
JOURNAL OF MECHANICAL ENGINEERING AND SCIENCES  
ISSN: 2289-4659     e-ISSN: 2231-8380  
VOLUME 19, ISSUE 2, 2025, 10653 - 10666 
DOI: https://doi.org/10.15282/jmes.19.2.2025.7.0835 
 
 
 

*CORRESPONDING AUTHOR | F. Faraji |  f.faraji@tees.ac.uk 
© 2025 The Author(s). Published by Universiti Malaysia Pahang Al-Sultan Abdullah Publishing. This is an open access article under the CC BY-NC 4.0 license  10653 

RESEARCH ARTICLE 

Machine learning prediction of downstream oil carryover in air-oil separators for 
vacuum application  

E. Nangi1, F. Faraji1*,  P. L. Chong1, F. Hamad1, L. Cochrane2, J. Gonzalez2     

1 School of Computing, Engineering and Digital Technologies, Teesside University, TS1 3BX, Middlesbrough, UK  
2 PSI Global Limited, Stockton-on-Tees, TS22 5FE, Billingham, UK 

ABSTRACT – Air or oil filters are commonly used in vacuum conditions in pumps within 
various industries such as healthcare, pharmaceutical, and many more. Some of these filters 
are exposed to an upstream challenge of 1000-20000 mg/m3 of oil particles mixed with air, 
which needs to be reduced to 3-5 mg/m3 downstream. Accurate determination of the carryover 
rate of oil by the filters is crucial for meeting environmental compliance and enhancing 
operational efficiency. Traditional methods for measuring the carryover rate rely on time-
consuming and costly experiments, making them impractical for large-scale production and 
real-time quality assessment. Therefore, the main objective of this study is to develop digital 
models using mathematical and machine learning approaches to accurately predict the 
carryover rate in filters, thereby reducing reliance on physical testing. To this end, 224 sample 
experimental datasets were utilized, preprocessed, and cleaned to develop several 
multilayered Artificial Neural Networks (ANNs) and a multilinear regression model. Three 
optimisation strategies, including Levenberg-Marquardt, Bayesian Regularisation, and 
Particle Swarm Optimisation, have been used to tune the developed ANNs, which consist of 
various hidden layers and different neurons. For the purpose of comparison, the velocity-
based physics model was applied to predict the oil carryover rate. The results of the study 
revealed that the single hidden layer with 20 neurons ANN optimized with the BR algorithm 
performed the best among all the models, with a Mean Square Error of 0.0648 and a 
correlation coefficient value of 0.942 for predicting the oil carryover rate. The developed model 
is validated and can be used for the fast computation of the carryover rate, informing the 
optimisation strategy of the filters. 
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1. INTRODUCTION 

In the post-pandemic era, there has been a surge in studies aimed at understanding the transportation of particulate 

matter and its impact on human health. Air pollution from particulate matter is the leading cause of cardiovascular diseases 

in developed and developing countries [1]. Industrial processes increasingly emit aerosols as by-products, which can vary 

in size and concentration depending on the upstream process [2]. Filtration is a scientifically designed technology that 

ensures high-quality air is released into the environment from various industrial processes. These separators typically 

have high porosity, usually above 70%, with a structure that allows for efficient microparticle separation and low flow 

resistance. Fibrous filters are used as the main component of aerosol separators because they are simple to operate, low-

cost, and have a wide range of particle removal [3]. There is a relatively low pressure drop across these filters under 

diverse operating conditions.  Filters are the key component in the filtration process. Therefore, the performance of these 

filters is carefully controlled to ensure compliance with various health and industrial standards. Aerosol separators find 

applications in various fields, including vacuum pumps and compressor cleaners, automotive booths, and respiratory 

protection systems. For instance, about 80% of the vacuum pumps in the industry are lubricated with oil mist. The filters 

in these pumps function to purify the exhaust air before it is released into the environment, ensuring safety. Additionally, 

they allow for the recovery of collected oil, which can be either reused or disposed of properly. The international health 

and safety executive guidance requires that the oil mist be reduced to 3 mg/m3 [4]. This reduction in oil mist carryover 

from typically 1000−15000 mg/m3 to 3mg/m3 is known as the mass carryover rate. In the air-oil filtration industry, the 

performance of filters is tested according to ISO 29463; the mass carryover across the filter is the most important 

parameter. The concern is not only the filter's efficiency but also the size of the oil aerosol released by these industrial 

operations into the atmosphere. For instance, a filter that is 99% efficient, but with a carryover of 20 mg/m3, from a 

challenge of 2000mg/m3 is considered to be a faulty filter for this application as it will not pass the High-Efficiency 

Particulate Air (HEPA) filter regulation in the United States of America defined by the department of energy (MIL-STD-

282) as 99.97%, the European standard (EN1822), and ASHRAE 52.2. A filter is considered optimal when it has a 

carryover to a challenge that results in an efficiency of 99.99% with low flow resistance, as defined by the pressure drop 

across the filter. The filtration efficiency is simply calculated as: 

Efficiency = (challenge − carryover)/challenge (1) 
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Therefore, the accurate determination of the carryover rate in the filtration industry is crucial to meet the required 

regulations and optimize the performance of these separation media. The determination of such key parameters is typically 

performed through experimental methods, such as the Gravimetric Method (Filter Weight Gain), which measures the oil 

mass collected by a downstream filter over time. Other techniques include Laser Photometry, using light scattering to 

assess oil aerosol concentration, Condensation Nuclei Counters (CNC) for detecting ultra-fine mist particles, Gas 

Chromatography (GC) for analyzing the chemical composition of exhaust gases, and Isokinetic Sampling, which 

measures oil mist under dynamic airflow conditions using an isokinetic probe [5]. Each experimental method for 

measuring oil mist carryover has trade-offs between accuracy, cost, and practicality. While gravimetric analysis lacks 

real-time monitoring and struggles with ultra-fine mist, laser photometry and condensation nuclei counters require 

complex calibration and are sensitive to environmental factors. Gas chromatography provides precise chemical analysis 

but is time-consuming and expensive, whereas isokinetic sampling is highly accurate but requires a complex setup and 

skilled operation [6]. Additionally, it is not feasible or practical to carry out the measurements if a variety of filters with 

different sizes, dimensions, and lengths are available. Hence, a digital model that can accurately predict the carryover rate 

of the filters can be a valuable asset for engineers, saving costs and time while enabling faster system optimization and 

providing predictive insights, thereby ensuring efficient filtration and preventing failures [7]. Most of the modelling work 

in the literature for fibrous filters focuses on the efficiency of the filters for varying fibre arrangements, pressure drop 

across the filters, and CFD modelling of the various complex processes associated with fibrous filters [8]. Less attention 

is given to the practical modelling of carryover rate, which is the primary purpose of the filter design and operation. 

Additionally, the carryover rate is directly related to the performance and efficiency of the filters in numerous research 

studies. In this context, the study by [9] focuses on improving filtration performance while minimizing energy 

consumption in Heating, Ventilation, and Air Conditioning systems by looking at initial pressure drop and dust-holding 

capacity. They developed empirical models to predict filtration carryover performance based on factors such as fiber 

diameter, filtration velocity, pleat depth, and pleat density. The empirical models were validated using a full-scale air 

filter test experiment. Hubbard et al. [10] investigate the efficiency of fibrous filters in the viscous inertia transition flow 

regime by conducting low-pressure air experiments. They used normal distribution particle sizes of 2 − 1μm of sodium 

chloride and iron nano agglomerate as the aerosol. Leung and Hung [11] investigated the pressure drop and filtration 

efficiency under continuous loading of sub-micron aerosol particles in fibrous filters, and they developed a semi-empirical 

model to describe the pressure drop across a fibrous filter under continuous loading conditions. The performance of the 

various fibrous filters reviewed in the literature emphasizes the influence of the filter's inherent properties, such as fiber 

orientation, fiber width, porosity, and packing density, as well as the flow parameters, on the deposition of aerosol 

downstream [12]. In a production setting where the objective is to design filters with optimal performance for varying 

flow conditions and applications, it will be imperative to relate these factors. The fibrous molding parameters, such as 

injection pressure, fiber mix density, fiber width, and orientation, will provide invaluable information for such correlation. 

Dhaniyala and Liu [13] investigated the variation of packing density on the performance of nonuniform fibrous filters 

and emphasized the importance of filter inherent properties in determining filtration efficiency for detecting aerosols 

downstream. 

Jackiewicz et al. [14] investigate the enhancement of aerosol particle filtration using nanofibrous media in fibrous 

filters. The research focuses on enhancing the initial filtration efficiency while maintaining a low pressure drop across 

the filter. The paper primarily addresses how the fiber diameter and filter porosity, crucial characteristics of the filter 

structure, impact filtration performance. The performance of these filters was evaluated based on two key metrics: initial 

pressure drop and filtration efficiency [14]. The study found that nanofibers significantly improve filtration efficiency 

without causing a prohibitive increase in pressure drop. By using fibers with diameters below 1 μm, the filter’s 

performance was enhanced, particularly in capturing the most penetrating particle size (MPPS). Pan et al. [9] examines 

how the architecture of fibrous filters, particularly nanofibers, contributes to particle filtration and potential carryover 

issues. This simulation-based study provides insights into optimizing filter designs to minimise carryover. A well-

accepted physics model for computing the carryover rate (particles from a fluid stream) of filters is known as the velocity-

based carryover model, which is based on the amount of oil bypassing the filters. The various mechanisms influencing 

particle capture are accounted for, and the model can be presented as follows.  

𝐶 = 𝐶𝑖𝑛𝑙𝑒𝑡 × (e
−η + 𝑘𝑉𝑛) (2) 

where, C represents the Predicted Carryover Rate (mg/m³), 𝐶𝑖𝑛𝑙𝑒𝑡 The inlet concentration model can be calculated based 

on the flow rate, Q, as 𝑎𝑄𝑏 , a and b are optimisation parameters. 𝑘𝑉𝑛 is the correction term based on velocity, V to adjust 

the turbulence in the flow, where k and n are optimisation constants. The filtration efficiency, η was computed using the 

standard filtration efficiency model equation as:  

η = 1 − 𝑒
−(
𝑄𝐿
𝜌𝐷

)
 (3) 

where Q is the flow rate in (m3/s), L is the filter length in meters, ρ is the fluid density in kg/m3, and D is the filter diameter 

in meters. The power of the exponent, also known as the filtration coefficient, β, is influenced by three mechanisms of 

inertial impaction, interception, and diffusion. Larger particles deviate from airflow streamlines and collide with filter 

fibres due to inertia, while medium-sized particles follow the airflow but contact fibres through interception. On the other 

hand, smaller particles undergo random motion due to gas molecule collisions, increasing their chance of striking a fibre 

through diffusion [15]. Although physics-based models provide valuable insights into filtration behavior, the assumption 
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of a uniform particle distribution, steady-state flow, and idealized fiber geometry would oversimplify the approach, which 

might lead to unexpected errors [16]. 

In recent years, soft computing and data-driven approaches have been applied to modelling and predicting filter 

performance. Piotrowski and Napiorkowski [17] developed a hybrid model using Gradient Boosted Regression Tree 

(GBRT) and differential evolution (DE) to predict pressure drops in sand filters used in micro-irrigation systems. Balcilar 

et al. [18] employed an ANN model to classify filter sizes and predict differential pressure across a filter. Beckman et al. 

[19] discuss the various analytical approaches for predicting air filtration efficiency and air flow resistance, including the 

Single Fibre Efficiency Theory (SFE). They used artificial simulated media and a convolutional neural network (CNN) 

to predict the performance of a filter based on SEM images. To this end, no study has correlated key process parameters 

for the reliable modeling of carryover rate using any soft computing approaches, such as machine learning. In this study, 

ten process parameters were correlated with the oil carry-over rate downstream, and practical models to predict this 

important parameter have been developed.   

2.  MATERIALS AND METHODS 

The method used in this work involves a well-designed experiment of the moulding process that produces the filter. 

This is followed by porosity testing to determine the filter's porosity and permeability. The produced filters are then tested 

in an application test experiment. The development of numerical modelling follows this via machine learning to correlate 

the production process to the carryover rate of oil mist downstream. The developed model can be used to predict the 

performance of filters with varying moulding parameters. The filter production process is illustrated in Figure 1, where 

in Stage A, fibre filters are produced using the injection moulding process. The produced filters are shown in Figure 1(b), 

and they are impregnated with resin in Figure 1(c).  

   
(a) (b) (c) 

Figure 1. Fibrous filter moulding process: (a) Injection rig, (b) Moulded tube, and (c) Resin impregnation 

2.1 Experimental Setup 

Injection moulding is the manufacturing process used to produce the fibrous filters used in this study. This is a flow-

forming process at high pressure where both fibres and polymers exhibit bulk flow [1]. It is one of the most widely used 

methods in the production of plastics and reinforced fibrous parts. The fibrous filters used in this study are made from 

borosilicate glass fibre. The fiberglass of known fiber properties is weighed on a balance and mixed in a slurry tank to 

obtain a predetermined composition. Highly concentrated acid is added to the mixture to maintain its acidity. The weight 

of the fibreglass per unit of water is measured and recorded, as well as the pH of the mixture. The mixed slurry is passed 

to a moulding tank and pumped through a patented moulding technology to mould the fibrous tube in a moulding rig. The 

moulding process is controlled by the pressure with which the slurry is injected into the rig. This pressure is referred to 

as the moulding or injection pressure. The moulded tube is impregnated with an acrylic binder for better structural rigidity. 

The impregnated tube is then cured in an oven to obtain a dry moulded tube. The process is well-controlled to ensure 

uniformity in the production of filters for different batches. The fibre width is controlled by ensuring that fibre glass with 

predetermined properties is used. 

The experiments in this paper were conducted using the test rig at the PSI Global Limited laboratory. Figure 2 shows 

the setup of the test rig designed to measure the oil carryover downstream of the air/oil separator. The rig consists of a 

vacuum pump with a test chamber. The moulded fibrous filter is fitted to the vacuum chamber during testing. The 

instrumentation part of the rig consists of a flow meter to measure the flow rate of the fluid that is introduced to the test 

chamber. A vacuum pressure manometer and thermometer are used to measure the vacuum pressure and the temperature 

in the vacuum. The differential pressure gauge measures the pressure drop across the filter, and the dust tract aerosol 

photometer records the aerosol carryover at the exhaust. The vacuum pump is loaded with the manufacturer's 

recommended mineral oil. The experiment is started by saturating a fibrous filter in the testing chamber of the vacuum 

pump. This saturation process is necessary to simulate the filter's operation at maximum saturation with oil. A mixture of 

air and suspended particles of mineral oil is introduced into the testing chamber. The typical challenge going into the filter 
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ranges from 1000 to 15000 mg/m³, depending on the size of the vacuum pump. However, for the vacuum pump used in 

this experiment, the challenge is 3574 mg/m3. The measuring instruments are switched on at the end of the saturation 

process, and the oil carryover, as well as the flow, vacuum, and operating parameters, are recorded. A gravimetric study 

is used to benchmark the values of carryover recorded by the photometer according to ISO 29463. Filtration efficiency is 

a key indicator of filter performance. The filter efficiency measures the filter's ability to remove particles from a fluid 

effectively. A highly efficient filter has very low carryover, as most of the particles have been successfully removed by 

the filter. The efficiency and carryover are inversely related. To calculate the efficiency of the filter, the challenge, which 

is the mass of oil entrained by the gas, is correlated with the mass of entrained oil after filtration. In this experiment, the 

carryover of oil aerosol after the filtration is measured using the duct track aerosol photometer, as shown in Figure 2.  

 

Figure 2. Fibrous filter testing developed rig in PSI Global 

2.2  Variables and Data Preparation 

The study takes into account both the fibrous tube moulding parameters and the testing quality parameters. The three 

process parameters that control the characteristics of the moulded filters are the injection pressure of the moulding rig, 

slurry pH, and the pad weight, which represents the mass of fibre per unit volume of water in the slurry tank.  The injection 

pressure and pad weight represent the packing density and porosity of the fibrous filters. The end-test differential pressure 

and end-test efficiency are quality control parameters. The vacuum pressure, flow rate, differential pressure, and exit 

velocity are test parameters, and the carryover is a response parameter. Table 1 presents the collected parameters obtained 

during the experimental measurements for one of the filter samples. The experiment was conducted with various test 

samples, resulting in 224 data points collected. The details of the statistical analysis of the data in Table 2 indicate that 

the data cover a wide range, ensuring the comprehensiveness of the experimental data. The data is pre-processed and 

cleaned to remove empty cells and outliers using the Z score, with a standard quartile of -3 and 3 [20].  

𝑍 =
𝑋 − 𝜇

𝜎
 (4) 

where Z indicates the number of experimental data points that deviate from the mean, µ, and 𝜎 is the standard deviation 

of the data set. A value with a Z-score greater than +3 or less than -3 is considered an outlier. After applying the method, 

two data points that fell outside the acceptable range were removed, and the cleaned dataset was used for analysis and 

modelling. The visual representation of the distribution of the Carryover rate (mg/m³) data is presented in Figure 3. The 

graph indicates that the majority of the data falls below the normal distribution line, making it suitable for developing a 

data-driven approach.  

 
Figure 3. The distribution of the carryover rate in the collected experimental data 
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The impact and relevance of each collected variable are determined. In this work, the Pearson rank correlation 

coefficient is shown in Eq. (5). 

𝑟𝑥𝑦 =
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)
𝑛
𝑖=1

√∑ (𝑥𝑖 − �̅�)
𝑛
𝑖=1

2√∑ (𝑦𝑖 − �̅�)
𝑛
𝑖=1

2

 
(5) 

where n is the sample size, 224 samples collected from the experiments, xi and yi are the individual sample points indexed 

with i, and�̅� and �̅�  are sample mean values. To detect outliers in the data, the z-score method, with an absolute threshold, 

has been employed. The z-score method standardizes the variable by subtracting its mean and then dividing by its standard 

deviation.  

Table 1. Sample example of the collected data for one filter 
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6973-19 50 6.3 2.98 3.44 86 0.0007 1019      0.0 0.010     4.4 0.012 

 50 6.3 2.98 3.44 86 0.0007 950      6.5 0.036   69.0 2.000 

 50 6.3 2.98 3.44 86 0.0007 900      9.5 0.053   88.0 1.750 

 50 6.3 2.98 3.44 86 0.0007 800    19.0 0.110 122.2 1.740 

 50 6.3 2.98 3.44 86 0.0007 700    26.3 0.150 158.5 1.750 

 50 6.3 2.98 3.44 86 0.0007 600    38.9 0.220 194.9 1.640 

 50 6.3 2.98 3.44 86 0.0007 300    76.0 0.420 300.3 1.300 

 50 6.3 2.98 3.44 86 0.0007 35 112.4 0.620 393.1 0.840 

Table 2. Statistical description of the experimental data 
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Mean 46.8 5.65 3.07 1.74 68.83 0.00039 657 16.50 0.076 122 0.94 

Median 47.5 5.50 3.10 1.57 69.00 0.0004 700   6.10 0.019 105 0.84 

Mode 45.0 5.50 3.10 0.83 63.00 0.0005 900   0.00 0.000 125 1.31 

Standard Deviation 1.97 0.25 0.047 0.72   5.75 0.0002 321 25.00 0.150 91.2 0.61 

Kurtosis -1.23 1.62 -1.13 -0.2   1.13 -0.104 -0.52   6.89 7.560 0.019 0.82 

Skewness 0.48 1.68 -0.83 0.54   1.04 0.35 -0.86   2.67 2.840 0.75 0.81 

Minimum 45 5.50 2.98 0.60 60 0.00 10 0 0.000 0.04 0.007 

Maximum 50 6.30 3.10 3.44 86 0.0008 1020 123 0.680 393 3.34 

2.3 Machine Learning Models 

Among the many machine learning (ML) models available in the literature, this study adopts MLR and Multi-Layered 

Artificial Neural Networks (MLANN) for predicting the carryover rate in porous filters. MLR is a well-established 

statistical method that provides clear insights into the relationship between predictor variables and the response variable 

(carryover rate). Additionally, it is computationally efficient, requiring fewer data points compared to more complex ML 

algorithms such as Random Forest (RF) or Support Vector Machines (SVM). Moreover, MLR expresses the relationship 

between input parameters and the output (carryover rate) in the form of a linear correlation, making it easy to interpret 

and understand. On the other hand, MLANN can capture nonlinear relationships, which are expected in a fluid filtration 

system where multiple variables interact in a complex manner. The model is particularly suitable for optimizing the 

carryover rate, as it can learn hidden patterns in the data, thereby enhancing predictive accuracy. Both MLR and MLANN 

have been successfully applied in previous studies, such as in predicting hydraulic conductivity in porous soils [21] and 

in modeling flow interactions in highly porous hydrocarbon reservoirs [22]. Their demonstrated effectiveness in similar 

domains justifies their selection for this study. In multiple linear regression, the response variable is predicted by several 

predictor variables. In this work, the average oil carryover in mg/m3 is predicted to the mixture pad-weight (g), inverter 

frequency (Hz), pH, injection pressure, end test differential pressure (mbar), end test efficiency, vacuum pressure (mbar), 
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flow rate (Nm3/h), and the differential pressure (mbar). The equation produced from the regression modelling is of the 

form: 

𝑌𝐶𝑂 = 𝐾1𝑋1𝐹 + 𝐾2𝑋𝑃𝐻 + 𝐾3𝑋1𝑃 + 𝐾4𝑋𝐸𝐷𝑃 + 𝐾5𝑋𝐸𝑇𝐸 + 𝐾6𝑋𝑉𝑃 + 𝐾7𝑋𝐹  (6) 

where Xn is the corresponding prediction parameters, K1-n are the constants of the equation and YCO is the predicted output 

carryover downstream of the separator. Another model utilized in this study is artificial neural networks. ANNs are a 

form of artificial intelligence, highly nonlinear approximators that mimic the nervous system in the human body. These 

networks can learn, store, and recall information, functioning as massively parallel distributors. ANNs are recognized for 

their generalization capability, adaptability to learning, and ability to handle large amounts of information. Additionally, 

ANNs excel at modelling data with highly nonlinear relationships between variables. Unlike other algorithms, such as 

decision trees, ANNs tend to perform better if sufficient data is provided during the training phase. The most popular type 

of neural network is the multilayer perceptron (MLP), which consists of several layers, including an input layer, a hidden 

layer, and an output layer. Typically, a single hidden layer in an MLP is sufficient for generalising most problems. For 

more complex problems, additional layers with varying numbers of neurons can be added to enhance accuracy. Layers 

are connected by links known as weights, which are numeric values that define the strength or weakness of these 

connections. The output of each layer is determined by combining the weighted sum of the inputs and a bias value. Once 

this output is computed, it is processed through an activation function before being passed to the next layer. The activation 

function establishes a mathematical connection between the input and output, commonly taking forms such as linear, 

sigmoid, or hyperbolic tangent functions, as shown in Equation 6. These functions play a crucial role in defining the 

behaviour and transformation of the data as it flows through the network. 

{
 
 
 

 
 
 

Linear = 𝑓(𝑥) = 𝑥

Sigmoid =  𝑓(𝑥) =
1

1 + 𝑒−𝑥

Sinusid = 𝑓(𝑥) = sin(𝑥)

Tansig = 𝑓(𝑥) =
2

1 + 𝑒−2𝑥
− 1

Arctan = 𝑓(𝑥) = 𝑡𝑎𝑛−1(𝑥)

 (7) 

The mathematical representation of an MLP network, comprised of one hidden layer with a sigmoid function, is shown 

in Eq. (8). 

Output = purelin (𝑤2 × (sigmoid(𝑥𝑤1 + 𝑏1 ) + 𝑏2 )) (8) 

where b1 and b2 are biases, and w1 and w2 are the weight matrices for the middle and output layers, respectively. The 

learning process in an ANN involves adjusting the weights and biases to establish a relationship between the predicted 

and desired outputs [23-29]. Initially, the trained model may be highly unstable and perform poorly due to incorrect values 

of weights and biases [30]. Throughout the learning process, the weights and biases are updated with each iteration, 

reducing the cost function until the satisfactory criteria are reached. After constructing the model and determining the 

number of neurons in the hidden layer, initial training is conducted using specific training algorithms, and the model is 

then optimized using specific optimization algorithms. In this study, we initially constructed an ANN topology, illustrated 

in Figure 4, for predicting the oil carryover rate in the filters.  

 
Figure 4. The proposed multilayer neural network to predict the carryover rate 

In the developed ANN topology, the first layer, referred to as the input layer, corresponds to the input data. The middle 

layer is the brain of the network, where the computations are performed, and the last layer generates the network’s output. 
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An MLP with one hidden layer is generally capable of handling a wide range of problems with sufficient accuracy. 

However, in cases where enhanced performance is needed, adding more hidden layers can be beneficial [31, 32]. The 

number of hidden layers and neurons required is highly dependent on the problem's complexity, and these values are often 

determined through empirical methods [33]. This study identified the optimal MLP structure, including the configuration 

of hidden layers and neuron counts, using a trial-and-error strategy. 

2.4 Optimisation Mechanisms  

2.4.1 Levenberg–Marquardt algorithm 

The Levenberg–Marquardt (LM) algorithm is one of the most commonly used optimisation techniques for calculating 

weights and biases in neural network architectures [26, 34]. Originally introduced by [35], the LM algorithm is renowned 

for its fast convergence and superior performance in establishing relationships between input and output variables 

compared to traditional gradient descent methods. The network performance is determined through the sum of the squared 

errors, and the Hessian matrix can be calculated as follows. 

{
𝐻 = 𝐽𝑇𝐽

𝑔 = 𝐽𝑇𝑒
 (9) 

In this context, J represents the Jacobian matrix, which consists of the first-order derivatives of the network's error to 

the weights and biases, e is an error vector, and H is the Hessian matrix. The LM algorithm uses this approximation to 

establish the relationship between the network's input and output variables, and it updates the weights in each iteration 

accordingly. 

𝑊𝑘+1 = 𝑊𝑘 − [𝐽
𝑇
𝑊𝑘
𝐽𝑊𝑘

− 𝜇𝐼]
−1

× 𝐽𝑇𝑊𝑘
𝑒𝑊𝑘

 (10) 

where W denotes the network's weights during the k+1th and kth iterations. Here, I refer to the identity matrix, while µ acts 

as a damping parameter or stabilizing constant. The key distinction between the LM method and the Gauss-Newton 

approach lies in this stabilizer, which allows the LM algorithm to adapt its search strategy [36]. A comparative analysis 

by [17] found that the LM algorithm surpassed eight other evolutionary algorithms in training artificial neural networks.  

2.4.2 Bayesian-Regularization algorithm 

The minimization of the cost function in an MLP neural network using the Levenberg–Marquardt algorithm is 

achieved through the backpropagation method. This involves minimizing the sum of squared errors through an iterative 

process with a defined stopping criterion. This criterion is determined using a validation dataset that is not involved in 

the development of the trained model [37]. The iteration process is halted when the squared error for the validation dataset 

reaches its minimum. Continuing training beyond this point would result in overfitting the model, leading to increased 

squared error and reduced accuracy. Additionally, the validation dataset is selected randomly, and repeating the entire 

computational procedure can lead to overfitting [14]. To address this issue, [30] proposed the Bayesian-Regularization 

algorithm for neural networks, which does not require a validation dataset. Instead, this method incorporates Bayes' 

theorem into the regularization scheme by adding two additional hyperparameters (β and α) to the cost function, Sw, as 

follows.  

𝑆𝑤 = 𝛽∑[𝑦𝑖 − 𝑓(𝑋𝑖)]
2

𝑁𝐷

𝑖=1

+ 𝛼∑𝑤𝑗
2

𝑁𝑤

𝑗=1

 (11) 

where NW represents the number of weights, yi is the number of experimental data, and f(Xi) is the model's output within 

the matrix of ND. The weight matrix for the training dataset is indicated by wj. Random numbers between the range of 

0<α<10 and 100<β<500 for the hyperparameters α and β. As the iterations progress, these values are optimized to 

minimize the cost function effectively.  

2.4.3 Particle swarm optimization 

Inspired by the natural behaviours of swarming and flocking seen in birds, fish, and insects, an evolutionary algorithm 

called Particle Swarm Optimization (PSO) was introduced by [38]. A common analogy to illustrate the core concept of 

PSO is the way a flock of birds searches for food. Although none of the birds know the exact location of the food, they 

are all generally aware of its approximate distance. Initially, they move toward the food source at random speeds, but 

over time, based on their own flying experiences and observations of other birds, they start following those closest to the 

food. This process continues, with the group gradually updating their positions until they successfully find the food source. 

In PSO, the fitness function measures the distance between the birds and the food. The algorithm begins with a set of 

random solutions, referred to as particles, which are distributed throughout the search space. Each particle has a random 

velocity and position. In each iteration of the optimization process, the fitness function is applied to assess the fitness of 

each particle [39]. The best position that each particle has visited, referred to as the personal best (pbest), is identified, as 

well as the global best (gbest), which is the best position achieved by the entire swarm. The velocity, V and position, X, 

of each particle are updated using two specific equations to adjust their movement through the search space. This iterative 

process continues until the particles converge on an optimal solution. 
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{
𝑉𝑖(𝑡 + 1) = 𝑤. 𝑉𝑖(𝑡) + 𝑐1. 𝑟𝑎𝑛𝑑1. (𝑝𝑏𝑒𝑠𝑡𝑖(𝑡) − 𝑥𝑖(𝑡)) + 𝑐2. 𝑟𝑎𝑛𝑑2(𝑔𝑏𝑒𝑠𝑡𝑖(𝑡) − 𝑥𝑖(𝑡))

𝑋(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝑉𝑖(𝑡 + 1)        (𝑖 = 1… .𝑁)
 (12) 

where Vi represents the initial velocities (from the previous iteration “t”), while t=1 indicates the new velocities. The term 

w denotes the inertia weight for each particle within a population of N particles. The constants c1 and c2 are learning 

factors that define the relative influence of cognitive and social components. The cognitive term reflects the particle's 

individual experience, while the social term captures the collaboration among particles (a collective effort). To begin the 

iterations, two random numbers (rand1 and rand2) are introduced, both ranging between 0 and 1. The algorithm's 

exploration efficiency is evaluated using an updated weight function, and the optimal weights are determined by 

employing a global minimum search mechanism. 

3. RESULTS AND DISCUSSION 

3.1 Effectiveness of the Coalescing Filters 

The above-explained machine learning models have been applied to predict the performance of air/oil separators in 

vacuum applications in terms of the remaining oil downstream (carryover). In addition, a physics-based model known as 

the Velocity-Based Model is also applied to the same task. The effectiveness of coalescing filters in oil removal is defined 

according to ISO 12500. Figure 5 shows the performance of the moulded tubes from the application test experiment of 

section 2. The coalescing separators studied in this work all exhibit a very high oil removal rate. These are considered 

highly optimal air/oil separators, as per ISO 12500, with an efficiency above 99.995%. Figure 5 shows the oil carryover 

downstream at varying air velocities for four different separators with injection pressures ranging from 0.6 to 3.44 bar. 

At each of the tubes, the carryover is maximum when the flow velocity is less than 2, and decreases continuously as the 

flow velocity increases. This is consistent with the vacuum pump operating principles; as the flow velocity increases, the 

mass concentration of the aerosol within the air decreases. Additionally, the increased flow velocity increases the 

Reynolds number, which in turn ensures the reduction of oil aerosol from settling accordingly. Figure 5 also illustrates 

the effect of injection pressure on oil carryover. Higher injection pressure will mean the fiber materials are closely packed 

together, limiting the pore spaces. In addition, due to the effect of using a binder to hold these fibers tightly together, the 

more pore spaces in the low-injection-pressure region, the more likely they are to be filled by the binder, leading to low-

porosity media. This would ultimately affect the carryover rate, and understanding the right balance between injection 

pressure and other moulding parameters to produce more effective separators will require models that correlate the input 

parameters with the output (carryover rate). 

 

Figure 5. Performance of moulded coalescing filters 

3.2 Proposed Carryover Rate Models  

To predict oil carryover downstream, an MLR model and an ANN were developed. The proposed MLR model is 

expressed as: 

𝑐𝑎𝑟𝑟𝑦𝑜𝑣𝑒𝑟 𝑟𝑎𝑡𝑒 =  −60 −  0.524𝑋𝐼𝑃 +  12.52𝑋𝑝𝐻 +  4.10𝑋𝑃𝑊 +  0.000280𝑋𝑉  
− 0.00216𝑋𝐹) 

(13) 

where XIP, XpH, XPW, XV, and XF are inlet pressure, pH of the fibre glass solution, pad weight, exit velocity, and inventor 

frequency, respectively. The coefficient of determination, R² = 0.8312, and MSE = 0.13185, indicate that the MLR model 

captures most of the variance in the dataset but may struggle with nonlinear relationships. To assess model reliability, an 

Analysis of Variance (ANOVA) was conducted, and the results are presented in Table 3. 
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Table 3. The results of the ANOVA analysis of the input variables 

Source  DF Adj SS Adj MS F-Value P-Value 

Regression   5 12.3618 2.47237 25.87 0.000 

Injection Pressure (Bar)   1   0.4022 0.40216   4.21 0.043 

pH   1   0.2205 0.22053   2.31 0.133 

Pad Weight (g)   1    0.5480 0.54804   5.73 0.019 

Vacuum (mbar)   1   0.1681 0.16807   1.76 0.188 

Flow (Nm3/h)   1   0.1006 0.10063   1.05 0.308 

Error   1   7.9326 0.09557 - - 

Lack of fit   1   7.8782 0.09608   1.76 0.546 

Pure Error  83   0.0545 0.05445 - - 

Total 88 20.2945  - - 

The result of the ANOVA provides a comprehensive breakdown of the sources of variation in the dataset, allowing 

us to assess the significance of different predictors on the response variable. This discussion will interpret the key 

components of the ANOVA and their implications for the study. The F-value represents the overall significance of the 

model in the ANOVA, where a higher F-value indicates that the model explains a significant amount of the variance in 

the data. On the other hand, a p-value of the ANOVA indicates whether the observed results are statistically significant. 

If the p-value is less than 0.05, it suggests that the models’ inputs have a statistically significant impact on the output 

variable. The regression model is statistically significant (F = 25.87, p < 0.001), meaning the predictors collectively 

influence oil carryover. This indicates that the predictors collectively explain a significant portion of the variation in the 

response variable. The injection pressure has an F-value of 4.21 and a p-value of 0.043, indicating that it is statistically 

significant at the 5% level. This suggests that variations in injection pressure have a meaningful impact on the response 

variable (oil carryover). On the other hand, the pH, with an F-value of 2.31 and a p-value of 0.133, is not statistically 

significant at the 5% level of significance. This implies that pH variations do not significantly affect the response variable 

in this model. In addition, the pad weight (g), with an F-value of 5.73 and a p-value of 0.019, showed that it makes an 

important contribution to the developed models. Moreover, both vacuum pressure (mbar), with an F-value of 1.76 and a 

p-value of 0.188, and flow rate (Nm/h), with an F-value of 1.05 and a p-value of 0.308, show that they are statistically 

insignificant for the model. The error term, with a sum of squares of 7.9326 and a mean square of 0.09557, represents the 

variation not explained by the model. The lack-of-fit test, with an F-value of 1.76 and a p-value of 0.546, is not significant, 

indicating that the model fits the experimental data well and that the residual variation is primarily due to random error 

rather than poor model performance.  

The result of ANOVA suggests that there is no obvious heteroscedasticity (non-constant variance) in the model’s 

errors, indicating that the assumption of constant variance is met. The ANOVA (Table 3) collectively suggests that the 

assumptions of normality, constant variance, and independence of errors are reasonably met, with minor concerns about 

potential outliers. The significant predictors, injection pressure and pad weight, should be considered critical factors in 

the study, as they have a meaningful impact on the response variable. The non-significant predictors, while not influential 

in this model, may still be relevant in other contexts or with different datasets. This statistical analysis aligns with the 

Pearson correlation results (Figure 6), confirming that injection pressure and pad weight should be prioritized in filter 

optimisation and for practical prediction of the carryover rate. Additionally, this suggests that any future physics-based 

models for predicting oil mist carryover should consider pad weight and injection pressure as two key parameters, as they 

have a significant impact on the accuracy and reliability of the prediction. The other variables are essential in the 

production and performance of these moulded fibrous filters. Therefore, more robust models are required that can predict 

oil carryover by relating production to performance parameters. 

 
Figure 6. The impact of the input variable in the experiments on the carryover rate 
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To develop a robust model that captures nonlinearity in the database, an MLANN topology based on feed-forward 

neural networks was created. The network was tuned by varying the number of hidden layers and the number of neurons 

in each layer. A trial-and-error approach was employed for this purpose. As a result, a total of 120 neural networks were 

developed: 60 networks optimized using the LM algorithm and 60 optimized using Bayesian Regularization (BR). The 

performance of these networks was assessed using the statistical parameter of Mean Squared Error (MSE) across the 

training, validation, and testing stages.  

Hence, to ensure the robustness of the ANN models, a systematic validation process was followed. Before training, 

the dataset was pre-processed by normalizing input features and splitting the data into training, validation, and testing 

sets. This approach ensures that the models generalize well and prevent overfitting. The testing errors were compared to 

select the best models among the developed networks, following the guidelines of [40] and [28]. This process, known as 

cross-validation, was used to assess the networks' generalization ability on unseen data. Based on the validation set's 

MSE, the best architectures were identified as 10–20–1 and 10–35–1 for the LM and BR algorithms, respectively. In this 

architecture, the first number represents the input nodes, the second represents the neurons in the first hidden layer, and 

the last indicates the output nodes. The networks with one hidden layer performed the best for the dataset used in this 

study. This validation methodology strengthens the credibility of our findings by ensuring that the selected models were 

rigorously evaluated before deployment. For the data utilised in this study, the networks with one hidden layer performed 

the best. The graphs in Figure 7 illustrate the performance of the feedforward neural networks constructed using the LM 

and BR algorithms. Two statistical parameters, the mean square error and the coefficient of determination (R), were 

utilised to assess the performance of the developed models. MSE quantifies the average squared differences between the 

predicted and actual carryover rates, where a lower MSE indicates better model accuracy. The coefficient of determination 

measures how well the model explains the variability in the data. A value close to 1 means strong predictive ability, while 

a lower value suggests poor correlation.  

 

 

 

 

 

 

 

 

 

 

Figure 7. The performance of feed-forward neural networks in terms of MSE 

 

Table 4. The statistical performance of the developed models in predicting the carryover rate of the filters 

Model  MSE R 

ANN – PSO (10-5-1) 0.1954 0.671 

ANN – LM (10-15-1) 0.0685 0.869 

ANN – BR (10-20-1) 0.0648 0.942 

Multiple regression model 0.1319 0.831 

Velocity Based model (VBM) 0.2593 0.537 

Table 4 shows the performance of each model in terms of MSE and R. The results show that the network with a 10–

20–1 (BR) structure has the best performance among all, with the lowest MSE of 0.0664. Particle swarm optimisation 

was applied to optimise further the ANN that had been developed. This was applied to the different architectures, starting 

with the 10-5-1. However, the mean square error continued to increase as the number of neurons increased. The PSO 

optimisation of the ANN was therefore stopped when the mean squared error increased from 0.44 to 1.68. The PSO 

algorithm exhibits sub-optimal performance for this application, achieving a correlation coefficient R of 0.671. In contrast, 

the Artificial Neural Network with Bayesian Regularisation (ANN-BR) demonstrates superior regression accuracy, with 

a correlation coefficient of 0.942 and MSE of 0.0664. PSO is a population-based optimization algorithm that excels in 

finding global optima in complex search spaces. However, it may struggle with convergence speed and precision in 

regression tasks, especially when the problem space is highly nonlinear. The PSO is based on particle movement across 
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the search space, which makes it inefficient for file tuning, and it can also become stuck in local minima. The ANN-BR, 

on the other hand, is designed explicitly for regression tasks and it optimises model weights in a way that balances 

complexity and accuracy. The BR helps prevent overfitting by incorporating regularization terms in the cost function, 

leading to better generalization and more accurate predictions. Neural networks, particularly those with Bayesian 

Regularization, are adept at modelling complex, nonlinear relationships due to their ability to learn from data and adjust 

weights accordingly.  

The performance of the best ML model (ANN-BR) was compared to the well-established Velocity-Based Model 

(VBM), a physics-based approach. Both statistical (Table 4) and graphical (Figure 8) error analyses demonstrated that 

the ANN-BR model outperforms the physics-based model, achieving greater accuracy and reliability. The problem 

addressed in this work is inherently nonlinear, as the process, testing, and performance parameters do not exhibit a direct 

linear relationship. For instance, the pad weight and the injection pressure, which are the two process parameters that 

essentially control the packing density and porosity of the fibrous filters, could proffer varying design and performance 

scenarios for the moulded tubes. Other parameters, such as the capillary effect and the rate of oil imbibition of the aerosol 

particles across the tubes, as well as permeability, depend closely on the flow rate and vacuum pressure upstream of the 

tube. Considering these factors individually could lead to the duplication of experimental tests that are not the focus of 

this work. However, the pad weight and injection pressure have controlled the tube porosity and permeability. An 

application test experiment has been designed to test varying operating flow conditions, ranging from when the vacuum 

pump is closed to when it is fully open. This way, the experimental design is robust and captures both the process 

parameters and the performance parameters. To ensure the validity of our regression models, we tested the assumptions 

of normality, constant variance (homoscedasticity), and independence of errors using both graphical and statistical 

methods.  

  
PSO BR 

  

  
LM Velocity-Based Model 

Figure 8. The performance of the developed ANN optimized by PSO, LM, and BR 

4. CONCLUSIONS 

In this study, the carryover rate, which refers to the remaining oil downstream in porous separators (filters) and serves 

as a critical performance indicator, was modelled as a function of nine moulding parameters. A dataset of 224 

experimental observations was utilized to develop machine learning-based predictive models, including a multilayer ANN 

and a multi-linear regression model. To optimize the ANN architecture, different optimization algorithms, such as LM, 

BR, and PSO, were applied across various hidden layer configurations. A total of 120 multilayer neural networks were 

trained and evaluated. The best-performing network, as determined by the lowest MSE and highest R-value (correlation 

coefficient), was identified as ANN-BR (10-20-1). The predictive accuracy of the proposed ANN-BR model was 

compared with that of both the multilinear regression model and the velocity-based model. The results demonstrated that 
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ANN-BR significantly outperformed all other models, achieving the lowest MSE of 0.0648 and the highest R-value of 

0.942, confirming its reliability in predicting the downstream oil carryover rate in filters. These machine-learning models 

can be directly implemented as predictive tools to replicate time-consuming and costly filtration experiments. This study 

offers valuable insights for process engineers seeking to optimize the performance of molded air/oil separators and 

enhance existing manufacturing processes through the application of machine learning techniques. Additionally, these 

models can be used to dynamically fine-tune process parameters, ensuring compliance with evolving industry standards 

and enhancing overall operational efficiency. 
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