
Journal of Mechanical Engineering and Sciences

ISSN (Print): 2289-4659; e-ISSN: 2231-8380

Volume 13, Issue 4, pp. 5905-5921, December 2019

© Universiti Malaysia Pahang, Malaysia

DOI: https://doi.org/10.15282/jmes.13.4.2019.13.0469

5905

A modified artificial bee colony algorithm to optimise integrated assembly sequence

planning and assembly line balancing

M. F. F. Ab. Rashid1*, N. M. Z. Nik Mohamed1 and A. N. Mohd Rose1

1 Faculty of Mechanical & Manufacturing Engineering,

Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia
*Email: ffaisae@ump.edu.my

Phone: +6094246321; Fax: +6094246222

ABSTRACT

Assembly Sequence Planning (ASP) and Assembly Line Balancing (ALB) are traditionally

optimised independently. However recently, integrated ASP and ALB optimisation has

become more relevant to obtain better quality solution and to reduce time to market. Despite

many optimisation algorithms that were proposed to optimise this problem, the existing

researches on this problem were limited to Evolutionary Algorithm (EA), Ant Colony

Optimisation (ACO), and Particle Swarm Optimisation (PSO). This paper proposed a

modified Artificial Bee Colony algorithm (MABC) to optimise the integrated ASP and ALB

problem. The proposed algorithm adopts beewolves predatory concept from Grey Wolf

Optimiser to improve the exploitation ability in Artificial Bee Colony (ABC) algorithm. The

proposed MABC was tested with a set of benchmark problems. The results indicated that the

MABC outperformed the comparison algorithms in 91% of the benchmark problems.

Furthermore, a statistical test reported that the MABC had significant performances in 80%

of the cases.

Keywords: Manufacturing system; artificial bee colony; assembly sequence planning;

assembly line balancing.

INTRODUCTION

Global competitiveness continues to put pressure on manufacturers to produce a product at

its maximum efficiency. In order to assemble the product at maximum efficiency, assembly

optimisation activities play an important role. Assembly optimisation starts with product

design stage that involves the assembly design [1]. The purpose of the assembly optimisation

in the design stage is to reduce the number of parts and to ease the assembly process. This

will lead to lower cost and less time taken to assemble the product in a flow line system [2].

Assembly sequence planning (ASP) is assembly optimisation activity that occurs

during the production planning stage that widely known because of it uncertainty [3, 4]. The

purpose of the ASP is to identify the best feasible assembly sequence according to the

evaluation criteria [5]. In ASP optimisation, various evaluation criteria were used by the

researchers to determine the best assembly sequence. Among the popular evaluation criteria

https://doi.org/10.15282/jmes.13.4.2019.13.04

M.F.F. Abd Rashid et. al / Journal of Mechanical Engineering and Sciences 13(4) 2019 5905-5921

5906

mentioned in the published research were to minimise assembly direction change, tool

change, and assembly complexity level [6].

On the other hand, the assembly line balancing (ALB) refers to the assignment of

assembly task into the workstations, so that the workload between the workstations will be

balanced or almost balanced [7, 8]. ALB problems are categorised as Simple Assembly Line

Balancing Problem (SALBP) and Generalise Assembly Line Balancing Problem (GALBP).

The SALBP considers a single model assembly problem that runs on a specific assembly

line. Meanwhile, the GALBP includes all other versions of the problem other than SALBP's

[9].

Recently, researchers discovered that the integrated assembly optimisation is able to

lead to better assembly plan quality and reduce the error rate in assembly planning and

costing [10]. In other words, the assembly process in production line could be improved by

reducing non-value added activities such as unnecessary tool/direction changes and

additional workstations via integrated ASP and ALB optimisation. Furthermore, the

assembly time could be improved by reducing the cycle time [11].

Realising the benefits of integrated optimisation, the ASP and ALB have a good

potential to integrate because both activities aim to achieve optimum set up in the assembly

process. However, the number of published researches on integrated ASP and ALB is still

lacking compared to independent optimisation for ASP and ALB.

In general, research on integrated ASP and ALB optimisation can be divided into two

categories according to problem modelling. The first category is modelled based on assembly

connectors [10]. In this approach, the assembly information such as direction, tool, and time

are defined based on the connector used to assemble the components such as screw, pressing

fit and welding joints. The main advantage of this approach is that the problem size is smaller

because a set of assembly tasks can be grouped under one connector. This makes the

optimisation process easier because of the smaller search space.

The second category of the integrated ASP and ALB optimisation uses the task-based

modelling [12]. In the task-based modelling, the assembly information is defined according

to the assembly task which consists of mating two components and/or subassemblies. This

modelling approach is more popular because the assembly task is closely linked to the

assembly process rather than the assembly connector. Furthermore, the task-based modelling

is the most popular modelling approach in ALB.

The integrated ASP and ALB optimisation involves a multi-objective problem. The

most frequent optimisation objectives considered in this problem are minimise assembly

direction change, tool change, cycle time, and number of workstation. In some literature, the

researchers consider the combination type that depends on the type of connectors [10]. To

deal with the multi-objective problem, some researchers combined all optimisation

objectives using the weighted sum approach [13]. While some others implement the

domination concept to search for the Pareto optimal solutions [10, 14].

Although various optimisation algorithms were proposed in different applications, to

the best of our knowledge, only three types of algorithms were implemented to optimise the

integrated ASP and ALB. These algorithms are Evolutionary Algorithm (EA), Ant Colony

Optimisation (ACO), and Particle Swarm Optimisation (PSO). Based on the published

researches on integrated ASP and ALB, earlier researchers implemented EA to optimise the

problem [10, 15–17]. However, in the past five years, researchers started to implement the

swarm algorithms such as ACO and PSO algorithms with different justifications [18, 12, 14].

A modified artificial bee colony algorithm to optimise integrated assembly sequence planning and assembly

line balancing

5907

The EA showed satisfactory performance by optimising the integrated ASP and ALB.

However, a similar drawback was reported where the EA parameter needs to be re-tuned

when the problem size increases [15, 16]. Meanwhile, the ACO and PSO algorithms were

globally known for their premature convergence problem. In ACO, a global pheromone

mechanism was used to avoid the local optima solution [12]. On the other hand, researcher

adopted the crowding distance mechanism in PSO to avoid the algorithm from being trapped

in local optima [14].

In the meantime, in many different optimisation problems that compare various

optimisation algorithms, the Artificial Bee Colony (ABC) shows better performance

compared to other algorithms [19, 20]. In combinatorial problem such as a sequence-

dependent disassembly line balancing for instance, the ABC algorithm shows superior

performance compared to the other six algorithms, including PSO, ACO, and Genetic

Algorithm (GA) [21]. In a different combinatorial problem, the ABC algorithm also

performed better than the GA and PSO algorithms to optimise the scheduling problem [22,

23]. However, the ABC in its original form, is having a problem with slow convergence due

to poor exploitation ability [24, 25]. The exploitation refers to the ability to make use of the

existing solution in order to reproduce a better solution. This drawback makes the ABC

require larger iteration numbers compared to other algorithms.

This work therefore, aims to increase the ABC's performance by improving the

reproduction mechanism in this algorithm. According to the original ABC steps, the main

weakness of the ABC is the absence of elitism in the reproduction process. The solution

reproduction is conducted by mating a particular solution with a random solution within the

population. In this case, the authors proposed to replace the onlooker bee phase with a

beewolf predatory concept. The beewolf predatory implement a leadership hierarchy concept

from the Grey Wolf Optimiser (GWO) to guide the search direction in ABC. Compared to

other algorithms, the GWO algorithm is guided by three leaders to determine the search

direction. This mechanism is predicted to be more efficient because it will avoid the

algorithm from being trapped in local optima. In algorithms with a single leader, the solution

will converge toward a single leader that makes the chance to be trapped in local optima

higher compared to the multiple leaders.

INTEGRATED ASP AND ALB PROBLEMS

The integrated ASP and ALB problem consists of two elements (G, I). G represents the

precedence relation for the problem, G = (V, C). V is a set of assembly task from 1 to n, V =

{1, 2,…, n}, while C represents the set of precedence relation between task i and j.

Meanwhile, the I element characterises the assembly information, which includes the

assembly time (ti), assembly direction (Di), and assembly tool (Ti) for task i = 1,2,…,n. In

addition, the maximum allowable cycle time (ctmax) for a particular problem is also

determined, I = (t, D, T, ctmax).

Figure 1 presents an example of a precedence graph that reflects the precedence

relation, G. In the precedence graph, the number in the node represents the assembly task. In

this context, the assembly task is referred to the smallest working element that consists of

two components and/or subassemblies. Meanwhile, the arc represents the precedence in

M.F.F. Abd Rashid et. al / Journal of Mechanical Engineering and Sciences 13(4) 2019 5905-5921

5908

assembly. The task with an outgoing arc refers to the precedence for the task with incoming

arc.

Figure 1. Example of precedence graph.

For the ALB, the task-based representation is the most common way to present the

problem, since the assembly time is measured based on the assembly activity [26]. While in

ASP, the most popular representation approach is on the assembly component basis. This is

because the important parameters for ASP were measured based on the component, such as

assembly direction and tool. In order to simultaneously optimise the ASP and ALB, the

assembly direction and tool must be redefined based on the task-based representation. In this

work, the authors focus to optimise the simple assembly line balancing problem, type E

(SALBP-E), which aims to minimise both cycle time and workstation together.

Since the task-based representation consists of two components and/or

subassemblies, the authors define one component as a moving part, while the other as a fixed

part. Therefore, the assembly direction is redefined as the direction of bringing the moving

part to the fixed part in an assembly task. On the other hand, the assembly tool can simply be

determined by the type of tool used to accomplish the ith assembly task.

Objective Function and Constraints

To formulate the objective function, the authors have identified and considered the related

optimisation objectives for ASP and ALB. For ASP optimisation, the optimisation objective

is to minimise the number of direction change (nD) and tool change (nT). Meanwhile, the

optimisation objectives for ALB include minimise cycle time (ct), number of workstation

(nws), and workload variation (h).

𝑛𝐷 = ∑ 𝐷𝑖; 𝐷𝑖 = {
1 if the 𝑖𝑡ℎdirection ≠ (𝑖𝑡ℎ+1) direction

0 if the 𝑖𝑡ℎdirection = (𝑖𝑡ℎ+1) direction

𝑛−1

𝑖=1

 (1)

𝑛𝑇 = ∑ 𝑇𝑖; 𝑇𝑖 = {
1 if the 𝑖𝑡ℎ tool ≠ (𝑖𝑡ℎ+1) tool

0 if the 𝑖𝑡ℎ tool = (𝑖𝑡ℎ+1) tool

𝑛−1

𝑖=1

 (2)

 𝑐𝑡 = max
𝑚=1:𝑛𝑤𝑠

[𝑝𝑡𝑚] (3)

In Equation. (1), Di refers to assembly direction for the ith task, while Ti is assembly tool for

the ith task in Equation. (2). The processing time (ptm) refers to the summation of the task

time in the mth workstation, which cannot exceed the maximum allowable cycle time (ctmax).

A modified artificial bee colony algorithm to optimise integrated assembly sequence planning and assembly

line balancing

5909

ℎ =

∑ (𝑐𝑡 − 𝑝𝑡𝑚)𝑛𝑤𝑠
𝑚=1

𝑛𝑤𝑠
 (4)

The optimisation objectives in Equation. (1) to (4) need to be normalised to ensure that they

have a similar range of value to form an objective function. For this purpose, the optimisation

objectives are normalised using the following formulas:

 �̂�𝐷 =
𝑛𝐷 − 𝑛𝐷𝑚𝑖𝑛

𝑛𝐷𝑚𝑎𝑥 − 𝑛𝐷𝑚𝑖𝑛
 (5)

 �̂�𝑇 =
𝑛𝑇 − 𝑛𝑇𝑚𝑖𝑛

𝑛𝑇𝑚𝑎𝑥 − 𝑛𝑇𝑚𝑖𝑛
 (6)

𝑐�̂� =

𝑐𝑡 − 𝑐𝑡𝑚𝑖𝑛

𝑐𝑡𝑚𝑎𝑥 − 𝑐𝑡𝑚𝑖𝑛
 (7)

 𝑛𝑤𝑠̂ =
𝑛𝑤𝑠 − 𝑛𝑤𝑠𝑚𝑖𝑛

𝑛𝑤𝑠𝑚𝑎𝑥 − 𝑛𝑤𝑠𝑚𝑖𝑛
 (8)

ℎ̂ =

ℎ − ℎ𝑚𝑖𝑛

ℎ𝑚𝑎𝑥 − ℎ𝑚𝑖𝑛
 (9)

Therefore, the objective function for this problem can be formulated as follows:

 Minimise 𝑓 = 𝑤1�̂�𝐷 + 𝑤2�̂�𝑇 + 𝑤3𝑐�̂� + 𝑤4𝑛𝑤𝑠̂ + 𝑤5ℎ̂ (10)

In this function, the authors set w1, w2, w3, w4, w5 = 0.2. The objective function is calculated

subjected to the following constraints:

∑ 𝑥𝑖,𝑚 = 1

𝑛𝑤𝑠

𝑚=1

 𝑖 = 1, … , 𝑛 (11)

∑ 𝑥𝑎,𝑚 − ∑ 𝑥𝑏,𝑚 ≤ 0 𝑎 ∈ 𝑛, 𝑏 ∈ 𝐹𝑎

𝑛𝑤𝑠

𝑚=1

𝑛𝑤𝑠

𝑚=1

 (12)

∑ 𝑡𝑖𝑥𝑖,𝑚 ≤ 𝑐𝑡𝑚𝑎𝑥

𝑛

𝑖=1

∀𝑚 (13)

The first constraint in Equation. (11) ensures that an assembly task is assigned into

one workstation. Equation. (12) represents the precedence constraint that must be followed.

The Fa refers to the set of successors for task i. In other words, this constraint ensures that

the successor/s for task i will be assigned in a similar or the following workstation. The

constraint in Equation. (13) ensures that the maximum cycle time (ctmax) is obeyed, for mth

workstation.

MODIFIED ARTIFICIAL BEE COLONY ALGORITHM

The Artificial Bee Colony (ABC) algorithm is developed based on the behaviour of foraging

in bee colonies. This algorithm was proposed by Karaboga in 2005 [27]. The ABC algorithm

M.F.F. Abd Rashid et. al / Journal of Mechanical Engineering and Sciences 13(4) 2019 5905-5921

5910

comprises three groups of bees: Scout, onlooker, and employed bees. The employed bee is

the group that works to search for a solution. The onlooker bee works to further improve the

solution, while the scout bee works to avoid the solution from being trapped in local

optimum.

According to the original ABC procedure, the regeneration process in the employed

bee phase does not involve any elitism element from the best solution (or leader). The

solution is generated using Equation. (16), where the xk is randomly selected. On the other

hand, in the onlooker bee phase, the algorithm tries to further improve the leaders by mating

them with another randomly selected solution.

In this work, the authors proposed to replace the onlooker bee phase with a leadership

inheriting mechanism in the ABC to guide the search direction. The leadership inheriting

mechanism refers to the solution regeneration process that involves the best solution from

the population. However, the existing algorithms with the leader inheriting mechanism, such

as the PSO and ACO, are having a problem with being trapped in a local optimum [12, 14].

This problem occurred because the regeneration process is relying on a single leader.

This work therefore, adopted a beewolves predatory mechanism originally from the

Grey Wolf Optimiser (GWO) [28]. In GWO, the search direction is guided by three leaders

instead of a single leader in other algorithms. The flowchart of the proposed modified

Artificial Bee Colony (MABC) algorithm is presented in Figure 2, while the pseudocode is

in Figure 3.

Figure 2. Flowchart of the proposed MABC.

A modified artificial bee colony algorithm to optimise integrated assembly sequence planning and assembly

line balancing

5911

Procedure of MABC

Initialise MABC parameters: Swarm size (Nswarm), number of employed bees (NS), number of

beewolves, limit for scout (Lmax) and maximum iteration (itermax)

Initialise random population xi for i = 1, 2,…, NS

Decode the xi into feasible assembly sequence

Evaluate the fitness function for ith solution, fi

 Save the best xα, second best xβ and third best xδ solutions

Calculate fiti using Equation. (15)

Set iteration counter, iter = 1

Set Limit counter for ith solution, Li = 0

While iter ≤ itermax

For i = 1, 2,…, NS Employed bees phase

Generate new solution, vi from the xi solution using Equation. (16)

Evaluate fitness for new solution, f(vi)

If f(vi) < fi

 Update xi = vi

 Reset Li = 0

End

Calculate the probability for ith solution (pi) using Equation. (17)

End

Sort solution according to better pi

 For w = 1, 2,…, NS Beewolf phase

 Calculate the distance between xw and xα, xβ and xδ using Equation. (22) and (23)

Regenerate new solution, vw using Equation. (24)

Evaluate fitness for solution vw, f(vw)

If f(vw) < f(xw)

 Update xw = vw

Reset Li = 0

End

End

Update the best solution xα, xβ and xδ

Li = Li + 1

 If Li > Lmax Scout bees phase

Replace xi with a new random solution using Equation. (25)

End

iter = iter +1

End

Figure 3. Procedure of the proposed MABC

M.F.F. Abd Rashid et. al / Journal of Mechanical Engineering and Sciences 13(4) 2019 5905-5921

5912

Initialisation

The initialisation stage in the MABC algorithm involved defining the control parameters,

such as swarm size (Nswarm), number of employed bees (NS), onlooker bees (NO), and limit

for scout (Lmax). In the original ABC, the numbers of employed bees and onlooker bees were

both set as 50% from the swarm size. In the proposed MABC, the NS is maintained at 50%

of the Nswarm, while the 50% balances are shared between onlooker bees (25%) and beewolves

(25%).

Meanwhile, the limit for scout bees (Lmax) presents the maximum number of the

iteration for the ith solution to discover an improved solution. If the ith solution does not show

any improvement after Lmax iteration, the ith solution will be replaced with a new solution

using Equation. (25). The limit for scout (Lmax) is calculated as follows:

𝐿𝑚𝑎𝑥 =

𝑁𝑠𝑤𝑎𝑟𝑚 ∗ 𝑑𝑖𝑚

2
 (14)

Where, dim is the dimension of the problem. The initial population is randomly

generated within the lower and upper bounds for the jth dimension. The number of initial

solution is equivalent to the number of food source and employed bees (NS).

Evaluation

Next, the initial population is evaluated using the fitness function. The fitness value for

solution xi is remarked as fi. The solution xi is decoded using topological sort as presented in

Figure 4. An example of the decoding procedure in Figure 4 is taken from the precedence

graph in Figure 1. The decoding procedure starts by identifying the candidate task without

the precedence constraint. The candidate task without the precedence relation is in the grey

box. Then the assembly task with higher xi value will be selected among the candidate tasks.

The selected assembly task will be removed from the next consideration. These steps are

repeated until all of the assembly tasks are selected.

A modified artificial bee colony algorithm to optimise integrated assembly sequence planning and assembly

line balancing

5913

Figure 4. Example of solution decoding.

In general practice, the optimisation problem is defined as minimisation problem,

where the smaller the fitness value obtained, the better the solution will be. In this case, the

maximisation problem is converted into minimisation by giving the negative sign in front of

the fitness function. In ABC, only the fittest solution from the initial population is kept as

xbest. However, in MABC, three top solutions are saved and known as xα, xβ, and xδ. The xα,

xβ, and xδ represent the best, second best, and third best solutions, respectively. This

mechanism is mimicking the leadership hierarchy in the grey wolf group [28].

Next, the fitness function is converted into the larger the better term. This fitness

function for solution xi is noted as fiti and calculated as follows:

𝑓𝑖𝑡𝑖 = {

1

1 + 𝑓𝑖
 if 𝑓𝑖 ≥ 0

1 + 𝑎𝑏𝑠(𝑓𝑖) if 𝑓𝑖 < 0

 (15)

Employed Bee Phase

Later, the new solution, vi will be generated from the existing solution, xi. The vi is generated

using the following formula:

 𝑣𝑖,𝑗 = 𝑥𝑖,𝑗 + Φ(𝑥𝑖,𝑗 − 𝑥𝑘,𝑗) (16)

M.F.F. Abd Rashid et. al / Journal of Mechanical Engineering and Sciences 13(4) 2019 5905-5921

5914

The xi,j refers to the existing ith solution for the jth dimension. Φ is a random number

in the range [-1,1]. Meanwhile, xk represents a solution from the existing population that is

being chosen randomly. The new solution is later evaluated using the fitness function. The

fitness value for vi is compared with xi. In this case, the greedy selection approach is used. If

the fitness value for vi is better than xi, the vi will replace the existing solution xi. Otherwise,

the existing solution xi will remain.

Next, the probability value (pi) for solution xi is calculated using the following

equation. In this equation, the better fitness of the solution will give a higher probability

value.

𝑃𝑖 =

𝑓𝑖𝑡𝑖

∑ 𝑓𝑖𝑡𝑖
𝑁𝑠𝑤𝑎𝑟𝑚/2
𝑖=1

 (17)

The solution now will be sorted starting from the highest pi value. At this point, the

solution is divided into two groups. The first group contains half of the NS, which consists

of a solution with better pi, known as xon. This group will be used for the onlooker bee phase.

Meanwhile, the remaining half of the solution (xw) will undergo the grey wolf phase.

Beewolves Phase

Beewolf or scientifically known as Philanthus triangulum is a predator bee that targeting the

employed bee as their prey [29]. In this work, the beewolves concept is adopted from grey

wolf optimizer [28] to replaced onlooker bee phase in ABC algorithm. The beewolves try to

hunt, attack and paralyse the employed bee. In the proposed algorithm, this mechanism is

simulated by replacing a specific employed bee with a better performance bee.

The beewolves work in a group which consist of α, the most dominant beewolf,

followed by β and δ, while the rest of the population is known as ω. The first step is conducted

to roughly determine the position of the prey (i.e. employed bee). This is conducted using the

following equations:

 𝐵 = |𝑐. 𝑥𝑝 − 𝑥𝑤| (18)

 𝑥𝑤 = 𝑥𝑝 − 𝐴. 𝐵 (19)

In this equation, B represents the distance between the prey (xp) and the beewolves.

Meanwhile, A and c are the coefficients that are calculated as follows:

 𝐴 = 2𝑎. 𝑟1 − 𝑎 (20)

 𝑐 = 2. 𝑟2 (21)

In this case, r1 and r2 are random numbers between [0, 1], while a is a component that

linearly decreases from 2 to 0 over the iteration. However, since the actual position of the

prey is unknown, the algorithm is relying on the xα, xβ, and xδ that have better knowledge

about the prey. Therefore, in the hunting stage, the algorithm will calculate the average vector

distance between the beewolves and the xα, xβ and xδ.

 𝐵𝛼 = |𝑐1. 𝑥𝛼 − 𝑥𝑤|; 𝐵𝛽 = |𝑐2. 𝑥𝛽 − 𝑥𝑤|; 𝐵𝛿 = |𝑐3. 𝑥𝛿 − 𝑥𝑤| (22)

 𝑥𝑤,1 = 𝑥𝛼 − 𝑎1. (𝐵𝛼); 𝑥𝑤,2 = 𝑥𝛽 − 𝑎2. (𝐵𝛽); 𝑥𝑤,3 = 𝑥𝛿 − 𝑎3. (𝐵𝛿); (23)

The algorithm will also generate a new solution from the vector distance.

A modified artificial bee colony algorithm to optimise integrated assembly sequence planning and assembly

line balancing

5915

𝑣𝑤 =

𝑥𝑤,1 + 𝑥𝑤,2 + 𝑥𝑤,3

3
 (24)

The attacking prey step represents the exploitation of the solution. Since the A and c

rely on the random numbers r1 and r2, the new position of beewolves (vw) can be in any

position from the current and the xα, xβ, and xδ. Furthermore, the component a is also

decreasing over the iteration, which makes the search direction for this algorithm becomes

more diverse.

The new solution vw will be evaluated and compared with xw. If the fitness function

for the vw is better, the new solution will replace xw. At this point, if the existing solution does

not show any improvement compared to the previous iteration, the limit counter for xi (Li)

will be updated. However, if the solution has improved, the Li will be reset to zero. For

solution xi with Li larger than L, the scout bee procedure will be conducted.

Scout Bee Phase

The scout bee phase refers to the random regeneration of solution xi. Theoretically, when a

particular solution does not show any improvement for a given duration, the solution must

be regenerated to ensure better exploitation in the search space. This procedure is conducted

using the following equation:

 𝑥𝑖,𝑗 = 𝑙𝑏𝑗 + rand(0,1) ∙ (𝑢𝑏𝑗 − 𝑙𝑏𝑗) (25)

The new solution is randomly generated within the lower bound (lb) and upper bound

(ub). The newly generated solution will replace the solution xi.

RESULTS AND DISCUSSIONS

A computational experiment was conducted to test the performance of the proposed

algorithm. For this purpose, the authors have selected the 12 SALBP test problems from line

balancing benchmark set [30]. The problem was categorised as small (n ≤ 40), medium (40

< n ≤ 80), and large (n > 80). Since the original SALBP data set only considers the assembly

time information, the assembly direction and tool data for these problems are randomly

generated.

For comparison purpose, the authors implemented the GA, ACO, and PSO algorithms

because these algorithms were used in previous literature for integrated ASP and ALB

optimisation. Besides that, the proposed MABC is also compared with the original ABC and

GWO algorithms. For each of the algorithm, the population size is 20 and the maximum

iteration is 300. To eliminate pseudo-random effect, the authors conducted 20 repetitions for

the optimisation run for each of the test problems. This computational experiment was

conducted using HP Z400 Workstation, Intel Xeon 3.00 GHz processor, and 8.00 GB RAM.

The optimisation results are presented in Table 1. The bolded data represents the best result

for each problem.

M.F.F. Abd Rashid et. al / Journal of Mechanical Engineering and Sciences 13(4) 2019 5905-5921

5916

Table 1. Optimisation results for integrated ASP and ALB.

Test

Problem

Indicator Algorithm

GA ACO PSO ABC GWO MABC

Mitchell

(21 tasks)

Min Fit 0.3992 0.3667 0.3992 0.3692 0.3817 0.3165

Max Fit 0.4367 0.3992 0.4267 0.3992 0.4242 0.3282

Mean Fit 0.4082 0.3797 0.4097 0.3897 0.4082 0.3258

SD Fit 0.0162 0.0156 0.0113 0.0137 0.0157 0.0052

Roszieg

(25 tasks)

Min Fit 0.3969 0.3445 0.3669 0.3445 0.3561 0.3133

Max Fit 0.4869 0.3769 0.4569 0.3669 0.4176 0.3425

Mean Fit 0.4409 0.3644 0.4182 0.3599 0.3804 0.3328

SD Fit 0.0391 0.0119 0.0365 0.0096 0.0236 0.0137

Sawyer

(30 tasks)

Min Fit 0.6515 0.5555 0.6432 0.6221 0.6265 0.5555

Max Fit 0.6682 0.6348 0.6765 0.6348 0.6598 0.6348

Mean Fit 0.6598 0.6072 0.6531 0.6297 0.6481 0.6051

SD Fit 0.0083 0.0325 0.0148 0.0069 0.0139 0.0328

Gunther

(35 tasks)

Min Fit 0.6646 0.5855 0.6095 0.5855 0.5855 0.5815

Max Fit 0.6726 0.5935 0.6646 0.6095 0.6966 0.6015

Mean Fit 0.6662 0.5903 0.6433 0.5983 0.6301 0.5895

SD Fit 0.00357 0.00438 0.0221 0.0091 0.0414 0.0079

Kilbridge

(45 tasks)

Min Fit 0.6540 0.5578 0.5874 0.6312 0.6394 0.4653

Max Fit 0.7614 0.6255 0.6828 0.6468 0.6685 0.6394

Mean Fit 0.6885 0.5879 0.6418 0.6408 0.6570 0.5987

SD Fit 0.0427 0.0321 0.0437 0.0064 0.0129 0.0747

Hahn

(53 tasks)

Min Fit 0.6413 0.6265 0.6801 0.6318 0.6371 0.5928

Max Fit 0.6693 0.6402 0.6853 0.6455 0.6800 0.5993

Mean Fit 0.6593 0.6303 0.6836 0.6404 0.6575 0.5954

SD Fit 0.0116 0.0059 0.00239 0.0059 0.0163 0.0030

Tonge

(70 tasks)

Min Fit 0.5216 0.4642 0.4554 0.4984 0.4873 0.4502

Max Fit 0.5307 0.5029 0.5062 0.5207 0.5237 0.4591

Mean Fit 0.5247 0.4893 0.4888 0.5096 0.5049 0.4535

SD Fit 0.0051 0.0217 0.0289 0.0111 0.0182 0.0048

Weemag

(75 tasks)

Min Fit 0.5516 0.5831 0.5698 0.5867 0.5649 0.5486

Max Fit 0.5734 0.5903 0.5867 0.5939 0.5903 0.5644

Mean Fit 0.5633 0.5869 0.5806 0.5907 0.5790 0.5579

SD Fit 0.0109 0.0036 0.0093 0.0036 0.0129 0.0082

Lutz2

(89 tasks)

Min Fit 0.6251 0.6041 0.6386 0.6149 0.6230 0.5937

Max Fit 0.6535 0.6197 0.6589 0.6305 0.6494 0.6072

Mean Fit 0.6355 0.6145 0.6463 0.6219 0.6343 0.5999

A modified artificial bee colony algorithm to optimise integrated assembly sequence planning and assembly

line balancing

5917

SD Fit 0.0156 0.0090 0.0109 0.0079 0.0136 0.0055

Mukherjee

(94 tasks)

Min Fit 0.5281 0.5301 0.5147 0.5405 0.5069 0.5163

Max Fit 0.5512 0.5396 0.5347 0.5496 0.5211 0.5330

Mean Fit 0.5359 0.5348 0.5242 0.5452 0.5150 0.5253

SD Fit 0.0132 0.0047 0.0100 0.0045 0.00733 0.0084

Arc

(111

tasks)

Min Fit 0.7484 0.7491 0.7849 0.8207 0.7598 0.7422

Max Fit 0.7795 0.8199 0.8735 0.8655 0.8270 0.8089

Mean Fit 0.7649 0.7786 0.8368 0.8454 0.7945 0.7693

SD Fit 0.0106 0.0211 0.0272 0.0127 0.0214 0.0236

Bartholdi

(148

tasks)

Min Fit 0.4705 0.4679 0.5312 0.4793 0.4743 0.4627

Max Fit 0.5634 0.4969 0.6033 0.5085 0.5893 0.4943

Mean Fit 0.5049 0.4851 0.5559 0.4908 0.5571 0.4794

SD Fit 0.0433 0.0090 0.02372 0.0089 0.0296 0.0086

Based on Table 1, the proposed MABC consistently came out with better minimum

fitness in small and medium size problems. The proposed algorithm also shows better mean

fitness in all four small size problems. Besides that, the MABC performed better in maximum

and mean fitness for medium size test problems in Hahn, Tonge and Weemag. For the large

size problem, the proposed MABC obtained minimum fitness in three out of four test

problems. In Mukherjee's test problem, the proposed algorithm was behind the GWO and

PSO algorithms in terms of minimum and mean fitness.

According to Table 1, the smallest mean of standard deviation (SD) was found in

ABC algorithm, followed by MABC and ACO. The SD values in the results showed that the

MABC was among the algorithms that came out with a consistent output. On the other hand,

the GWO and PSO were the algorithms with the largest mean of SD.

The overall performance from the numerical experiment showed that the MABC had

better output compared to the comparison algorithms. The MABC found a better solution in

91.6% of the problems (11 out of 12 test problems) and better mean fitness in 75% of the

problems from 20 runs. The results mean that in general, the MABC has a better performance

compared to the comparison algorithms. To confirm the performance of the MABC, a one-

way ANOVA test was conducted. The purpose of this test is to identify any significant

differences between the mean values obtained using different algorithms.

For the ANOVA test, the following hypotheses are applied:

H0: μGA = μACO = μPSO = μABC = μGWO = μMABC

H1: The means are not all equal

The null hypothesis, H0 stated that the means of the fitness for all algorithms are the

same. While the alternative hypothesis, H1 stated that there are differences in the means of

fitness. For this test, the confidence interval was set at 0.05. The output of the ANOVA test

is presented in Table 2. In this case, when the P-value is smaller than the confidence interval,

the null hypothesis is rejected. According to the result in Table 2, all of the P-values were

smaller than 0.05. Therefore, the null hypotheses for all test problems were rejected. In other

words, the results showed that there were significant differences in the mean values of the

M.F.F. Abd Rashid et. al / Journal of Mechanical Engineering and Sciences 13(4) 2019 5905-5921

5918

groups. However, the ANOVA test did not specifically reveal the algorithm with a significant

difference in the results.

Therefore, a post hoc analysis was conducted to identify the significant difference for

the proposed MABC compared to other algorithms. For this purpose, the Fisher's least

significant difference (LSD) test was conducted. The LSD is calculated using the following

formula:

𝐿𝑆𝐷 = 𝑡𝑐. √𝑀𝑆𝑊 (
1

𝑁1
+

1

𝑁2
) (26)

In Equation. (26), tc refers to critical t-value from the t-distribution table, for 0.05

confidence interval and 114 degrees of freedom. MSW represents the mean square within the

group, N1 and N2 are the numbers of sample data in the considered groups. Next, the absolute

mean difference between MABC and the comparison algorithms was calculated. When the

absolute mean difference is larger than LSD, there is a significant difference between MABC

and the comparison algorithms. The results of the LSD test are presented in Table 2.

Table 2. Results of statistical tests

Test

Problem
P-value LSD

Mean Difference between MABC and

comparison algorithms

GA ACO PSO ABC GWO

Mitchell 2.486E-09 0.0085 0.0823 0.0538 0.0838 0.0638 0.0823

Roszieg 5.024E-06 0.0158 0.1080 0.0315 0.0853 0.0270 0.0475

Sawyer 7.359E-04 0.0132 0.0546 0.0021 0.0480 0.0245 0.0430

Gunther 4.132E-06 0.0124 0.0767 0.0008 0.0538 0.0088 0.0406

Kilbridge 0.0065700 0.0272 0.0898 0.0108 0.0430 0.0007 0.0582

Hahn 1.965E-12 0.0056 0.3194 0.0349 0.0882 0.0450 0.0621

Tonge 5.588E-03 0.0109 0.0712 0.0358 0.0353 0.0560 0.0514

WeeMag 3.810E-03 0.0055 0.0053 0.0289 0.0226 0.0328 0.0211

Lutz2 1.825E-03 0.0068 0.0379 0.0508 0.0487 0.0243 0.0367

Mukherjee 1.417E-02 0.0053 0.0105 0.0095 0.0011 0.0198 (0.0103)

Arc 3.153E-14 0.0127 0.0044 0.0093 0.0674 0.0760 0.0251

Barthold 3.809E-14 0.0152 0.0255 (0.0719) 0.0765 0.0114 0.0777

The bolded value in Table 2 shows that the MABC has a significant performance over

the comparison algorithm. Meanwhile, the value in the bracket means that the comparison

algorithm has a significant performance compared to MABC. Based on the LSD results in

Table 2, no single algorithm is completely dominated by the MABC. However, the MABC

has a significant performance in 91% of the problems compared to PSO and GWO. This is

followed by 83% compared to GA. In comparison with ABC, the MABC significantly

performed better in 75% of the problems and when compared with ACO, the MABC

performed better in 58% of the problems.

A modified artificial bee colony algorithm to optimise integrated assembly sequence planning and assembly

line balancing

5919

To evaluate the algorithm performance in different problem sizes, the number of cases

in which the MABC had a significant difference with the comparison algorithms within a

particular problem size was calculated. For example, in small size problems (Mitchell,

Roszieg, Sawyer and Gunther), the MABC had a significant difference in 17 out of 20 cases

in all comparison algorithms. This makes the MABC have a significant performance in 85%

of the cases. This percentage is also the same for medium size problems. However, when the

problem size increases to a larger size, the percentage reduces to 70% of the cases. This trend

is related with the size of the search space. When the size of the problem increases, the search

space will decrease excessively.

The performance of MABC indicated that this algorithm has better exploitation

ability. This is because the MABC is able to search for minimum fitness value in most of the

test problems. The leadership hierarchy concept from the GWO was able to improve the

performance of the proposed modified algorithm. The GWO in the original form however,

was too dependent on the leaders to determine the search direction. This made the GWO have

less freedom to explore the different angles in the search space. Meanwhile, in comparison

with the original ABC, the MABC was able to speed up the convergence to an optimum

solution. The search direction was guided by three leaders from the GWO, while maintaining

the exploration features from ABC.

CONCLUSIONS

This paper proposed a modified algorithm based on the Artificial Bee Colony (ABC) by

adopting the beewolf predatory concept to optimise the integrated ASP and ALB problem.

This concept is originally implemented from leadership hierarchy mechanism of the Grey

Wolf Optimiser (GWO). ABC in the original form has a drawback in terms of convergence

due to its poor exploitation ability. Meanwhile, the GWO has a good leadership hierarchy

mechanism, but has a high dependency on the leaders.

The proposed modified Artificial Bee Colony algorithm (MABC) was tested using a

set of benchmark test problems and compared with five algorithms, including the ABC and

GWO. The results indicated that the MABC is able to search for better minimum fitness in

91% of the benchmark test problems. A statistical test was conducted to confirm the

significance of MABC performance compared to the comparison algorithms. The statistical

test showed that the MABC has a significant performance in 80% of the cases, mostly in

small and medium size problems.

The results from this work indicated that the exploitation ability in the ABC was

improved by adopting the beewolf predatory concept. At the same time, the exploration

ability in the ABC using the employed bee’s concepts was maintained to make this modified

algorithm to be not too dependent on the leaders. Finally, the proposed MABC indicated a

balanced portion between exploration and exploitation abilities in swarm algorithm.

ACKNOWLEDGEMENT

The authors would like to acknowledge Universiti Malaysia Pahang for funding this research

under grants PGRS1703107 and RDU190317.

M.F.F. Abd Rashid et. al / Journal of Mechanical Engineering and Sciences 13(4) 2019 5905-5921

5920

REFERENCES

[1] Mastura M, Sapuan S, Mansor M. A framework for prioritizing customer

requirements in product design: Incorporation of FAHP with AHP. Journal of

Mechaical Engineerig and Sciences. 2015; 9: 1655–1670.

[2] Horng S-C, Lin S-S. Embedding advanced harmony search in ordinal optimization to

maximize throughput rate of flow line. Arabian Journal for Science and Engineering.

2018; 43: 1015–1031.

[3] Marian RM. Optimisation of assembly sequences using genetic algorithm. University

of South Australia, 2003.

[4] Andrew-Munot M, Yassin A, Shazali ST, et al. Analysis of production planning

activities in remanufacturing system. Journal of Mechanical and Engineering

Sciences. 2018; 12: 3548–3565.

[5] Abdullah MA, Ab. Rashid MFF, Ponnambalam SG, Ghazali, Z. Energy efficient

modeling and optimization for assembly sequence planning using moth flame

optimization. Assembly Automation. 2019; 39: 356–368.

[6] Rashid MFF, Hutabarat W, Tiwari A. A review on assembly sequence planning and

assembly line balancing optimisation using soft computing approaches. Int Journal of

Advance Manufacturing Technology. 2012; 59: 335–349.

[7] Akpinar S, Elmi A, Bektaş T. Combinatorial Benders cuts for assembly line balancing

problems with setups. European Journal of Operational Research. 2017; 259: 527–

537.

[8] Álvarez-Miranda E, Pereira J. On the complexity of assembly line balancing

problems. Computer and Operations Research. 2019; 108: 182–186.

[9] Boysen N, Fliedner M, Scholl A. A classification of assembly line balancing

problems. European Journal of Operational Research. 2007; 183: 674–693.

[10] Wang HS, Che ZH, Chiang CJ. A hybrid genetic algorithm for multi-objective

product plan selection problem with ASP and ALB. Expert System with Applications.

2012; 39: 5440–5450.

[11] Ab Rashid MFF, Mohamed NMZN, Rose ANM, Kor KY. Simulation study of a

vehicle production line for productivity improvement. Journal of Mechanical

Engineering and Sciences. 2015; 8: 1283–1292.

[12] Lu C, Yang Z. Integrated assembly sequence planning and assembly line balancing

with ant colony optimization approach. International Journal of Advanced

Manufacturing Technology. 2016; 83: 243–256.

[13] Ouaarab A, Ahiod B, Yang X-S. Discrete cuckoo search algorithm for the travelling

salesman problem. Neural Computing and Applications. 2013; 24: 1659–1669.

[14] Ab Rashid MFF, Hutabarat W, Tiwari A. Multi-objective discrete particle swarm

optimisation algorithm for integrated assembly sequence planning and assembly line

balancing. Proceeding Inst. Mech. Eng. Part B: Journal of Engineering Manufacture.

2018; 232: 1444–1459.

[15] Tseng H-E, Tang C-E. A sequential consideration for assembly sequence planning

and assembly line balancing using the connector concept. International Journal of

Production Research. 2006; 44: 97–116.

[16] Tseng H-E, Chen M-H, Chang C-C, Wang W-P. Hybrid evolutionary multi-objective

algorithms for integrating assembly sequence planning and assembly line balancing.

A modified artificial bee colony algorithm to optimise integrated assembly sequence planning and assembly

line balancing

5921

International Journal of Production Research. 2008; 46: 5951–5977.

[17] Chen R, Lu K, Yu S. A hybrid genetic algorithm approach on multi-objective of

assembly planning problem. Engineering Applications of Artificial Intelligence.

2002; 15: 447–457.

[18] Yang Z, Lu C, Zhao HW. An Ant Colony Algorithm for Integrating Assembly

Sequence Planning and Assembly Line Balancing. Applied Mechanics and Materials.

2013; 397–400: 2570–2573.

[19] Lutfy OF. Adaptive Direct Inverse Control Scheme Utilizing a Global Best Artificial

Bee Colony to Control Nonlinear Systems. Arabian Journal for Science and

Engineering. 2018; 43: 2873–2888.

[20] Liu F, Sun Y, Wang G, Wu T-T. An Artificial Bee Colony Algorithm Based on

Dynamic Penalty and Lévy Flight for Constrained Optimization Problems. Arab

Journal for Science and Engineering. Epub ahead of print January 2018.

[21] Kalayci C, Gupta S. Artificial Bee Colony Algorithm for Solving Sequence-

dependent Disassembly Line Balancing Problem. Expert Systems with Applications.

2013; 40: 7231–7241.

[22] Li J-Q, Pan Q-K, Tasgetiren MF. A discrete artificial bee colony algorithm for the

multi-objective flexible job-shop scheduling problem with maintenance activities.

Applied Mathematical Modelling. 2014; 38: 1111–1132.

[23] Zhang F, Li L, Liu J, Chu X. Artificial Bee Colony Optimization for Yard Truck

Scheduling and Storage Allocation Problem. Springer, Cham, 908–917.

[24] Zhong F, Li H, Zhong S. An improved artificial bee colony algorithm with modified-

neighborhood-based update operator and independent-inheriting-search strategy for

global optimization. Engineering Application of Artificial Intelligence. 2017; 58:

134–156.

[25] Huang F, Wang L, Yang C. A new improved artificial bee colony algorithm for ship

hull form optimization. Engineering Optimization. 2016; 48: 672–686.

[26] Battaïa O, Dolgui A. A taxonomy of line balancing problems and their solution

approaches. International Journal of Production Economics. 2013; 142: 259–277.

[27] Karaboga D. An idea based on honey bee swarm for numerical optimization. Kayseri,

Turkey, 2005.

[28] Mirjalili S, Mirjalili SM, Lewis A. Grey Wolf Optimizer. Adv Eng Softw 2014; 69:

46–61.

[29] Herzner G, Schmitt T, Linsenmair KE, Strohm E. Prey recognition by females of the

European beewolf and its potential for a sensory trap. Animal Behaviour. 2005; 70:

1411–1418.

[30] Scholl A. Benchmark Data Sets by Scholl. Assembly Line Balancing Data Dets &

Research Topics, http://assembly-line-balancing.mansci.de/salbp/benchmark-data-

sets-1993/ (1993).

