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INTRODUCTION   

H13 die steel is extensively used for extrusion, forging and die casting due to its elevated temperature strength, 

tempering resistance, ductility and moderate cost. H13 die steel is heat treated to have martensitic phase transfer which 

enables it to have high wear resistance. It is evident from the studies [1–4] that hot die steel wear resistance depends on 

its mechanical properties. Prediction model proves to be a useful tool in estimating the variation in die lifetime 

corresponding to the wear accruing during the use of hot die steel. To model and analyse, response surface methodology 

(RSM) is an effective tool capable of quantifying the relationship between input parameters and the obtained response 

considering the constraints of process parameters. A second order mathematical model is usually developed to identify 

the most suited input process parameters at which maxima or minima of the response lies. The best feature of RSM is the 

2D and 3D plots, showing interactive impact on response of input process parameters [5, 6]. In recent years, artificial 

neural network (ANN) has been used in various areas of research such as medicine, engineering, mathematics, 

meteorology, neurology and economics [7]. Multi-layered neural network with backpropagation and differentiable 

transfer function is frequently used in the research works for materials science to perform pattern classification, function 

approximation and pattern association [8]. Backpropagation is the process of computing derivatives of network error, 

with respect too. network biases and weights. 

Various researchers have studied the impact of heat treatment parameters on the properties and performance of 

different steels [2, 3, 9], but a gap still needs to be plugged is the study of hot die steel performance with respect to 

different heat treatment parameters being considered simultaneously. The present work set out to investigate the wear 

behavior of H13 die steel by considering all three key heat treatment parameters parallelly. This paper focuses on RSM 

and ANN techniques to study the variation in wear volume of H13 hot die steel occurring due to changes in properties 

obtained by different heat treatment parameters. Pin on disc tribo-tester is used for wear tests at room temperature in dry 

conditions. Hardness of various samples is measured with universal hardness tester (Make: Tinius Olsen, Model: FH-

002-0001). Based on these experimental observations ANN and RSM models are developed to predict the wear volume 

of H13 hot die steel having different heat treatment parameters. Microstructure of samples undergone different heat 

treatments is observed using metallurgical microscope (Make: Dewinter, Model: Dmi victory) and field emission 

ABSTRACT – Resistance to wear of hot die steel is dependent on its mechanical properties 
governed by the microstructure. The required properties for given application of hot die steel can 
be obtained with control the microstructure by heat treatment parameters. In the present paper 
impact of different heat treatment parameters like austenitizing temperature, tempering time, 
tempering temperature is studied using response surface methodology (RSM) and artificial neural 
network (ANN) to predict sliding wear of H13 hot die steel. After heat treating samples at 
austenitizing temperature of 1020°C, 1040°C and 1060°C; tempering temperature 540°C, 560°C 
and 580°C; tempering time 1hour, 2hours and 3hours, experimentation on pin-on-disc tribo-tester 
is done to measure the sliding wear of H13 die steel. Box-Behnken design is used to develop a 
regression model and analysis of variance technique is used to verify the adequacy of developed 
model in case of RSM. Whereas, multi-layer feed-forward backpropagation architecture with input 
layer, single hidden layer and an output layer is used in ANN. It was found that ANN proves to be 
a better tool to predict sliding wear with more accuracy. Correlation coefficient R2 of the artificial 
neural network model is 0.986 compared to R2 of 0.957 for RSM. However, impact of input 
parameter interactions can only be analysed using response surface method. In addition, sensitivity 
analysis is done to determine the heat treatment parameter exerting most influence on the wear 
resistance of H13 hot die steel and it showed that tempering time has maximum influence on wear 
volume, followed by tempering temperature and austenitizing temperature. The prediction models 
will help to estimate the variation in die lifetime by finding the amount of wear that will occur during 
use of hot die steel, if the heat treatment parameters are varied to achieve different properties.   
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scanning electron microscope (Make: FEGQuanta, Model: 450) is used to examine the worn surface to check out for the 

difference in wear behaviour. ANN is trained and implemented using the MATLAB. ANN is trained number of times to 

find the model having weight matrix which gives minimum error and good results for the determination of wear volume 

with respect to the actual experimental values used as input set to train the network. 

 

MATERIALS AND TESTING 

H13 steel pin samples are made of 30mm length and 10mm diameter which is the standard sample size for pin on disc 

type tribo-tester (Make: Ducom, Model: 536A). Counter test material used is D2 steel disc of 8mm thickness and 100mm 

diameter. Schematic of pin sample and counter disc for dry sliding wear test are shown in Figure 1. Chemical composition 

of H13 pin and D2 disc material is given in Table 1.  

 
Table 1. Composition pin and disc material made of H13 and D2 steel. 

Steel 
Weight percentage of alloying elements 

C Cr Mo Mn V Si S P 

H13 0.356 5.100 1.264 0.346 1.123 0.964 0.025 0.022 

D2 1.662 12.603 0.498 0.489 0.277 0.045 0.025 0.024 

 

 

 
Figure 1. Schematic of: (a) pin sample and (b) counter disc for dry sliding wear test. 

 
During heat treatment of H13 steel preheating is done at 620°C and 850°C. Different austenitizing temperature for 

H13 hot die steel are taken as per ASME standards [10] and austenitizing is done at 1020°C, 1040°C and 1060°C with 

soaking time of 20 minutes followed by marquenching at 350°C. Tempering is done at 540°C, 560°C and 580°C for 1 

hour, 2 hours and 3 hours in pit furnace having air circulation.  

Figure 2a, 2b & 2c shows the micrograph of as-quench samples austenitized at 1020°C, 1040°C and 1060°C. Sample 

austenitized at 1020°C has finer grain as compared to the moderate grain of sample austenitized at 1040°C whereas die 

steel austenitized at 1060°C has coarser grains. Figure 2d shows the martensite produced after marquenching from 

austenitizing temperature 1020°C and figure 2e shows the tempered martensite produced after tempering twice at 560°C 

for 2 hours. 
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Figure 2. Micrograph at 1000x of as-quench samples austenitized at a) 1020°C, b) 1040°C and c) 1060°C respectively; 

FESEM images showing d) martensite and e) tempered martensite produced in samples austenitized at 1020°C. 

 
Figure 3 shows the pin on disc type high temperature tribo-tester used for wear tests. The details of wear test setup 

are given in [11]. Winducom2010-POD software is used for acquiring experimental data. 

 

 
 

Figure 3. High temperature tribo-tester. 

 

PREDICTION MODEL USING RESPONSE SURFACE METHOD 

Development of Model 

Box Behnken design (BBD) gives best solutions for RSM problems with three factors having three levels [12]. 

Generalized second order polynomial to find the suitable approximation for functional relationship of response surface 

(wear volume) with regressor variables (heat treatment parameters) is given as: 

 

𝑦 = 𝛽0 +  ∑ 𝛽𝑖

𝑘

𝑖=0

𝑥𝑖 +  ∑ 𝛽𝑖𝑖
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𝑖=0

𝑥𝑖
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here β0, βi, βii, β0ij are regression coefficients and ɛ is random error. In this paper value of k is 3 as there are three factors 

with three levels. Table 2 shows design matrix for DOE of wear volume with experimental and predicted responses of 

RSM model.  

Multiple regression analysis is applied to develop a wear volume prediction model from the experimental data by 

finding the regression coefficients using BBD on Design Expert 7.0 software. The regression model for predicting wear 

volume (Wvol) in coded factors is given as: 

 

𝑊𝑣𝑜𝑙 = 1.38 − 0.12𝐴 − 0.097𝐵 + 0.35𝐶 − 0.28𝐵2 + 0.52𝐶2 + 0.37𝐴𝐶 + 0.35𝐵𝐶  (2) 

 

Table 2. Design matrix showing DOE for wear volume with experimental and predicted responses for response surface 

model. 

Run 

Coded Variable  Wear Volume (mm3) 

A B C 
 Experimental  RSM model 

 Test 1 Test 2 Test 3 Mean  Predicted Residual 

1 1 0 -1  1.10159 0.92166 1.01543 1.01289  1.05332 -0.04043 

2 0 1 1  2.40145 2.16165 2.37248 2.31186  2.24696 0.06490 

3 0 -1 1  1.66859 1.81225 1.82328 1.76804  1.74033 0.02771 

4 0 0 0  1.25722 1.51221 1.50122 1.42355  1.38424 0.03931 

5 0 0 0  1.34712 1.30264 1.38131 1.34369  1.38424 -0.04055 

6 -1 0 -1  2.31057 2.22412 2.12252 2.21907  2.04708 0.17199 

7 1 0 1  2.40242 2.23131 2.30184 2.41186  2.56872 -0.15686 

8 -1 -1 0  1.20155 1.23317 1.22248 1.21907  1.29767 -0.07860 

9 0 0 0  1.24825 1.33329 1.40248 1.32801  1.38424 -0.05623 

10 0 0 0  1.49125 1.30246 1.32741 1.37371  1.38424 -0.01053 

11 -1 0 1  2.28635 1.89723 1.97495 2.05284  1.99728 0.05556 

12 -1 1 0  1.00941 1.11576 0.82846 0.98454  1.10326 -0.11872 

13 0 1 -1  0.80223 0.72090 0.76165 0.76159  0.81312 -0.05153 

14 1 -1 0  1.40184 1.16873 1.08278 1.21778  1.08651 0.13127 

15 0 0 0  1.34429 1.48352 1.37946 1.40242  1.38424 0.01818 

16 0 -1 -1  1.68525 1.49384 1.68047 1.61985  1.70857 -0.08872 

17 1 1 0  1.05973 1.10128 0.80423 0.98841  0.89210 0.09631 

A: Austenitizing temperature (-1 is 1020°C, 0 is 1040°C and 1 is 1060°C) 

B: Tempering temperature (-1 is 540°C, 0 is 560°C and 1 is 580°C) 

C: Tempering time (-1 is 1 hour, 0 is 2 hours and 1 is 3 hours) 

 
ANOVA results for wear volume are summarized in Table 3. Value of probability >F is less than 0.05, it means that 

the developed model is significant at 95 confidence interval. Adequate signal to noise ratio should always be greater than 

4 and for the developed model its value is 18.26, which ensures the effectiveness of model. Correlation coefficient R2 of 

the model is 0.957. The value of R2 close to unity means proposed model is reliable for predicting wear volume [13]. 

 

Analysis of Results 

Perturbation plot showing the effect of heat treatment parameters on wear volume is shown in Figure 4. Factor A, 

austenitizing temperature shows a linear relationship with wear volume. It has been found that the hardness of H13 die 

steel increases with increase in austenitizing temperature from 1020°C to 1060°C which helps to decrease the wear 

volume. This increase of hardness in H13 hot die steel is due to the alloying elements Chromium and Vanadium as they 

further increase the hardness of martensitic matrix for higher austenitizing temperature [2]. Figure 5 shows the increase 

in hardness for increase in austenitizing temperature for as-quench H13 die steel. Factor B, tempering temperature when 

raised from 540°C to 580°C results in first increase and then decrease of wear volume, it is due to the precipitation of 

alloy carbides initially and then decrease in martensite tetragonality producing BCC ferritic matrix of tempered martensite 

[14]. 
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Figure 4. Perturbation plot for wear volume. 

 

 

Figure 5. Hardness change with austenitizing temperature. 

 

Table 3. ANOVA results for wear volume. 

Model terms 
Sum of 

Squares 

Degree of 

Freedom 
Mean Square F value Prob>F  

Model 3.62 7 0.52 28.71 < 0.0001 significant 

A 0.11 1 0.11 6.20 0.0345  

B 0.076 1 0.076 4.21 0.0705  

C 1.00 1 1.00 55.66 < 0.0001  

AC 0.54 1 0.54 29.82 0.0004  

BC 0.49 1 0.49 27.30 0.0005  

B2 0.33 1 0.33 18.06 0.0021  

C2 1.14 1 1.14 63.23 < 0.0001  

Residual 0.16 9 0.018    

Lack of Fit 0.16 5 0.031 19.78 0.0064 significant 

Pure error 6.296E-003 4 1.574E-003    

Cor Total 3.78 16     

Std. Dev. 0.13  R-Squared 0.9571   

Mean 1.49  Adj. R-Squared 0.9238   

C.V.% 9.00  Pred R-Squared 0.6902   

PRESS 1.17  Adeq Precision 18.268   

A: Austenitizing temperature, B: Tempering temperature, C: Tempering time 

56.0

57.0

58.0

59.0

60.0

1000°C 1020°C 1040°C 1060°C

H
a
rd

n
es

s 
in

 H
R

C

Auatenitizing temperature



V. Jagota et al. │ Journal of Mechanical Engineering and Sciences │ Vol. 14, Issue 2 (2020) 

6794   journal.ump.edu.my/jmes ◄ 

Factor C, tempering time when varied from 1 hour to 3 hours, the wear volume first decreases and then shows a sharp 

increase with further increasing of the tempering time. The high hardness of H13 hot die steel at lesser tempering time is 

due to some freshly formed martensite from retained austenite. When the tempering time is further increased, H13 steel 

shows a decrease in hardness because of more carbon combining with iron to form cementite, hence decreasing the carbon 

supersaturation in the martensitic matrix [15]. 

 

 

Figure 6. Interaction plot of tempering time and austenitizing temperature for wear volume. 

 
One of the key features of RSM is its ability to analyze impact of interaction of input parameters on the response 

surface. Figure 6 shows the response surface plot for the interaction between factor A and factor C. Specimen having 

austenitizing temperature 1060°C and tempering time of 1.25 hour shows least wear volume whereas the maximum wear 

volume has accrued for sample having austenitizing temperature of 1060°C and tempering time of 3 hours. This effect 

has also been found in the wear tests, Figure 7a and 7b shows the wear surface for samples hardened at 1060°C and 

tempered twice for 1 hour and 3 hours respectively. It is quite evident from the wear behavior that higher tempering time 

reduces the wear resistance of H13 die steel. It is due to the decrease in hardness of H13 steel with longer tempering time 

as coarsening of martensitic crystals takes place with reduction in dislocation density [16]. 

 

 

Figure 7. Wear tracks for samples heat treated at a) austenitizing temperature 1060°C and tempering time 1 hour; b) 

austenitizing temperature 1060°C and tempering time 3 hours. 
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Figure 8. Interaction plot of tempering time and tempering temperature for wear volume. 

 

Response surface plot for factor B and factor C is shown in Figure 8. It shows that specimens tempered at 580°C for 

1 hour exhibits minimum wear volume whereas maximum wear volume has been observed on sample tempered at 560°C 

for 3 hours. The reason for this is secondary hardening occurring at higher tempering temperatures, allowing Molybdenum 

& Chromium to precipitate and diffuse as fine alloy carbides [16]. 

 

PREDICTION MODEL USING ARTIFICIAL NEURAL NETWORK 

ANN is a computational system similar to biological neurons structure in human brain. The interconnection between 

neurons are governed by network function [17]. A weight is associated with input to every neuron to determine the 

strength of interconnection between neurons. These weights are modified with every iteration to evaluate the contribution 

of all interconnections toward the network. During the training of ANN according to the transfer function weights are 

modified by the network response to the input matrix [18]. This plays a key role in ANN's ability to have learning and 

memory. Multi-layer feed-forward backpropagation ANN architecture consisting of 3 neurons in input layer for three 

heat treatment parameters, a hidden layer with ni neurons and output layer having 1 neuron for wear volume is used. 

Learning parameters used for training the network are given in Table 4. Input output data for training of ANN model for 

wear volume prediction is the same as being used for developing RSM model. The number of neurons in the hidden layer 

(ni) have an important effect on neural network functioning [19]. Therefore, value of ni is varied from 1 to 20 to find the 

most suited number of neurons for hidden layer. For each value of ni i.e. 1 to 20 network has been trained 50 times as per 

the training parameters given in Table 4. The impact of ni on the performance of neural network in terms of regression 

coefficient is shown in Figure 9. It is found that ni with value 10 gives the best results for the present case for wear volume 

prediction with respect to heat treatment parameters of H13 die steel. Figure 10 shows the ANN architecture considered 

in present study having input, hidden and output layers. 

 
Table 4. Learning parameters for the training of artificial neural network model. 

S. No. Training parameter Value 

1 training algorithm traingd 

2 transfer function tan-sigmoid 

3 number of epochs 10000 

4 learning rate 0.01 

5 tolerance for mean square error 0.00001 
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Table 5. Training data and predicted response matrix for wear volume of H13 die steel using artificial neural network 

model. 

Run 

Wear Volume (mm3) 

Experimental  ANN model 

Test 1 Test 2 Test 3 Mean  Predicted Residual 

1 1.10159 0.92166 1.01543 1.01289  0.96860 0.04429 

2 2.40145 2.16165 2.37248 2.31186  2.31034 0.00152 

3 1.66859 1.81225 1.82328 1.76804  1.74553 0.02251 

4 1.25722 1.51221 1.50122 1.42355  1.39219 0.03136 

5 1.34712 1.30264 1.38131 1.34369  1.39219 -0.04850 

6 2.31057 2.22412 2.12252 2.21907  2.26736 -0.04829 

7 2.40242 2.23131 2.30184 2.41186  2.31105 0.10081 

8 1.20155 1.23317 1.22248 1.21907  1.21934 -0.00027 

9 1.24825 1.33329 1.40248 1.32801  1.39219 -0.06418 

10 1.49125 1.30246 1.32741 1.37371  1.39219 -0.01848 

11 2.28635 1.89723 1.97495 2.05284  1.93646 0.11638 

12 1.00941 1.11576 0.82846 0.98454  0.97212 0.01242 

13 0.80223 0.72090 0.76165 0.76159  0.74921 0.01238 

14 1.40184 1.16873 1.08278 1.21778  1.31511 -0.09733 

15 1.34429 1.48352 1.37946 1.40242  1.39219 0.01023 

16 1.68525 1.49384 1.68047 1.61985  1.61981 0.00004 

17 1.05973 1.10128 0.80423 0.98841  0.95192 0.03649 

 

 

   
Figure 9. ni vs ANN regression coefficient. 
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Figure 10. Artificial neural network architecture showing different layers. 

 
To achieve better results lots of training runs are conducted and the selected trained network with best result was 

achieved after 8371 iterations. The trained network gave a regression coefficient of 0.986 i.e. close to unity which 

indicates good reliability of the developed ANN model for predicting wear volume. Figure 11 shows the ANN training 

plot with output and target values for wear volume of H13 die steel. Table 5 shows the predicted results with residuals 

for ANN model. 

 

COMPARISON OF RSM AND ANN RESULTS 

Most optimization methods vary one variable at a time and keep others constant to optimize the response, but they 

fail to indicate the impact of interactions between the input variables on response. To overcome this issue RSM is an 

effective tool. It is widely used for developing, improving and also optimizing the processes having several input variables 

and analyzing how their complex interactions affect the performance of response variable [20]. However, RSM based 

models are restricted to small number of input parameters, and also not suitable for highly non-linear processes. On the 

other hand, ANN is a superior tool compared to other methods in modelling non-linear behaviors of complex processes 

[21]. It has features of self-learning for highly non-linear descriptions which helps in finding complex relationships 

between input and output variables [22]. 

 

  
 

Figure 11. ANN training plot. 
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Figure 12. Distribution of residuals for RSM and ANN. 

 

SENSITIVITY ANALYSIS 

Sensitivity analysis is a method to identify critical process parameters exerting the most influence upon model 

response. Sensitivity equations are achieved by partially differentiating the response function regression model given by 

equation 2 with respect to input parameters. The sensitivities derived in Eqs. (3), (4) and (5) represent the wear volume 

sensitivity for austenitizing temperature (A), tempering temperature (B) and tempering time (C), respectively: 

 
𝜕𝑊𝑣𝑜𝑙

𝜕𝐴
=  −0.12 + 0.37𝐶 (3) 

 
𝜕𝑊𝑣𝑜𝑙

𝜕𝐵
=  −0.097 −  0.56𝐵 + 0.35𝐶 (4) 

 
𝜕𝑊𝑣𝑜𝑙

𝜕𝐶
=  0.35 + 1.04𝐶 + 0.35 (5) 

 
Positive sensitivity w.r.t. a certain process parameter indicates that the response function will increase with increase 

in that parameter, while negative sensitivity indicates the vice-versa [23]. The sensitivities of austenitizing temperature 

(A), tempering temperature (B) and tempering time (C) on wear volume are presented in Figure 13, 14 and 15 by solid 

bars with respect to various heat treatment conditions as planned by DOE. Sensitivity analysis shows that a small change 

in tempering time produces large changes in wear volume i.e. -1.06 to 1.76 in coded units, whereas, the sensitivity of 

wear volume w.r.t. tempering time is -1.007 to 0.813 and for austenitizing temperature it ranges only -0.49 to 0.25. It 

means that wear resistance of H13 hot die steel is most sensitive to tempering time than to tempering temperature and 

least sensitive to austenitizing temperature. 

 

 
 

Figure 13. Austenitizing temperature sensitivity. 
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Figure 14. Tempering temperature sensitivity. 

 

 
 

Figure 15. Tempering time sensitivity. 

CONCLUSIONS 

RSM and ANN models are developed and the prediction results by ANN model have been found to be closely 

matching with the experimental results. Conclusive remarks made from this investigation are listed as follows: 

 
1. Minimum wear volume of 0.37595 mm3 is obtained for austenitizing temperature 1059.7°C, tempering 

temperature 579.9°C and tempering time 1.24 hours.  

2.  Results showed that ANN is a better tool having correlation coefficient R2 of 0.986 than RSM which have R2 of 

0.957 for the estimation of wear volume of H13 hot die steel. However, impact of input parameter interactions can 

only be analyzed using RSM model. 

3.  Sensitivity analysis revealed the ranking for heat treatment parameter influencing the wear volume H13 steel. 

Tempering time has maximum impact ranging from -1.06 to 1.76, followed by tempering temperature having impact 

of -1.007 to 0.813 and austenitizing temperature having least impact of -0.49 to 0.25 in coded units respectively. 

4.  The proposed RSM and ANN models within the investigated range of heat treatment parameters have proven to be 

reliable tool for identifying significant relationship capable of predicting wear volume of H13 hot die steel. The 

proposed models can be used for selecting the value of heat treatment parameters to achieve minimal wear of H13 

hot die steel. 
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