1. This makes the system under damped 

and causes overshoot in system response. 

Case 3: Kd =10, Kp =10 

In case 3, the value of Kp and Kd is equal. The large value of Kd will provide excessive force to the system to attain 

the desired trajectory. The equivalent value of Kp make system relatively sluggish without overshoot.  
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Case 4: Kd =10, Kp =2 

 In case 4, the value of Kp is much lower than the Kd. The lower value of Kp made the system extremely sluggish in 

response, which in turn system does not reach its desired trajectory in the system simulation time frame of 50 seconds. 

 

 

 

Figure 4. Computed Torque Control (CTC) at different cases and desired input step trajectory for (a) link 1 joint angle, 

(b) link 2 joint angle, (c) link 3 joint displacement and (d) link 4 joint angle 

 

 

Table 3. Comparison table of Computed Torque Control (CTC) of different cases followed with their respective Steady 

State Error (SS Error) and Root Mean Square Error (RMS Error) 

Case Kp 1 Kd 1 Kp 2 Kd 2 Kp 3 Kd 3 Kp 4 Kd 4 
SS 

Error1 

SS 

Error2 

SS 

Error3 

SS 

Error4 

RMS 

Error 

Case 
1 

360 60 360 60 360 60 360 60 1.49×10-5 1.986×10-5 1.49×10-5 2.234×10-5 0.1003 

Case 

2 
10 2 10 2 10 2 10 2 8.326×10-6 1.110×10-5 8.326×10-6 1.249×10-5 0.1959 

Case 
3 

10 10 10 10 10 10 10 10 1.529×10-5 2.039×10-5 1.529×10-5 2.294×10-5 0.2456 

Case 
4 

2 10 2 10 2 10 2 10 1.388×10-1 1.851×10-1 1.851×10-1 1.388×10-1 0.1704 

 

From the above analysis illustrated in Table 3 based on SS and RMS Error the case 1 is considered as the best tuned 

PD-CTC controller with Kp and Kd valued as 360 and 60 respectively. The best case of PD-CTC controller case 1 is 

compared with the tuned PD and PID controller [8,17,18]. The trajectory tracking of the PD-CTC, PD and PID controller 

for step trajectory can be seen in Figure 5. According to Figure 5, the CTC, PD AND PID controller the CTC controller 

tracks the step input trajectory more precisely with the least RMS error of 0.1003.  
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Figure 5. Computed Torque Control (CTC), Proportional-Derivative Control (PD), Proportional Integrated Derivative 

Control (PID) and desired input step trajectory for (a) link 1 joint angle, (b) link 2 joint angle, (c) link 3 joint 

displacement and (d) link 4 joint angle 

 
For PD, PID and CTC the Kp and Kd  values of each joint of the robot are mentioned in Table 4. The gain values of 

the controller for each joint are taken as constant in PD and PD- CTC whereas in PID control implementation the gain 

values of each joint of the manipulator are well-tuned.   

 

Table 4. Different control techniques: CTC, PD and PID with their respective gains 

Control 

Technique 
Kp1 Ki1 Kd1 Kp2 Ki2 Kd2 Kp3 Ki3 Kd3 Kp4 Ki4 Kd4 

CTC 10 0 2 10 0 2 10 0 2 10 0 2 

PD 360 0 60 360 0 60 360 0 60 360 0 60 

PID 300 0.00561 4 200 0.2206118 4 36 0.058339 6 30 0.05833 4 

 

 

Table 5. Root Mean Square error of system and steady state error at each joint of the system at different control 

techniques 

Control 

Technique 

SS 

Error1 

SS 

Error2 

SS 

Error3 

SS 

Error4 
RMS error 

CTC 1.49×10-5 1.986×10-5 1.49×10-5 2.234×10-5 0.1003 

PD 0.6549 0.2639 0.02222 0 0.3534 

PID 4.971×10-1 2.291×10-4 5.504×10-4 7.090×10-1 0.2486 

 

On comparison of well-tuned PD and PID Controller with the best case of CTC control technique, their respective 

Steady-state error and Root mean square error can be seen in Table 5. The steady-state error for each joint of the robot 

manipulator as mentioned in Table 5 illustrates that CTC controller performs well in order to minimize the joint trajectory 

tracking. The steady-state error of each joint in CTC control is reduced to e^-05 with Root Mean Square Error of 0.1003. 



V. Verma et al. │ Journal of Mechanical Engineering and Sciences │ Vol. 14, Issue 3 (2020) 

7027   journal.ump.edu.my/jmes ◄ 

The RMS error of CTC is 71.61% less than PD controller and 59.65% less than PID controller. The performance of CTC 

controller for trajectory tracking is best with respect to PD and PID control taking steady-state and root mean square error 

as an estimation function. 

 

CONCLUSIONS 

In this paper, the kinematic and dynamic mathematical modeling of four - DOF SCARA robot is illustrated. The 

implementation of mathematical modeling performed in the simulation platforms MATLAB/SIMULINK. The kinematic 

modeling is computed by the analytical method using D-H notations. The dynamic modeling of the robot is computed 

using Newton Euler Method. In order to test the system modeling, which is a surgical robot we need high performance, 

precise, robust and speedy control, therefore, we choose three feedback loop controllers i.e., CTC, PD and PID. The CTC 

control technique is illustrated and implemented in MATLAB/Simulink with different Proportional Gain (Kp) and 

Derivative Gain (Kd) using the trial and error method. The best-suited CTC with its gain values is further compared with 

best-tuned gains of PD and PID controller in order to have a performance comparison of the different implemented 

controllers. This research proves that CTC with the optimized value of Kp and Kd is successfully proven to be having the 

least amount of RMS error 0.1003.  
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