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ABSTRACT 

 

Assembly Sequence Planning (ASP) and Assembly Line Balancing (ALB) are traditionally 

optimised independently. However recently, integrated ASP and ALB optimisation has 

become more relevant to obtain better quality solution and to reduce time to market. Despite 

many optimisation algorithms that were proposed to optimise this problem, the existing 

researches on this problem were limited to Evolutionary Algorithm (EA), Ant Colony 

Optimisation (ACO), and Particle Swarm Optimisation (PSO). This paper proposed a 

modified Artificial Bee Colony algorithm (MABC) to optimise the integrated ASP and ALB 

problem. The proposed algorithm adopts beewolves predatory concept from Grey Wolf 

Optimiser to improve the exploitation ability in Artificial Bee Colony (ABC) algorithm. The 

proposed MABC was tested with a set of benchmark problems. The results indicated that the 

MABC outperformed the comparison algorithms in 91% of the benchmark problems. 

Furthermore, a statistical test reported that the MABC had significant performances in 80% 

of the cases. 

 

Keywords: Manufacturing system; artificial bee colony; assembly sequence planning; 

assembly line balancing. 

 

 

INTRODUCTION 

 

Global competitiveness continues to put pressure on manufacturers to produce a product at 

its maximum efficiency. In order to assemble the product at maximum efficiency, assembly 

optimisation activities play an important role. Assembly optimisation starts with product 

design stage that involves the assembly design [1]. The purpose of the assembly optimisation 

in the design stage is to reduce the number of parts and to ease the assembly process. This 

will lead to lower cost and less time taken to assemble the product in a flow line system [2]. 

Assembly sequence planning (ASP) is assembly optimisation activity that occurs 

during the production planning stage that widely known because of  it uncertainty [3, 4]. The 

purpose of the ASP is to identify the best feasible assembly sequence according to the 

evaluation criteria [5]. In ASP optimisation, various evaluation criteria were used by the 

researchers to determine the best assembly sequence. Among the popular evaluation criteria 
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mentioned in the published research were to minimise assembly direction change, tool 

change, and assembly complexity level [6].  

On the other hand, the assembly line balancing (ALB) refers to the assignment of 

assembly task into the workstations, so that the workload between the workstations will be 

balanced or almost balanced [7, 8]. ALB problems are categorised as Simple Assembly Line 

Balancing Problem (SALBP) and Generalise Assembly Line Balancing Problem (GALBP). 

The SALBP considers a single model assembly problem that runs on a specific assembly 

line. Meanwhile, the GALBP includes all other versions of the problem other than SALBP's 

[9]. 

Recently, researchers discovered that the integrated assembly optimisation is able to 

lead to better assembly plan quality and reduce the error rate in assembly planning and 

costing [10]. In other words, the assembly process in production line could be improved by 

reducing non-value added activities such as unnecessary tool/direction changes and 

additional workstations via integrated ASP and ALB optimisation. Furthermore, the 

assembly time could be improved by reducing the cycle time [11].  

Realising the benefits of integrated optimisation, the ASP and ALB have a good 

potential to integrate because both activities aim to achieve optimum set up in the assembly 

process. However, the number of published researches on integrated ASP and ALB is still 

lacking compared to independent optimisation for ASP and ALB.  

In general, research on integrated ASP and ALB optimisation can be divided into two 

categories according to problem modelling. The first category is modelled based on assembly 

connectors [10]. In this approach, the assembly information such as direction, tool, and time 

are defined based on the connector used to assemble the components such as screw, pressing 

fit and welding joints. The main advantage of this approach is that the problem size is smaller 

because a set of assembly tasks can be grouped under one connector. This makes the 

optimisation process easier because of the smaller search space.  

The second category of the integrated ASP and ALB optimisation uses the task-based 

modelling [12]. In the task-based modelling, the assembly information is defined according 

to the assembly task which consists of mating two components and/or subassemblies. This 

modelling approach is more popular because the assembly task is closely linked to the 

assembly process rather than the assembly connector. Furthermore, the task-based modelling 

is the most popular modelling approach in ALB.  

The integrated ASP and ALB optimisation involves a multi-objective problem. The 

most frequent optimisation objectives considered in this problem are minimise assembly 

direction change, tool change, cycle time, and number of workstation. In some literature, the 

researchers consider the combination type that depends on the type of connectors [10]. To 

deal with the multi-objective problem, some researchers combined all optimisation 

objectives using the weighted sum approach [13]. While some others implement the 

domination concept to search for the Pareto optimal solutions [10, 14].  

Although various optimisation algorithms were proposed in different applications, to 

the best of our knowledge, only three types of algorithms were implemented to optimise the 

integrated ASP and ALB. These algorithms are Evolutionary Algorithm (EA), Ant Colony 

Optimisation (ACO), and Particle Swarm Optimisation (PSO). Based on the published 

researches on integrated ASP and ALB, earlier researchers implemented EA to optimise the 

problem [10, 15–17]. However, in the past five years, researchers started to implement the 

swarm algorithms such as ACO and PSO algorithms with different justifications [18, 12, 14].  
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The EA showed satisfactory performance by optimising the integrated ASP and ALB. 

However, a similar drawback was reported where the EA parameter needs to be re-tuned 

when the problem size increases [15, 16]. Meanwhile, the ACO and PSO algorithms were 

globally known for their premature convergence problem. In ACO, a global pheromone 

mechanism was used to avoid the local optima solution [12]. On the other hand, researcher 

adopted the crowding distance mechanism in PSO to avoid the algorithm from being trapped 

in local optima [14].  

In the meantime, in many different optimisation problems that compare various 

optimisation algorithms, the Artificial Bee Colony (ABC) shows better performance 

compared to other algorithms [19, 20]. In combinatorial problem such as a sequence-

dependent disassembly line balancing for instance, the ABC algorithm shows superior 

performance compared to the other six algorithms, including PSO, ACO, and Genetic 

Algorithm (GA) [21]. In a different combinatorial problem, the ABC algorithm also 

performed better than the GA and PSO algorithms to optimise the scheduling problem [22, 

23]. However, the ABC in its original form, is having a problem with slow convergence due 

to poor exploitation ability [24, 25]. The exploitation refers to the ability to make use of the 

existing solution in order to reproduce a better solution. This drawback makes the ABC 

require larger iteration numbers compared to other algorithms. 

This work therefore, aims to increase the ABC's performance by improving the 

reproduction mechanism in this algorithm. According to the original ABC steps, the main 

weakness of the ABC is the absence of elitism in the reproduction process. The solution 

reproduction is conducted by mating a particular solution with a random solution within the 

population. In this case, the authors proposed to replace the onlooker bee phase with a 

beewolf predatory concept. The beewolf predatory implement a leadership hierarchy concept 

from the Grey Wolf Optimiser (GWO) to guide the search direction in ABC. Compared to 

other algorithms, the GWO algorithm is guided by three leaders to determine the search 

direction. This mechanism is predicted to be more efficient because it will avoid the 

algorithm from being trapped in local optima. In algorithms with a single leader, the solution 

will converge toward a single leader that makes the chance to be trapped in local optima 

higher compared to the multiple leaders. 

 

 

INTEGRATED ASP AND ALB PROBLEMS 

 

The integrated ASP and ALB problem consists of two elements (G, I). G represents the 

precedence relation for the problem, G = (V, C). V is a set of assembly task from 1 to n, V = 

{1, 2,…, n}, while C represents the set of precedence relation between task i and j. 

Meanwhile, the I element characterises the assembly information, which includes the 

assembly time (ti), assembly direction (Di), and assembly tool (Ti) for task i = 1,2,…,n. In 

addition, the maximum allowable cycle time (ctmax) for a particular problem is also 

determined, I = (t, D, T, ctmax). 

Figure 1 presents an example of a precedence graph that reflects the precedence 

relation, G. In the precedence graph, the number in the node represents the assembly task. In 

this context, the assembly task is referred to the smallest working element that consists of 

two components and/or subassemblies. Meanwhile, the arc represents the precedence in 
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assembly. The task with an outgoing arc refers to the precedence for the task with incoming 

arc. 

 

 
Figure 1. Example of precedence graph. 

 

For the ALB, the task-based representation is the most common way to present the 

problem, since the assembly time is measured based on the assembly activity [26]. While in 

ASP, the most popular representation approach is on the assembly component basis. This is 

because the important parameters for ASP were measured based on the component, such as 

assembly direction and tool. In order to simultaneously optimise the ASP and ALB, the 

assembly direction and tool must be redefined based on the task-based representation. In this 

work, the authors focus to optimise the simple assembly line balancing problem, type E 

(SALBP-E), which aims to minimise both cycle time and workstation together.  

Since the task-based representation consists of two components and/or 

subassemblies, the authors define one component as a moving part, while the other as a fixed 

part. Therefore, the assembly direction is redefined as the direction of bringing the moving 

part to the fixed part in an assembly task. On the other hand, the assembly tool can simply be 

determined by the type of tool used to accomplish the ith assembly task. 

 

Objective Function and Constraints 

To formulate the objective function, the authors have identified and considered the related 

optimisation objectives for ASP and ALB.  For ASP optimisation, the optimisation objective 

is to minimise the number of direction change (nD) and tool change (nT). Meanwhile, the 

optimisation objectives for ALB include minimise cycle time (ct), number of workstation 

(nws), and workload variation (h). 

 

𝑛𝐷 = ∑ 𝐷𝑖;           𝐷𝑖 = {
1 if the 𝑖𝑡ℎdirection ≠ (𝑖𝑡ℎ+1) direction

0 if the 𝑖𝑡ℎdirection = (𝑖𝑡ℎ+1) direction

𝑛−1

𝑖=1

 (1) 

 

𝑛𝑇 = ∑ 𝑇𝑖;           𝑇𝑖 = {
1 if the 𝑖𝑡ℎ tool ≠ (𝑖𝑡ℎ+1) tool

0 if the 𝑖𝑡ℎ tool = (𝑖𝑡ℎ+1) tool

𝑛−1

𝑖=1

 (2) 

 𝑐𝑡 = max
𝑚=1:𝑛𝑤𝑠

[𝑝𝑡𝑚] (3) 

 

In Equation. (1), Di refers to assembly direction for the ith task, while Ti is assembly tool for 

the ith task in Equation. (2).  The processing time (ptm) refers to the summation of the task 

time in the mth workstation, which cannot exceed the maximum allowable cycle time (ctmax). 
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ℎ =

∑ (𝑐𝑡 − 𝑝𝑡𝑚)𝑛𝑤𝑠
𝑚=1

𝑛𝑤𝑠
          (4) 

The optimisation objectives in Equation. (1) to (4) need to be normalised to ensure that they 

have a similar range of value to form an objective function. For this purpose, the optimisation 

objectives are normalised using the following formulas:  

 

 �̂�𝐷 =
𝑛𝐷 − 𝑛𝐷𝑚𝑖𝑛

𝑛𝐷𝑚𝑎𝑥 − 𝑛𝐷𝑚𝑖𝑛
 (5) 

 �̂�𝑇 =
𝑛𝑇 − 𝑛𝑇𝑚𝑖𝑛

𝑛𝑇𝑚𝑎𝑥 − 𝑛𝑇𝑚𝑖𝑛
 (6) 

 
𝑐�̂� =

𝑐𝑡 − 𝑐𝑡𝑚𝑖𝑛

𝑐𝑡𝑚𝑎𝑥 − 𝑐𝑡𝑚𝑖𝑛
 (7) 

 𝑛𝑤𝑠̂ =
𝑛𝑤𝑠 − 𝑛𝑤𝑠𝑚𝑖𝑛

𝑛𝑤𝑠𝑚𝑎𝑥 − 𝑛𝑤𝑠𝑚𝑖𝑛
 (8) 

 
ℎ̂ =

ℎ − ℎ𝑚𝑖𝑛

ℎ𝑚𝑎𝑥 − ℎ𝑚𝑖𝑛
 (9) 

Therefore, the objective function for this problem can be formulated as follows: 

 

 Minimise 𝑓 = 𝑤1�̂�𝐷 + 𝑤2�̂�𝑇 + 𝑤3𝑐�̂� + 𝑤4𝑛𝑤𝑠̂ + 𝑤5ℎ̂ (10) 

In this function, the authors set w1, w2, w3, w4, w5 = 0.2. The objective function is calculated 

subjected to the following constraints: 

 
∑ 𝑥𝑖,𝑚 = 1

𝑛𝑤𝑠

𝑚=1

                                 𝑖 = 1, … , 𝑛 (11) 

 
∑ 𝑥𝑎,𝑚 − ∑ 𝑥𝑏,𝑚 ≤ 0                𝑎 ∈ 𝑛, 𝑏 ∈ 𝐹𝑎

𝑛𝑤𝑠

𝑚=1

𝑛𝑤𝑠

𝑚=1

 (12) 

 
∑ 𝑡𝑖𝑥𝑖,𝑚 ≤ 𝑐𝑡𝑚𝑎𝑥                                                   

𝑛

𝑖=1

∀𝑚 (13) 

The first constraint in Equation. (11) ensures that an assembly task is assigned into 

one workstation. Equation. (12) represents the precedence constraint that must be followed. 

The Fa refers to the set of successors for task i. In other words, this constraint ensures that 

the successor/s for task i will be assigned in a similar or the following workstation. The 

constraint in Equation. (13) ensures that the maximum cycle time (ctmax) is obeyed, for mth 

workstation.  

 

 

MODIFIED ARTIFICIAL BEE COLONY ALGORITHM 

 

The Artificial Bee Colony (ABC) algorithm is developed based on the behaviour of foraging 

in bee colonies. This algorithm was proposed by Karaboga in 2005 [27]. The ABC algorithm 
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comprises three groups of bees: Scout, onlooker, and employed bees. The employed bee is 

the group that works to search for a solution. The onlooker bee works to further improve the 

solution, while the scout bee works to avoid the solution from being trapped in local 

optimum. 

According to the original ABC procedure, the regeneration process in the employed 

bee phase does not involve any elitism element from the best solution (or leader). The 

solution is generated using Equation. (16), where the xk is randomly selected. On the other 

hand, in the onlooker bee phase, the algorithm tries to further improve the leaders by mating 

them with another randomly selected solution.  

In this work, the authors proposed to replace the onlooker bee phase with a leadership 

inheriting mechanism in the ABC to guide the search direction. The leadership inheriting 

mechanism refers to the solution regeneration process that involves the best solution from 

the population. However, the existing algorithms with the leader inheriting mechanism, such 

as the PSO and ACO, are having a problem with being trapped in a local optimum [12, 14]. 

This problem occurred because the regeneration process is relying on a single leader.  

This work therefore, adopted a beewolves predatory mechanism originally from the 

Grey Wolf Optimiser (GWO) [28]. In GWO, the search direction is guided by three leaders 

instead of a single leader in other algorithms. The flowchart of the proposed modified 

Artificial Bee Colony (MABC) algorithm is presented in Figure 2, while the pseudocode is 

in Figure 3. 

 
Figure 2. Flowchart of the proposed MABC. 
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Procedure of MABC 

Initialise MABC parameters: Swarm size (Nswarm), number of employed bees (NS), number of 

beewolves, limit for scout (Lmax) and maximum iteration (itermax) 

Initialise random population xi for i = 1, 2,…, NS 

Decode the xi into feasible assembly sequence 

Evaluate the fitness function for ith solution, fi 

 Save the best xα, second best xβ and third best xδ solutions 

Calculate fiti using Equation. (15) 

Set iteration counter, iter = 1 

Set Limit counter for ith solution, Li = 0 

While iter ≤ itermax  

For i = 1, 2,…, NS  Employed bees phase 

Generate new solution, vi from the xi solution using Equation. (16) 

Evaluate fitness for new solution, f(vi) 

If f(vi) < fi 

  Update xi = vi 

  Reset Li = 0 

End 

Calculate the probability for ith solution (pi) using Equation. (17) 

End 

Sort solution according to better pi 

 

 For w = 1, 2,…, NS  Beewolf phase 

  Calculate the distance between xw and xα, xβ and xδ using Equation. (22) and (23) 

Regenerate new solution, vw using Equation. (24) 

Evaluate fitness for solution vw, f(vw) 

If f(vw) < f(xw) 

  Update xw = vw 

Reset Li = 0 

End 

End 

Update the best solution xα, xβ and xδ 

Li = Li + 1 

 If Li > Lmax  Scout bees phase 

Replace xi with a new random solution using Equation. (25) 

End 

iter = iter +1 

End 

 

Figure 3. Procedure of the proposed MABC 
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Initialisation 

The initialisation stage in the MABC algorithm involved defining the control parameters, 

such as swarm size (Nswarm), number of employed bees (NS), onlooker bees (NO), and limit 

for scout (Lmax). In the original ABC, the numbers of employed bees and onlooker bees were 

both set as 50% from the swarm size. In the proposed MABC, the NS is maintained at 50% 

of the Nswarm, while the 50% balances are shared between onlooker bees (25%) and beewolves 

(25%).  

Meanwhile, the limit for scout bees (Lmax) presents the maximum number of the 

iteration for the ith solution to discover an improved solution. If the ith solution does not show 

any improvement after Lmax iteration, the ith solution will be replaced with a new solution 

using Equation. (25). The limit for scout (Lmax) is calculated as follows: 
 

 
𝐿𝑚𝑎𝑥 =

𝑁𝑠𝑤𝑎𝑟𝑚 ∗ 𝑑𝑖𝑚

2
 (14) 

Where, dim is the dimension of the problem. The initial population is randomly 

generated within the lower and upper bounds for the jth dimension. The number of initial 

solution is equivalent to the number of food source and employed bees (NS).  

 

Evaluation 

Next, the initial population is evaluated using the fitness function. The fitness value for 

solution xi is remarked as fi. The solution xi is decoded using topological sort as presented in 

Figure 4. An example of the decoding procedure in Figure 4 is taken from the precedence 

graph in Figure 1. The decoding procedure starts by identifying the candidate task without 

the precedence constraint. The candidate task without the precedence relation is in the grey 

box. Then the assembly task with higher xi value will be selected among the candidate tasks. 

The selected assembly task will be removed from the next consideration. These steps are 

repeated until all of the assembly tasks are selected.  
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Figure 4. Example of solution decoding. 

 

In general practice, the optimisation problem is defined as minimisation problem, 

where the smaller the fitness value obtained, the better the solution will be. In this case, the 

maximisation problem is converted into minimisation by giving the negative sign in front of 

the fitness function. In ABC, only the fittest solution from the initial population is kept as 

xbest. However, in MABC, three top solutions are saved and known as xα, xβ, and xδ. The xα, 

xβ, and xδ represent the best, second best, and third best solutions, respectively. This 

mechanism is mimicking the leadership hierarchy in the grey wolf group [28].  

Next, the fitness function is converted into the larger the better term. This fitness 

function for solution xi is noted as fiti and calculated as follows: 

 

𝑓𝑖𝑡𝑖 = {

1

1 + 𝑓𝑖
                if 𝑓𝑖 ≥ 0

1 + 𝑎𝑏𝑠(𝑓𝑖)      if 𝑓𝑖 < 0

 (15) 

 

Employed Bee Phase 

Later, the new solution, vi will be generated from the existing solution, xi. The vi is generated 

using the following formula: 

 𝑣𝑖,𝑗 = 𝑥𝑖,𝑗 + Φ(𝑥𝑖,𝑗 − 𝑥𝑘,𝑗) (16) 
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The xi,j refers to the existing ith solution for the jth dimension. Φ is a random number 

in the range [-1,1]. Meanwhile, xk represents a solution from the existing population that is 

being chosen randomly. The new solution is later evaluated using the fitness function. The 

fitness value for vi is compared with xi. In this case, the greedy selection approach is used. If 

the fitness value for vi is better than xi, the vi will replace the existing solution xi. Otherwise, 

the existing solution xi will remain.  

Next, the probability value (pi) for solution xi is calculated using the following 

equation. In this equation, the better fitness of the solution will give a higher probability 

value.  

 
𝑃𝑖 =

𝑓𝑖𝑡𝑖

∑ 𝑓𝑖𝑡𝑖
𝑁𝑠𝑤𝑎𝑟𝑚/2
𝑖=1

 (17) 

The solution now will be sorted starting from the highest pi value. At this point, the 

solution is divided into two groups. The first group contains half of the NS, which consists 

of a solution with better pi, known as xon. This group will be used for the onlooker bee phase. 

Meanwhile, the remaining half of the solution (xw) will undergo the grey wolf phase.  

 

Beewolves Phase 

Beewolf or scientifically known as Philanthus triangulum is a predator bee that targeting the 

employed bee as their prey [29]. In this work, the beewolves concept is adopted from grey 

wolf optimizer [28] to replaced onlooker bee phase in ABC algorithm. The beewolves try to 

hunt, attack and paralyse the employed bee. In the proposed algorithm, this mechanism is 

simulated by replacing a specific employed bee with a better performance bee.  

The beewolves work in a group which consist of α, the most dominant beewolf, 

followed by β and δ, while the rest of the population is known as ω. The first step is conducted 

to roughly determine the position of the prey (i.e. employed bee). This is conducted using the 

following equations: 

 𝐵 = |𝑐. 𝑥𝑝 − 𝑥𝑤| (18) 

 𝑥𝑤 = 𝑥𝑝 − 𝐴. 𝐵 (19) 

In this equation, B represents the distance between the prey (xp) and the beewolves. 

Meanwhile, A and c are the coefficients that are calculated as follows: 

 𝐴 = 2𝑎. 𝑟1 − 𝑎 (20) 

 𝑐 = 2. 𝑟2 (21) 

In this case, r1 and r2 are random numbers between [0, 1], while a is a component that 

linearly decreases from 2 to 0 over the iteration. However, since the actual position of the 

prey is unknown, the algorithm is relying on the xα, xβ, and xδ that have better knowledge 

about the prey. Therefore, in the hunting stage, the algorithm will calculate the average vector 

distance between the beewolves and the xα, xβ and xδ. 

 

 𝐵𝛼 = |𝑐1. 𝑥𝛼 − 𝑥𝑤|;  𝐵𝛽 = |𝑐2. 𝑥𝛽 − 𝑥𝑤|; 𝐵𝛿 = |𝑐3. 𝑥𝛿 − 𝑥𝑤| (22) 

 𝑥𝑤,1 = 𝑥𝛼 − 𝑎1. (𝐵𝛼); 𝑥𝑤,2 = 𝑥𝛽 − 𝑎2. (𝐵𝛽); 𝑥𝑤,3 = 𝑥𝛿 − 𝑎3. (𝐵𝛿); (23) 

The algorithm will also generate a new solution from the vector distance. 
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𝑣𝑤 =

𝑥𝑤,1 + 𝑥𝑤,2 + 𝑥𝑤,3

3
 (24) 

The attacking prey step represents the exploitation of the solution. Since the A and c 

rely on the random numbers r1 and r2, the new position of beewolves (vw) can be in any 

position from the current and the xα, xβ, and xδ. Furthermore, the component a is also 

decreasing over the iteration, which makes the search direction for this algorithm becomes 

more diverse.  

The new solution vw will be evaluated and compared with xw. If the fitness function 

for the vw is better, the new solution will replace xw. At this point, if the existing solution does 

not show any improvement compared to the previous iteration, the limit counter for xi (Li) 

will be updated. However, if the solution has improved, the Li will be reset to zero. For 

solution xi with Li larger than L, the scout bee procedure will be conducted.  

 

Scout Bee Phase 

The scout bee phase refers to the random regeneration of solution xi. Theoretically, when a 

particular solution does not show any improvement for a given duration, the solution must 

be regenerated to ensure better exploitation in the search space. This procedure is conducted 

using the following equation: 

 𝑥𝑖,𝑗 = 𝑙𝑏𝑗 + rand(0,1) ∙ (𝑢𝑏𝑗 − 𝑙𝑏𝑗) (25) 

The new solution is randomly generated within the lower bound (lb) and upper bound 

(ub). The newly generated solution will replace the solution xi. 

 

 

RESULTS AND DISCUSSIONS 

 

A computational experiment was conducted to test the performance of the proposed 

algorithm. For this purpose, the authors have selected the 12 SALBP test problems from line 

balancing benchmark set [30]. The problem was categorised as small (n ≤ 40), medium (40 

< n ≤ 80), and large (n > 80). Since the original SALBP data set only considers the assembly 

time information, the assembly direction and tool data for these problems are randomly 

generated.  

For comparison purpose, the authors implemented the GA, ACO, and PSO algorithms 

because these algorithms were used in previous literature for integrated ASP and ALB 

optimisation. Besides that, the proposed MABC is also compared with the original ABC and 

GWO algorithms. For each of the algorithm, the population size is 20 and the maximum 

iteration is 300. To eliminate pseudo-random effect, the authors conducted 20 repetitions for 

the optimisation run for each of the test problems. This computational experiment was 

conducted using HP Z400 Workstation, Intel Xeon 3.00 GHz processor, and 8.00 GB RAM. 

The optimisation results are presented in Table 1. The bolded data represents the best result 

for each problem. 

 

 

 

 

 



M.F.F. Abd Rashid et. al / Journal of Mechanical Engineering and Sciences 13(4) 2019   5905-5921 

5916 

Table 1. Optimisation results for integrated ASP and ALB. 

 

Test 

Problem 

Indicator Algorithm 

GA ACO PSO ABC GWO MABC 

Mitchell  

(21 tasks) 

Min Fit 0.3992 0.3667 0.3992 0.3692 0.3817 0.3165 

Max Fit 0.4367 0.3992 0.4267 0.3992 0.4242 0.3282 

Mean Fit 0.4082 0.3797 0.4097 0.3897 0.4082 0.3258 

SD Fit 0.0162 0.0156 0.0113 0.0137 0.0157 0.0052 

Roszieg  

(25 tasks) 

Min Fit 0.3969 0.3445 0.3669 0.3445 0.3561 0.3133 

Max Fit 0.4869 0.3769 0.4569 0.3669 0.4176 0.3425 

Mean Fit 0.4409 0.3644 0.4182 0.3599 0.3804 0.3328 

SD Fit 0.0391 0.0119 0.0365 0.0096 0.0236 0.0137 

Sawyer 

(30 tasks) 

Min Fit 0.6515 0.5555 0.6432 0.6221 0.6265 0.5555 

Max Fit 0.6682 0.6348 0.6765 0.6348 0.6598 0.6348 

Mean Fit 0.6598 0.6072 0.6531 0.6297 0.6481 0.6051 

SD Fit 0.0083 0.0325 0.0148 0.0069 0.0139 0.0328 

Gunther 

(35 tasks) 

Min Fit 0.6646 0.5855 0.6095 0.5855 0.5855 0.5815 

Max Fit 0.6726 0.5935 0.6646 0.6095 0.6966 0.6015 

Mean Fit 0.6662 0.5903 0.6433 0.5983 0.6301 0.5895 

SD Fit 0.00357 0.00438 0.0221 0.0091 0.0414 0.0079 

Kilbridge 

(45 tasks) 

Min Fit 0.6540 0.5578 0.5874 0.6312 0.6394 0.4653 

Max Fit 0.7614 0.6255 0.6828 0.6468 0.6685 0.6394 

Mean Fit 0.6885 0.5879 0.6418 0.6408 0.6570 0.5987 

SD Fit 0.0427 0.0321 0.0437 0.0064 0.0129 0.0747 

Hahn 

(53 tasks) 

Min Fit 0.6413 0.6265 0.6801 0.6318 0.6371 0.5928 

Max Fit 0.6693 0.6402 0.6853 0.6455 0.6800 0.5993 

Mean Fit 0.6593 0.6303 0.6836 0.6404 0.6575 0.5954 

SD Fit 0.0116 0.0059 0.00239 0.0059 0.0163 0.0030 

Tonge 

(70 tasks) 

Min Fit 0.5216 0.4642 0.4554 0.4984 0.4873 0.4502 

Max Fit 0.5307 0.5029 0.5062 0.5207 0.5237 0.4591 

Mean Fit 0.5247 0.4893 0.4888 0.5096 0.5049 0.4535 

SD Fit 0.0051 0.0217 0.0289 0.0111 0.0182 0.0048 

Weemag 

(75 tasks) 

Min Fit 0.5516 0.5831 0.5698 0.5867 0.5649 0.5486 

Max Fit 0.5734 0.5903 0.5867 0.5939 0.5903 0.5644 

Mean Fit 0.5633 0.5869 0.5806 0.5907 0.5790 0.5579 

SD Fit 0.0109 0.0036 0.0093 0.0036 0.0129 0.0082 

Lutz2 

(89 tasks) 

Min Fit 0.6251 0.6041 0.6386 0.6149 0.6230 0.5937 

Max Fit 0.6535 0.6197 0.6589 0.6305 0.6494 0.6072 

Mean Fit 0.6355 0.6145 0.6463 0.6219 0.6343 0.5999 
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SD Fit 0.0156 0.0090 0.0109 0.0079 0.0136 0.0055 

Mukherjee 

(94 tasks) 

Min Fit 0.5281 0.5301 0.5147 0.5405 0.5069 0.5163 

Max Fit 0.5512 0.5396 0.5347 0.5496 0.5211 0.5330 

Mean Fit 0.5359 0.5348 0.5242 0.5452 0.5150 0.5253 

SD Fit 0.0132 0.0047 0.0100 0.0045 0.00733 0.0084 

Arc 

(111 

tasks) 

Min Fit 0.7484 0.7491 0.7849 0.8207 0.7598 0.7422 

Max Fit 0.7795 0.8199 0.8735 0.8655 0.8270 0.8089 

Mean Fit 0.7649 0.7786 0.8368 0.8454 0.7945 0.7693 

SD Fit 0.0106 0.0211 0.0272 0.0127 0.0214 0.0236 

Bartholdi 

(148 

tasks) 

Min Fit 0.4705 0.4679 0.5312 0.4793 0.4743 0.4627 

Max Fit 0.5634 0.4969 0.6033 0.5085 0.5893 0.4943 

Mean Fit 0.5049 0.4851 0.5559 0.4908 0.5571 0.4794 

SD Fit 0.0433 0.0090 0.02372 0.0089 0.0296 0.0086 

 

Based on Table 1, the proposed MABC consistently came out with better minimum 

fitness in small and medium size problems. The proposed algorithm also shows better mean 

fitness in all four small size problems. Besides that, the MABC performed better in maximum 

and mean fitness for medium size test problems in Hahn, Tonge and Weemag. For the large 

size problem, the proposed MABC obtained minimum fitness in three out of four test 

problems. In Mukherjee's test problem, the proposed algorithm was behind the GWO and 

PSO algorithms in terms of minimum and mean fitness. 

According to Table 1, the smallest mean of standard deviation (SD) was found in 

ABC algorithm, followed by MABC and ACO. The SD values in the results showed that the 

MABC was among the algorithms that came out with a consistent output. On the other hand, 

the GWO and PSO were the algorithms with the largest mean of SD.  

The overall performance from the numerical experiment showed that the MABC had 

better output compared to the comparison algorithms. The MABC found a better solution in 

91.6% of the problems (11 out of 12 test problems) and better mean fitness in 75% of the 

problems from 20 runs. The results mean that in general, the MABC has a better performance 

compared to the comparison algorithms. To confirm the performance of the MABC, a one-

way ANOVA test was conducted. The purpose of this test is to identify any significant 

differences between the mean values obtained using different algorithms.  

For the ANOVA test, the following hypotheses are applied: 

H0: μGA = μACO = μPSO = μABC = μGWO = μMABC 

H1: The means are not all equal 

 

The null hypothesis, H0 stated that the means of the fitness for all algorithms are the 

same. While the alternative hypothesis, H1 stated that there are differences in the means of 

fitness. For this test, the confidence interval was set at 0.05. The output of the ANOVA test 

is presented in Table 2. In this case, when the P-value is smaller than the confidence interval, 

the null hypothesis is rejected. According to the result in Table 2, all of the P-values were 

smaller than 0.05. Therefore, the null hypotheses for all test problems were rejected. In other 

words, the results showed that there were significant differences in the mean values of the 
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groups. However, the ANOVA test did not specifically reveal the algorithm with a significant 

difference in the results.  

Therefore, a post hoc analysis was conducted to identify the significant difference for 

the proposed MABC compared to other algorithms. For this purpose, the Fisher's least 

significant difference (LSD) test was conducted. The LSD is calculated using the following 

formula: 

 

𝐿𝑆𝐷 = 𝑡𝑐. √𝑀𝑆𝑊 (
1

𝑁1
+

1

𝑁2
) (26) 

In Equation. (26), tc refers to critical t-value from the t-distribution table, for 0.05 

confidence interval and 114 degrees of freedom. MSW represents the mean square within the 

group, N1 and N2 are the numbers of sample data in the considered groups. Next, the absolute 

mean difference between MABC and the comparison algorithms was calculated. When the 

absolute mean difference is larger than LSD, there is a significant difference between MABC 

and the comparison algorithms. The results of the LSD test are presented in Table 2.  

 

Table 2. Results of statistical tests 

 

Test 

Problem 
P-value LSD 

Mean Difference between MABC and 

comparison algorithms 

GA ACO PSO ABC GWO 

Mitchell 2.486E-09 0.0085 0.0823 0.0538 0.0838 0.0638 0.0823 

Roszieg 5.024E-06 0.0158 0.1080 0.0315 0.0853 0.0270 0.0475 

Sawyer 7.359E-04 0.0132 0.0546 0.0021 0.0480 0.0245 0.0430 

Gunther 4.132E-06 0.0124 0.0767 0.0008 0.0538 0.0088 0.0406 

Kilbridge 0.0065700 0.0272 0.0898 0.0108 0.0430 0.0007 0.0582 

Hahn 1.965E-12 0.0056 0.3194 0.0349 0.0882 0.0450 0.0621 

Tonge 5.588E-03 0.0109 0.0712 0.0358 0.0353 0.0560 0.0514 

WeeMag 3.810E-03 0.0055 0.0053 0.0289 0.0226 0.0328 0.0211 

Lutz2 1.825E-03 0.0068 0.0379 0.0508 0.0487 0.0243 0.0367 

Mukherjee 1.417E-02 0.0053 0.0105 0.0095 0.0011 0.0198 (0.0103) 

Arc 3.153E-14 0.0127 0.0044 0.0093 0.0674 0.0760 0.0251 

Barthold 3.809E-14 0.0152 0.0255 (0.0719) 0.0765 0.0114 0.0777 

 

The bolded value in Table 2 shows that the MABC has a significant performance over 

the comparison algorithm. Meanwhile, the value in the bracket means that the comparison 

algorithm has a significant performance compared to MABC. Based on the LSD results in 

Table 2, no single algorithm is completely dominated by the MABC. However, the MABC 

has a significant performance in 91% of the problems compared to PSO and GWO. This is 

followed by 83% compared to GA. In comparison with ABC, the MABC significantly 

performed better in 75% of the problems and when compared with ACO, the MABC 

performed better in 58% of the problems.  
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To evaluate the algorithm performance in different problem sizes, the number of cases 

in which the MABC had a significant difference with the comparison algorithms within a 

particular problem size was calculated. For example, in small size problems (Mitchell, 

Roszieg, Sawyer and Gunther), the MABC had a significant difference in 17 out of 20 cases 

in all comparison algorithms. This makes the MABC have a significant performance in 85% 

of the cases. This percentage is also the same for medium size problems. However, when the 

problem size increases to a larger size, the percentage reduces to 70% of the cases. This trend 

is related with the size of the search space. When the size of the problem increases, the search 

space will decrease excessively. 

The performance of MABC indicated that this algorithm has better exploitation 

ability. This is because the MABC is able to search for minimum fitness value in most of the 

test problems. The leadership hierarchy concept from the GWO was able to improve the 

performance of the proposed modified algorithm. The GWO in the original form however, 

was too dependent on the leaders to determine the search direction. This made the GWO have 

less freedom to explore the different angles in the search space. Meanwhile, in comparison 

with the original ABC, the MABC was able to speed up the convergence to an optimum 

solution. The search direction was guided by three leaders from the GWO, while maintaining 

the exploration features from ABC. 

 

 

CONCLUSIONS 

 

This paper proposed a modified algorithm based on the Artificial Bee Colony (ABC) by 

adopting the beewolf predatory concept to optimise the integrated ASP and ALB problem. 

This concept is originally implemented from leadership hierarchy mechanism of the Grey 

Wolf Optimiser (GWO). ABC in the original form has a drawback in terms of convergence 

due to its poor exploitation ability. Meanwhile, the GWO has a good leadership hierarchy 

mechanism, but has a high dependency on the leaders. 

The proposed modified Artificial Bee Colony algorithm (MABC) was tested using a 

set of benchmark test problems and compared with five algorithms, including the ABC and 

GWO. The results indicated that the MABC is able to search for better minimum fitness in 

91% of the benchmark test problems. A statistical test was conducted to confirm the 

significance of MABC performance compared to the comparison algorithms. The statistical 

test showed that the MABC has a significant performance in 80% of the cases, mostly in 

small and medium size problems. 

The results from this work indicated that the exploitation ability in the ABC was 

improved by adopting the beewolf predatory concept. At the same time, the exploration 

ability in the ABC using the employed bee’s concepts was maintained to make this modified 

algorithm to be not too dependent on the leaders. Finally, the proposed MABC indicated a 

balanced portion between exploration and exploitation abilities in swarm algorithm.  
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