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ABSTRACT - Hybrid flow shop scheduling (HFS) involves optimizing production processes, 
where different manufacturing stages have varying capacities, combining parallel machine 
and flow shop scheduling to improve efficiency and reduce production time. Incorporating 
energy considerations into HFS problems has emerged as a critical area of research, driven 
by the growing emphasis on environmental sustainability and cost-effectiveness in 
manufacturing operations. This study addresses the hybrid flow shop scheduling with energy 
consideration (HFSE) problem, aiming to simultaneously optimize makespan and total energy 
consumption, two conflicting objectives. An Artificial Bee Colony (ABC) algorithm is proposed 
as an effective solution methodology for tackling the HFSE problem. Through an extensive 
computational experiment involving a well-known benchmark suite, the ABC algorithm 
demonstrated remarkable performance, consistently outperforming several popular 
metaheuristic algorithms, including Genetic Algorithms, Particle Swarm Optimization, Memetic 
Algorithms, and Whale Optimization Algorithm in 75% of the problems. The proposed 
approach's ability to efficiently explore the search space and balance the trade-offs between 
makespan minimization and energy consumption reduction contributed to its superior results. 
The ABC algorithm reduces makespan and energy consumption by 2.95% and 3.43%, 
respectively. This finding suggests potential benefits for manufacturing operations, including 
decreased production time and lower operational costs.  
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1. INTRODUCTION 
Hybrid flow shop scheduling (HFS) is a production scheduling problem that combines elements of flow shop and 

parallel machine scheduling. In a flow shop, jobs must pass through multiple production stages in a specific order, 
ensuring a streamlined and sequential process [1]. On the other hand, parallel machine scheduling involves assigning jobs 
to multiple identical machines operating at the same stage, allowing for the simultaneous processing of different tasks 
[2]. This hybrid approach integrates the sequential nature of flow shops with the flexibility of parallel machine scheduling, 
making it suitable for various manufacturing environments [3]. Historically, HFS has been a well-researched area, with 
numerous studies addressing different aspects of the problem [4]. These studies have explored various strategies and 
algorithms to optimize scheduling to improve efficiency and reduce production times in industries such as electronics, 
automotive parts, plastics, and garments [5-7]. The primary focus of these traditional approaches has been minimizing 
makespan, reducing job tardiness, and maximizing machine utilization [8]. Recently, researchers have begun integrating 
energy considerations into HFS, driven by the growing importance of environmental sustainability, cost savings, and 
regulatory compliance [9]. This new dimension, known as Hybrid Flow Shop Scheduling with Energy Consideration 
(HFSE), aims to optimize the production schedule and the energy consumption associated with manufacturing processes. 
Including energy factors reflects a broader awareness of industrial operations' environmental impact and economic 
implications. However, integrating energy considerations into the HFS  problem significantly increases complexity [10]. 
Unlike traditional flow shop scheduling, HFSE necessitates a meticulous investigation to identify suitable and efficient 
algorithms for optimization. The dual objectives of minimizing makespan (total completion time) and optimizing energy 
consumption stand a remarkable challenge [11]. Notably, as the problem size grows, finding optimal solutions becomes 
exponentially time-consuming due to the vast search space. Researchers continue exploring innovative approaches to 
balance production efficiency and energy conservation within the HFSE framework. 

The literature explores using Genetic Algorithms (GA) to optimize different objectives in the hybrid flow shop 
scheduling problem while accounting for energy consumption. Meng et al. [9] focused on minimizing total energy usage 
by developing an Improved Genetic Algorithm (IGA) that incorporated a new energy-conscious decoding method [9]. 
This approach aimed to enhance the energy efficiency of the scheduling solution. Schulz tackled the problem from a 
multiobjective perspective, simultaneously optimizing production, energy, and transportation costs [12]. Their GA 
implementation utilized a detailed matrix encoding procedure to address the non-deterministic polynomial-time hard 
(NP- hard) complexity, intelligent swap, and right-shifting procedures to enhance the algorithm's performance. More 
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recently, Lu et al. [13] proposed an Efficient Adaptive Genetic Algorithm (EAGA) that employed layered strategies and 
an enhanced adaptive adjustment method. This approach aimed to balance exploration and exploitation, ultimately leading 
to better convergence and higher-quality scheduling solutions while considering energy consumption. Jiang et al. [14] 
proposed an Energy-Oriented Multiobjective Optimization (EOMO) algorithm based on the Multi-Objective 
Evolutionary Algorithm Based on Decomposition (MOEA/D) framework to minimize tardiness and energy usage 
simultaneously. Their approach incorporated an external archive population (EAP), local search, and a discrete-event 
system (DES) simulation procedure to enhance algorithmic efficiency. More recently, researchers tackled the problem of 
optimizing production efficiency and energy consumption using an improved MOEA/D algorithm (IMOEA/D) [15]. 
Their contributions included a discrete integer encoding scheme, a heuristic decoding approach based on processing paths, 
and the introduction of a variable neighborhood search mechanism to enhance the local search capability, ultimately 
leading to better convergence and solution quality. Zhang et al. [16] tackled the multiobjective optimization of makespan 
and energy consumption using a novel particle swarm optimization (PSO) algorithm designed for efficient global search. 
Their approach employed a multi-group strategy to enhance the exploration capability. Additionally, two local search 
strategies were incorporated to exploit problem-specific knowledge. Notably, a Q-learning mechanism guided a variable 
neighborhood search, balancing exploration and exploitation during the optimization process. Luo [17] proposed a new 
multiobjective ant colony optimization (MOACO) algorithm to simultaneously optimize production efficiency and 
electric power costs. Their approach introduced a right-shift procedure to adjust the start times of operations, aiming to 
improve the quality of solutions. This work demonstrated the applicability of swarm intelligence techniques to the energy-
aware hybrid flow shop scheduling problem. 

Geng et al. [18] focused on minimizing makespan and energy consumption through an improved memetic algorithm. 
Their contributions included three heuristic rules for population initialization and various neighborhood search methods. 
These enhancements aimed to balance diversification and intensification, leading to better convergence and solution 
quality. Cai et al. [19] explored a shuffled frog-leaping algorithm (SFLA) for the multiobjective optimization of makespan 
and energy. Their cooperated SFLA approach featured an effective cooperation process between the best and worst 
memeplexes based on evaluation results. Additionally, an adaptive population shuffling mechanism was adopted to 
enhance search efficiency, potentially leading to improved scheduling solutions. In 2023, Wang et al. [20] proposed an 
improved multiobjective firefly algorithm (MO-FA) to simultaneously optimize makespan, energy consumption, and 
production stability in the hybrid flow shop scheduling environment. Their contributions included the implementation of 
a population updating rule inspired by the location updating law of fireflies, coupled with a variable neighborhood search 
mechanism to avoid premature convergence to local optima. They also introduced fast, non-dominated sorting and elite 
individual reserving strategies to effectively guide the population evolution process. By incorporating these 
enhancements, the improved MO-FA demonstrated superior performance in navigating the complex trade-offs between 
the three conflicting objectives, ultimately providing high-quality scheduling solutions that balanced makespan 
minimization, energy efficiency, and production stability. Despite a growing number of research addressing energy 
utilization in HFS, the proportion of studies focusing on energy considerations remains relatively small compared to the 
extensive work on traditional HFS problems. Additionally, the inherent complexity of the HFSE problem, characterized 
by its combinatorial nature, discrete decision variables, and conflicting objectives, explains the need for more efficient 
and robust optimization approaches. Existing methods often fall short of effectively balancing these complexities, 
highlighting the necessity for further exploration of advanced algorithms to achieve better performance in optimizing 
makespan and energy consumption. This paper investigates the performance of the Artificial Bee Colony (ABC) 
algorithm in optimizing HFSE. Inspired by bees' foraging behavior, ABC has been successfully applied to various 
problems [21]. However, its application to combinatorial problems remains limited. The main contribution of this work 
is developing an efficient computational model and algorithm capable of simultaneously optimizing both makespan and 
energy utilization.  

2. MATERIALS AND METHODS 

2.1  Hybrid Flow Shop Scheduling with Energy Consumption 

Hybrid flow shop scheduling involves processing n jobs through, S stages, whereby each stage may consist of multiple 
machines capable of performing similar operations but with different capacities. All the jobs must strictly follow the same 
processing flow. When the energy factor is considered an objective function or a constraint, the problem is known as 
HFSE. In hybrid flow shop scheduling, n jobs are processed through S stages. Figure 1 illustrates an example of the HFSE 
problem, where jobs j1 through jn are processed through three stages: turning (Stage 1) with two machines, milling (Stage 
2) with one machine, and cutting (Stage 3) with three machines. The term Msk used in Figure 1 refers to the kth machine 
on stage, s. Each machine at a stage has different capabilities, which affect the processing times. Each job must be 
processed on only one machine at each stage. Consequently, the machine assignment decision directly impacts the 
processing time and the makespan. Additionally, since machines may have different power rates, the machine assignment 
also affects the total energy consumption in the process. 
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Figure 1. Production layout of hybrid flow shop scheduling 

In HFSE, processing times for each task on each machine are known and fixed. During task execution, no interruptions 
or pre-emptive actions are allowed, ensuring that each job is completed without breaks. Each machine can handle only 
one job at a time, maintaining exclusive machine-job assignments. At each process stage, only one machine is permitted 
to handle each job, adhering to a strict one-to-one machine-job correspondence throughout the scheduling stages. The 
HFSE problem involves sequencing a set of jobs through a series of processing stages, where each job must strictly follow 
the predetermined sequence of processes. In this problem, process bypass is permissible, allowing jobs to skip unnecessary 
processes, which can lead to more efficient scheduling. Additionally, the setup times between different jobs on the same 
machine are considered negligible, simplifying the scheduling process. All jobs are available for scheduling from the 
start, as there are no constraints on job release times. Furthermore, all machines are accessible and ready for operation at 
the beginning of the scheduling period. Notably, during idle periods, the machines are assumed to be turned off, 
eliminating the need to consider idle energy consumption. These characteristics of the HFS problem encompass the key 
assumptions and constraints that must be considered when developing scheduling algorithms and optimizing the system's 
overall performance. Several additional characteristics should be considered in the HFSE problem. Firstly, there is an 
unlimited buffer between consecutive processes, allowing for the temporary storage of jobs as they move from one process 
to the next. This flexibility can facilitate more efficient scheduling and prevent bottlenecks caused by limited buffer 
capacities. Furthermore, there are no constraints on job due dates, meaning that jobs can be completed within any 
reasonable timeframe without prioritizing certain jobs over others based on strict deadlines. The problem also imposes 
no limitations on the number of jobs, machines, or stages in the production process, allowing for considering diverse 
manufacturing scenarios with varying complexities. Finally, transportation times between machines or stages are 
considered negligible, simplifying the scheduling calculations and enabling a focus on the processing times and resource 
allocation aspects of the problem. 

The following HFSE mathematical model is applied to represent and optimize the problem. The optimization 
objectives are to minimize: 

𝑓𝑓1 = min𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚  (1) 
  

𝑓𝑓2 = min𝑇𝑇𝑇𝑇𝑇𝑇 (2) 
  

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = max  �𝐶𝐶𝑗𝑗�, 𝑗𝑗 = 1,2, … ,𝑛𝑛 (3) 
  

𝑇𝑇𝑇𝑇𝑇𝑇 = �� � 𝑡𝑡𝑗𝑗,𝑠𝑠,𝑚𝑚𝑝𝑝𝑠𝑠,𝑚𝑚𝑦𝑦𝑗𝑗,𝑠𝑠,𝑚𝑚

𝑀𝑀

𝑚𝑚=1

𝑆𝑆

𝑠𝑠=1

𝐽𝐽

𝑗𝑗=1

        𝑦𝑦𝑗𝑗,𝑠𝑠,𝑚𝑚 = �1, If job 𝑗𝑗 is processed at machine 𝑚𝑚 on stage 𝑠𝑠
0, Otherwise  (4) 

Based on Eqs. (1) – (4), J denotes the total number of jobs that need to be scheduled, while S represents the total 
number of stages in the production process. Ms indicates the number of machines available at a specific stage, s. The 
processing time of job j on machine m at stage, s is represented by tj,s.m, measured in minutes. Cj represents the completion 
time of job j in minutes, which is a crucial metric for evaluating the scheduling performance. Cmax, also known as the 
makespan, is the maximum completion time among all jobs and is typically the primary objective to be minimized in HFS 
problems. The power rate for machine m at stage s is given by psm and is measured in Watts. This parameter is relevant 
when considering energy consumption or environmental impact as part of the scheduling objectives or constraints. The 
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model presented in Eqs. (1) through (4) forms the basis of the computational model used in this work. It will determine 
the accuracy of the results obtained in the computational experiments section. 

2.2 Artificial Bee Colony Algorithm 

The Artificial Bee Colony algorithm is a population-based optimization technique inspired by the foraging behavior 
of honeybees to solve optimization problems [22]. Each phase plays a vital role: initialization sets the stage, evaluation 
assesses solution quality, employed bees refine solutions, onlooker bees enhance exploitation, and scout bees ensure 
continuous exploration [23]. Together, these phases contribute to the algorithm's robustness and effectiveness in finding 
optimal solutions. The flowchart of the ABC algorithm is presented in Figure 2. 

 

Figure 2. Flow chart of ABC algorithm 

2.2.1 Initialization phase 

The algorithm's parameters, such as population size and the number of iterations, are defined in the initialization phase. 
Typically, the population size ranges from 20 to 50. Random solutions, referred to as food sources, are generated within 
the lower and upper bounds of the problem's search space. These initial solutions are crucial as they set the starting point 
for the algorithm's exploration and exploitation of the search space. 

2.2.2 Evaluation phase 

Once the initial solutions are generated, they undergo evaluation. Each solution is assessed using a fitness function, 
as Section 2 of the relevant study details. This function helps determine the quality of each solution. Solutions that meet 
or exceed certain criteria are considered good food sources. This filtering process ensures that only promising solutions 
are carried forward for further improvement. The fitness function for solution xi is denoted as fiti and is computed in the 
following manner: 

𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖 = �
1

1 + 𝑓𝑓𝑖𝑖
                if 𝑓𝑓𝑖𝑖 ≥ 0

1 + 𝑎𝑎𝑎𝑎𝑎𝑎(𝑓𝑓𝑖𝑖)      if 𝑓𝑓𝑖𝑖 < 0
 (5) 



M. A. H. Osman et al. │ Journal of Mechanical Engineering and Sciences │ Volume 18, Issue 3 (2024) 
 

journal.ump.edu.my/jmes   10175 

2.2.3 Employed phase 

In the employed bee phase, each employed bee searches for new food sources based on information gathered during 
the evaluation phase. In the optimization context, this phase involves generating new candidate solutions by modifying 
existing ones. The fitness of these new solutions is then calculated, and a greedy selection process is applied. This means 
that if the new solution has better fitness than the previous one, it replaces the old solution. This phase is critical for 
refining solutions and improving their quality iteratively. 

𝑣𝑣𝑖𝑖,𝑗𝑗 = 𝑥𝑥𝑖𝑖,𝑗𝑗 + Φ𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖,𝑗𝑗 − 𝑥𝑥𝑘𝑘,𝑗𝑗) (6) 

The notation xi,j denotes the ith solution for the jth dimension. The variable Φ represents a random number within the range 
of [-1,1]. Additionally, xk denotes a solution selected at random from the current population. 

2.2.4 Onlooker bees phase 

Unemployed bees are divided into two groups: onlooker bees and scout bees. Employed bees share information about 
their food sources with onlooker bees. The onlooker bees then choose a food source based on a probability related to the 
fitness of the solutions. Techniques such as the roulette wheel selection method are often used. Greedy selection is again 
applied, with more onlooker bees recruited to richer food sources. This phase enhances the algorithm's ability to exploit 
good solutions by focusing more resources on them. Next, the probability value, pi for solution xi, is calculated using the 
equation below. According to this equation, a higher fitness of the solution will result in a greater probability value. 

𝑃𝑃𝑖𝑖 =
𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖

∑ 𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖
𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/2
𝑖𝑖=1

 (7) 

2.2.5 Scout bees phase 

Scout bees, a subset of the unemployed bees, choose their food sources randomly. This phase is activated when certain 
solutions do not improve over a specified number of iterations, known as Lmax. These stagnant solutions are replaced by 
new, randomly generated solutions within the problem's bounds. This ensures that the search space is continuously 
explored, preventing the algorithm from becoming stuck in local optima and promoting the discovery of potentially better 
solutions. 

3. RESULTS AND DISCUSSION 
An extensive computational experiment has been conducted to evaluate the performance of the proposed ABC 

algorithm for solving the HFSE problem. The well-known benchmark test suite originally introduced by Neron and Carlier 
for the classical HFS problem has been adopted [24]. This set comprises 12 distinct problem instances, encompassing 
scenarios with 10 jobs and 5 stages, 10 jobs and 10 stages, 15 jobs and 5 stages, and 15 jobs and 10 stages. This benchmark 
problem is widely recognized and has been extensively used to assess the performance of algorithms on HFS problems, 
thereby facilitating a standardized comparison with existing approaches. Four other popular metaheuristic algorithms 
have been selected to benchmark the proposed ABC algorithm: the GA, PSO, MA, and WOA. These algorithms are well-
established nature-inspired optimization techniques that have demonstrated impressive performance across a wide range 
of combinatorial optimization problems [2-4]. On the other hand, WOA is a relatively newer bio-inspired algorithm 
proposed by Mirjalili and Lewis [5], which has gained significant attention due to its promising results on various complex 
optimization tasks. In order to ensure an unbiased comparison, all five algorithms were configured with identical 
parameter settings. Specifically, a population size of 30 individuals (candidate solutions) and a maximum iteration limit 
of 500 were used. To mitigate the potential effects of pseudo-randomness inherent in the stochastic nature of these 
algorithms, each problem instance was independently solved 20 times with different random seeds. The average fitness 
value across these 20 runs was recorded as the final performance metric for that particular instance. This approach of 
multiple independent runs helps to capture the algorithms' behavior more reliably and reduces the influence of random 
variations. Table 1 presents the average fitness results obtained from the computational experiment across different 
problem instances. On the other hand, Table 2 indicates the rank of the algorithms for each of the problem instances. The 
ranking is based on the average fitness values, where the algorithm with the best (minimum) average fitness is assigned 
rank 1, while the algorithm with the worst (maximum) average fitness is given rank 5. 

The ABC algorithm exhibits outstanding overall performance, consistently securing the top rank in 9 out of the 12, or 
75% of the problems. This remarkable consistency demonstrates the algorithm's efficiency and suitability for tackling 
most of the problems considered in this study. The MA also emerges as a strong contender, achieving ranks 2 or 3 across 
all problem instances, reflecting its reliable and consistent performance. In contrast, the GA and PSO algorithms 
demonstrate moderate performance. While GA secures the top rank in a few instances, its rankings exhibit variability 
across problems, indicating a degree of inconsistency. Similarly, PSO generally occupies the middle ranks, suggesting a 
lack of consistency compared to the top-performing algorithms. Notably, the WOA consistently ranks the lowest, 
indicating its relative inefficiency for the problems considered in this study. A detailed analysis of individual problems 
reveals in-depth observations of each algorithm's performance profile. The ABC algorithm demonstrates exceptional 
efficacy in Problem 1, claiming the top rank, followed closely by the MA and WOA. Meanwhile, the GA and PSO 
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underperform compared to ABC. The ABC maintains its superiority in Problem 2, with MA as a close contender. GA and 
PSO exchange positions, highlighting their sensitivity to specific problem characteristics. Problem 3 sees an unexpected 
shift, with GA surpassing all others, while ABC and WOA deliver moderate performances, and PSO and MA are 
unexpectedly left behind. ABC consistently dominates for the remaining Problems 4 through 12, closely trailed by MA. 
GA and PSO display inconsistent rankings, indicating variable efficiency across different scenarios. WOA, however, 
consistently occupies the lowest rank throughout these problem instances. 

Table 1. Average fitness from optimization 

Problem No. GA PSO MA ABC WOA 
1 0.2683 0.2637 0.2407 0.2389 0.2549 
2 0.2367 0.2470 0.2292 0.2240 0.2467 
3 0.2312 0.2520 0.2388 0.2320 0.2543 
4 0.2233 0.2396 0.2265 0.2199 0.2456 
5 0.2712 0.2766 0.2701 0.2617 0.2894 
6 0.2783 0.2688 0.2738 0.2638 0.2956 
7 0.2503 0.2639 0.2746 0.2568 0.2936 
8 0.2996 0.3157 0.3030 0.2984 0.3223 
9 0.3546 0.3692 0.3604 0.3544 0.3746 

10 0.2814 0.2900 0.3241 0.3195 0.3407 
11 0.2953 0.2900 0.2853 0.2817 0.3098 
12 0.2752 0.2586 0.2578 0.2425 0.2829 

 

Table 2. Optimization algorithm ranks according to Table 1 

Problem No. GA PSO MA ABC WOA 
1 5 4 2 1 3 
2 3 5 2 1 4 
3 1 4 3 2 5 
4 2 4 3 1 5 
5 3 4 2 1 5 
6 4 2 3 1 5 
7 1 3 4 2 5 
8 2 4 3 1 5 
9 2 4 3 1 5 
10 1 2 4 3 5 
11 4 3 2 1 5 
12 4 3 2 1 5 

Average Rank 2.67 3.50 2.75 1.33 4.75 

Several notable trends and observations can be drawn from the performance data. The ABC algorithm demonstrates 
remarkable consistency and superiority across most problems, making it a strong candidate for optimization tasks in 
similar contexts. Its ability to efficiently explore the search space and effectively balance multiple objectives contributes 
to its outstanding performance. The MA algorithm shows reliable performance, often ranking just behind ABC, 
suggesting that it is also a good choice when considering consistency and robustness across diverse problem instances. 
The GA and PSO algorithms exhibit varied performance, with GA sometimes achieving the best rank but generally 
fluctuating in its rankings across problems. PSO tends to occupy the middle ranks, indicating a lack of consistent 
performance compared to the top-performing algorithms. The WOA algorithm consistently ranks lowest across all 
problem instances, indicating that it may not be well-suited for the types of problems considered in this study or may 
require further tuning and enhancements to improve its performance in this specific context. 

Overall, the computational results highlight the proposed ABC algorithm's superiority and the MA algorithm's reliable 
performance for the problems considered in this study. While GA and PSO demonstrate moderate performance, their 
inconsistencies across different problem instances suggest room for improvement. The WOA algorithm, being a relatively 
newer approach, exhibits limited effectiveness for the specific optimization tasks explored here, necessitating further 
investigation and potential enhancements.  
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Table 3. Optimization results of Cmax and TEC 

Problem No. Indicator GA PSO MA WOA ABC 
1 Average Cmax 150.3 150.4 149.7 147.4 146 

Min Cmax 146 146 146 146 146 
Average TEC 9.65 9.28 8.80 9.37 8.50 
Min TEC 8.44 8.80 8.46 8.76 8.40 

2 Average Cmax 104.9 108.2 103.2 107 103 
Min Cmax 103 103 103 103 103 
Average TEC 9.56 9.71 9.31 9.92 8.95 
Min TEC 8.81 9.05 9.00 9.40 8.69 

3 Average Cmax 84.3 89.4 86.4 91.2 83.8 
Min Cmax 69 79 82 80 81 
Average TEC 8.49 9.48 8.80 9.34 8.67 
Min TEC 7.35 8.64 8.12 7.71 7.93 

4 Average Cmax 80.3 86.6 81.5 88.2 79 
Min Cmax 72 73 75 84 76 
Average TEC 5.02 5.31 5.08 5.53 4.95 
Min TEC 4.02 4.27 4.62 5.07 4.20 

5 Average Cmax 192.5 193.9 191.6 197.2 188.7 
Min Cmax 177 183 188 191 186 
Average TEC 18.26 18.55 18.52 19.24 18.47 
Min TEC 16.44 17.11 17.57 17.95 17.35 

6 Average Cmax 197.4 193.1 194.7 201.4 190.3 
Min Cmax 181 179 190 191 186 
Average TEC 17.03 17.49 17.61 18.20 18.02 
Min TEC 15.21 16.20 16.73 17.11 17.38 

7 Average Cmax 150.7 152.6 168.1 160 151.1 
Min Cmax 136 141 152 152 145 
Average TEC 17.20 18.28 18.09 19.04 17.98 
Min TEC 15.66 16.57 17.32 17.74 16.65 

8 Average Cmax 192.6 194.2 193.5 194.9 191.2 
Min Cmax 191 191 191 191 191 
Average TEC 11.13 12.21 11.87 12.65 11.33 
Min TEC 10.58 11.50 11.25 11.47 11.03 

9 Average Cmax 221.4 222.1 223.2 223 220 
Min Cmax 220 220 220 220 220 
Average TEC 9.60 10.75 10.48 11.04 9.89 
Min TEC 9.18 10.27 9.73 9.99 9.51 

10 Average Cmax 114.4 115.9 129.6 128.5 124.1 
Min Cmax 101 110 120 124 121 
Average TEC 11.00 11.33 11.77 12.11 11.52 
Min TEC 9.72 10.58 10.70 10.94 10.88 

11 Average Cmax 261.1 257.9 277.3 261.7 253.4 
Min Cmax 242 250 251 253 249 
Average TEC 29.96 30.33 31.66 31.78 30.75 
Min TEC 28.68 29.05 29.88 30.01 29.73 

12 Average Cmax 255.3 248.7 246.9 255.1 243.4 
Min Cmax 247 235 241 237 241 
Average TEC 29.17 29.16 29.68 30.32 28.76 
Min TEC 26.36 27.43 28.68 28.16 27.42 
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Table 3 presents the results of the computational experiment in terms of the individual objective function values: the 
minimized makespan, Cmax, and the minimized total energy consumption (TEC). Noted that the Cmax is in minutes, while 
TEC is in the Watt unit. The computational results highlight the remarkable performance of the proposed ABC algorithm 
in optimizing both makespan, Cmax, and TEC objectives. Across most problem instances, ABC achieves the lowest average 
Cmax values, signifying its effectiveness in minimizing the overall completion time of jobs. Across all problem instances, 
the ABC achieved an average Cmax reduction of 2.95% compared to all algorithms. The highest reduction was 4.7% 
compared to the WOA, while the lowest reduction was 1.17% compared to GA. This impressive makespan efficiency 
demonstrates ABC's ability to generate schedules that ensure timely task completion, a critical factor in many real-world 
manufacturing and production scenarios. Additionally, the GA and MA also exhibit strong performance in terms of 
makespan optimization. Their average Cmax values often come close to those achieved by ABC, suggesting that these 
algorithms are capable of achieving low completion times under various problem conditions. This consistent performance 
across different instances underscores the robustness and reliability of GA and MA in minimizing makespan. In contrast, 
the PSO and WOA generally show higher average Cmax values compared to the top-performing algorithms. This 
indicates that PSO and WOA are relatively less effective in minimizing completion times, which may limit their 
applicability in time-critical scheduling scenarios. 

Turning to the TEC objective, the ABC algorithm once again excels by frequently obtaining the lowest average and 
minimum TEC values across multiple problem instances. This dual efficiency in time and energy optimization highlights 
ABC's remarkable capability to generate schedules that balance productivity and energy efficiency. For TEC, the ABC 
algorithm achieved an average reduction of 3.43%. Despite its strong performance, the energy consumption achieved by 
the GA was slightly lower than ABC, with a difference of only 0.14%. By minimizing energy consumption while 
maintaining low completion times, ABC emerges as a highly desirable solution for energy-aware scheduling problems. 
The GA also demonstrates competitive performance in reducing TEC, often achieving the lowest or near-lowest TEC 
values in several problem instances. This strong energy efficiency and respectable makespan performance make GA a 
formidable contender for generating energy-efficient schedules without compromising productivity. The MA provides a 
balanced performance, with respectable TEC values that, while not as low as those of ABC and GA, still contribute to 
energy savings. This characteristic of MA may be advantageous in scenarios where a trade-off between energy efficiency 
and other objectives is required. In contrast to the top-performing algorithms, PSO and WOA generally exhibit higher 
TEC values, indicating their relatively lower efficiency in minimizing energy consumption. This limitation may restrict 
their applicability in energy-conscious scheduling contexts, where minimizing completion time and energy usage is 
critical. 

Overall, the computational results highlight the superiority of the ABC algorithm in optimizing both makespan and 
energy consumption objectives simultaneously. The consistent performance of GA and MA in either makespan or energy 
optimization, or both, also establishes them as viable alternatives depending on the specific requirements and priorities 
of the scheduling problem. There are a few factors that contributed to the superior ABC performance. One of the factors 
is its simplicity and ease of implementation. The straightforward structure reduces the complexity of coding and 
implementation, making the algorithm accessible even to those with limited experience in optimization algorithms. The 
reduced number of parameters, such as the number of employed and onlooker bees and the scout bee limit, simplifies the 
setup and minimizes the need for extensive parameter tuning. Besides that, the ABC also effectively balances exploration 
and exploitation through its distinct bee roles [25]. Employed bees focus on refining existing solutions, while onlooker 
bees use information from employed bees to further enhance these solutions. Scout bees contribute to exploration by 
introducing new random solutions when current solutions become stagnant. This balance helps maintain an effective 
search process, ensuring that the algorithm explores new regions while also refining known good solutions. This algorithm 
is also known for its efficient global search capability, facilitated by scout bees that explore new regions when existing 
solutions fail to improve [26]. This mechanism helps prevent the algorithm from getting stuck in local optima by 
diversifying the search and enhancing its ability to find global optima. ABC's global search efficiency is crucial for 
handling complex optimization problems with multiple local optima. Finally, the dynamic population management in the 
ABC algorithm is a significant feature that helps maintain diversity and avoid premature convergence [27]. When a 
solution becomes stagnant, scout bees introduce new random solutions, which prevents the population from becoming 
homogeneous and ensures continued exploration of the search space. This dynamic approach enhances the algorithm’s 
ability to find optimal solutions by avoiding local optima and maintaining diverse solutions. 

4. CONCLUSIONS 
Integrating energy considerations into the hybrid flow shop scheduling problem, termed HFSE, has emerged as a 

critical area of research driven by environmental sustainability, cost savings, and regulatory compliance goals. This study 
explored the application of the ABC algorithm for addressing the multiobjective HFSE problem, aiming to minimize 
makespan and total energy consumption simultaneously. Through an extensive computational experiment involving a 
well-established benchmark suite, the proposed ABC algorithm demonstrated remarkable performance, consistently 
securing top ranks across the majority of problem instances. The algorithm's ability to efficiently explore the search space 
and effectively balance the conflicting objectives of makespan minimization and energy consumption reduction 
contributed to its outstanding results. Comparative analyses with other popular metaheuristic algorithms, including GA, 
PSO, MA, and the WOA, further highlighted the superiority of the ABC approach. While GA and MA exhibited reliable 
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performance in either makespan or energy optimization, PSO and WOA were relatively less effective, indicating potential 
limitations in their applicability to HFSE problems. The computational results underscore the significance of the ABC 
algorithm as a powerful optimization technique for energy-aware scheduling in hybrid flow shop environments. 
According to the results of the computational experiments, the ABC algorithm successfully reduced the total makespan 
and energy utilization simultaneously by 2.95% and 3.43%, respectively. By generating schedules that strike an optimal 
balance between productivity and energy efficiency, the proposed approach addresses the growing demand for sustainable 
and cost-effective manufacturing practices. 

Future research could explore the integration of additional real-world constraints and objectives, such as machine 
availability, setup times, and production costs, into the HFSE framework. Furthermore, developing parallel or distributed 
implementations of the ABC algorithm could enhance its computational efficiency, enabling its application to larger-scale 
and more complex scheduling problems encountered in modern manufacturing settings. Overall, this study contributes to 
advancing energy-conscious scheduling methodologies and paves the way for adopting efficient and sustainable practices 
in hybrid flow shop manufacturing environments. 
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