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INTRODUCTION   

Unlike stationary and transport industrial robots, mobile robots have the ability to navigate on surfaces of arbitrary 

orientation. In order to overcome the gravitational force, such robots are equipped with adhesion devices with a travel 

surface. This direction in technology is relatively new, and requires fundamental research. One of the main tasks of 

designing such robots is the task of ensuring the robot's fixity on a vertical or other surface orientation at maximum 

technological loads. The importance of this task is explained by the fact that in carrying out manufacturing operations, 

technological loads are added to the weight of the mobile robot. To prevent an emergency, that is, the fall of the robot 

from the vertical displacement surface, it is necessary to find a rational relationship between the adhesion forces of the 

robot (friction forces) and its technological load, represented as the magnitude of the response to the applied 

technological load. These technological operations can include various production operations that have a force on the 

robot and, if they exceed their allowable values, can lead to the robot falling from the vertical displacement surface.  

The proposed mathematical model allows creating graphs of changes in the technological reaction depending on the 

angle of inclination of the surface to move the robot to the horizon at given coefficients of friction of the grips of the 

robot. It is more accurate to set the dependencies as a function N = f (α,G,μ), where: α is the angle of inclination of the 

robot's surface in relation to the horizon; G is the weight force of the robot; μ is the friction coefficient of the robot grips 

with the displacement surface. 

Various designs of vertical movement robots have been proposed in [1–3], but in these researches there are no 

analytical models of dynamic loads of mobile robots. In the robot designs [4, 5], technical means of energy recuperation 

of the travel drives are offered, which allow to reduce the power of the drives, and hence the total mass of the robot. A 

model of motion of a robot with a glide seal is proposed in [6], which makes it possible to increase the force of adhesion 

of the robot with the travel surface, but only for vacuum grippers. The technical solution [7] also allows to increase the 

adhesion force of the robot due to adhesion. Researches [8] suggest a robot model for moving through trees, that is, on 

surfaces with a porous structure. In publications [9, 10], studies of the dynamics of mobile robots of traditional design, 

that is, robots that work only in the Cartesian coordinate system, are presented.  

A dynamic model in the form of a state space is presented in [11], which allows increasing the productivity of the 

robot in terms of tracking the desired path, i.e. the trajectory of the robot. The movements of an anthropomorphic 

walking mobile robot are presented in [12]. This article proposes a method for calculating the muscles of a robot in the 

form of pneumatic chambers. These cameras allow the robot to move along an angular coordinate system, which is 

typical for humans. Also in the context of building a model of a walking robot, studies are of interest [13]. This paper 

proposes an analysis of four cases of robot preload in equilibrium, however, without taking into account the 

technological load. 

Original technical solutions [14] for performing technological operations using a walking robot based on vacuum 

devices mounted on a tracked transmission are very promising for the industry. But this source does not present any 

research on the dynamics of the movement of the robot. Earlier, the dynamics of the walking mechanism was 

considered in [15], in which the passive two-legged mechanism was transformed into a 3D dynamic model of the 

walking device. In this article, the oscillations of the knee joint of a walking device were investigated. These studies are 

of undoubted interest for the construction of walking robots, however, they do not consider the tasks of calculating the 

parameters of dynamic loads in the context of the mobile robot performing technological operations. For the design of 

mobile robots of arbitrary orientation in the technological space, mathematical models can be recommended [16].  

ABSTRACT – A dynamic model of a walking robot is proposed for moving along surfaces of 
different topologies and orientations to the horizon. The principal difference between walking 
robot mechanisms is that they are made in the form of flexible pedipulators. Actually the 
pedipulators are a set of spherical rings with a hydraulic or pneumatic drive. The patented design 
(Patent UA No 117065, publ. 2018.06.11) of the robot's feet is anthropomorphic and allows the 
robot to work in the angular coordinate system inherent in the human walking machine. The 
proposed mathematical model allows us to calculate the dynamic parameters (forces and 
moments) and compare these parameters with the allowable technological load that a walking 
robot can perform without losing adhesion with the displacement surface.     
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An analysis of the above studies indicates the need to build a dynamic model of the robot, which not only takes into 

account the technological load, but also allows you to calculate the maximum permissible values of the specified load. 

Moreover, the maximum permissible technological load should be understood as the load at which the robot is held on 

the surface of movement. Therefore, the purpose of these studies is to obtain analytical formulas for calculating the 

allowable technological load from power operations performed by the robot in various fields of its application. 

THE DESIGN OF THE WALKING ROBOT 

Before proceeding with the presentation of the dynamic model, let us consider a fundamentally new construction of 

the robot and the sequence of its movement. In Figure 1 shows the position of the robot on a surface inclined to the 

horizon at angles 0≤α≤1800 and 0≤φ≤1800. The robot has four legs, the construction of which is discussed below. The 

legs of the robot work in pairs on the diagonal of its body. In the initial position, the legs (pedipulators) 1 and 3 are bent 

under the different pressure in the hydraulic conduits, and their grippers 9 and 10 are engaged with the travel surface. 

Legs 2 and 4 are straightened and their grippers 7 and 8 are free of adhesion. The actuator 5 alternately serves legs 1 

and 2 by switching the electromagnetic clutch, and the actuator 6 also alternately turns the legs 3 and 4. When the 

grippers 9 and 10 are adhered with the travel surface, the actuator 5 rotates the leg 1 about the axis "G" of the gripper 

10, and the actuator 6 rotates the leg 3 around the "H" axis of the gripper 9. That’s how the robot moves one step 

forward depending on the amount of the angle of rotation relative to these axes. When the grippers, for example, 7 and 

8 are free of adhesion, drive 5 rotates leg 2 around axis "A" and at the same time drive 6 turns leg 4 around axis "B". 

Legs 2 and 4 are free from adhesion and are prepared for the next step. After the first step, the grippers 7 and 8 of these 

legs will be adhered with the travel surface and, under the influence of the same actuators 5 and 6, will rotate already 

around the gripper axes adhered to the travel surface [17].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The robot's position on the travel surface inclined to the horizon. 

 

To understand the robot legs mechanism on Figure 2, the longitudinal section D-D (Figure 1) of the foot of the 

pedipulator is shown. Each pedipulator is made in the form of a set of rings from the initial 11 to the last "n". The 

number of rings is determined by the purpose of the robot: the more rings, the higher the accuracy of the orientation of 

the pedipulators, and with a decrease in the number of rings, the robot's carrying capacity rises. All rings are 

compressed by an elastic stretch element 12 (for example, a cylindrical spring of tension) arranged along their axis and 

pivotally attached to the ring set-closing sleeves 13 and 14. In addition, corrugated conduits 15 and 16 are mounted 

inside the rings. These conduits are under different pressures gas or liquid. All the rings of legs of the robot come into 

contact with each other along the spherical outer 17 (Figure 2) and the inner surfaces 18 with radii R i and Ri+1. The 

elastic element 12 is pivotally mounted on the axles 19 and 20, and the corrugated conduits 15 and 16 are fixed to the 

sleeves 13 and 14. 
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Figure 2. Mobile robot leg design. 

 

These conduits have channels 21 and 22 for their connection to a hydraulic or pneumatic system. Due to the difference 

in pressure p1 and p2 in the conduits 15 and 16, the moment M of the bend of the robot's leg arises by an angle β of 

radius R (Figure 2): 
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(1) 

 

where: d – internal diameter of the conduits; e is the eccentricity of the displacement of the axis of the conduits relative 

to the axis of the robot's leg. In this case, the value of the deformation ε of the robot's leg is: 

e e

R L


 = =

 

 

(2) 

 

If there is a pressure difference in conduits 15 and 16, the robot moves from position "C" to the bent position "E". 

Creating different combinations of pressures (p1 - p2), we get a different position of the robot's leg. Thus, the robot steps 

by two twisting moments: the leg M bending and the rotating torque M1 from the motors 5 and 6 (Figure 1).  

Table 1 shows the frames of the steps of moving the robot with a description of the movements of its legs. In the 

second column of the table, the image of the robot is shown in the plan view. Third column of the table gives 

descriptions of the state of the gripping devices of the robot for coupling with the vertical displacement surface.  Also 

shows the movements that the legs of the robot perform: each pair of legs of the robot, located on the diagonal of the 

case, moves in turn with a periodic stop during the turn of the next pair of legs of the robot. 

 

Table 1. Steps of moving the robot. 

Step No The position of the robot (plan view) Explanation of robot movement 

0 

 

 

Starting position: 

Legs 1 and 3 are bent and adhered 

with the travel surface, grips 9 

and 10 (along the diagonal of the 

robot's body). 

Legs 2 and 4 are straightened into 

a straight line. 

The grippers 7 and 8 are free of 

adhesion. 
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1 

 The robot does not move V=0 

The rotation of the legs free of 

adhesion: the leg 2 by the actuator 

5 is rotated around the point "A" 

and the leg 4 by the drive 6 - 

around the point "B" by an angle 

of 45°. 

 

 

 

 

 

 

 

2 

 

The beginning of the robot's 

movement. 

Legs 2 and 4 after rotation are 

bent and adhered to the travel 

surface by grippers 7 and 8. 

Legs 1 and 3 with grippers 10 and 

9 are disengaged from the travel 

surface. 

The robot moves V> 0 by turning 

the legs 2 and 4 of the actuators 5 

and 6 around the points D and C. 

 

 

3 

 

The robot moved one step by 

turning the legs 2 and 4 around 

the gripper axes 7 and 8. 

 

At the same time, the free legs 1 

and 3 are straightened. 

 

 

 

 

 

 

4 

 The robot does not move V=0 

 

Turning legs 1 and 3 around 

points E and F, respectively, 

drives 5 and 6. 
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5 

 

The beginning of the movement 

of the robot in the second step. 

Legs 1 and 3 are bent and adhere 

to the surface by movement of the 

grippers 10 and 9. 

Legs 2 and 4 are disengaged from 

the travel surface. 

The robot moves V> 0 by turning 

legs 1 and 3 by drives 5 and 6 

around points G and H. 

 

 

6 

 

The robot moved one more step 

by turning the legs 1 and 3 around 

the gripper axes 10 and 9. 

At the same time straightening of 

legs 2 and 4 took place. 

The legs of the robot returned to 

their original position. Then the 

cycle of movement is repeated. 

 

 

 

 

In this way, the movement of the robot occurs due to the rotation of each pair of legs (along the diagonal of the 

body) around the axes of the adhered grips. One engine alternately serves a pair of legs, due to the switching of the 

electromagnetic clutch, because the legs also turn in turn. 

Figure 3 shows examples of different positions in the space of a mobile robot, which has six legs for increased 

patency over complex surfaces. So in Figure 3(a), the front pair of legs overcomes the elevation h1, the central (middle) 

pair is a hollow h2, and the rear pair of legs is the elevation h3 of the relief of the travel surface. In Figure 3(b) the robot 

overcomes a niche with depth L and height H when moving along a vertical wall. In Figure 3(c) shows the transition of 

the robot from the wall surface to the ceiling. 

 

 

 

 

(a) (b) (c) 

 

Figure 3. Options of the position of the mobile robot when moving on surfaces of arbitrary orientation. 

DETERMINATION OF THE ALLOWABLE TECHNOLOGICAL LOAD OF THE ROBOT 

Here, the allowable technological load is the allowable effort of the technological operation, which excludes the fall 

of the robot from a vertical surface. In Figure 4, the technological load is represented as the force of its reaction N, 

which consists of the efforts of the reactions N1, N2 at the points of contact of the gripping devices with the surface on 

which the robot moves. These technological operations may include various manufacturing operations, for example, 

such as: drilling, riveting, and installing fasteners and dowels, cutting metal structures, as well as similar technological 

impacts on the service object. 

Let the right hind leg 1 (Figure 4) bear on a plane that is inclined to the horizontal plane at an angle α, and the left 

front leg 2 lean on a plane that is inclined at an angle φ, and the intersection line of these planes is horizontal. The axis 

of symmetry of the robot forms an angle ψ with the first plane. We choose the origin of the coordinate system 0xyz at the 

point of contact of the foot 1 with the plane. The 0x axis is parallel to the intersection of the planes, the 0z axis is 

perpendicular to the first bearing plane, the 0y axis is perpendicular to the two previous axes. Such forces act on the 
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robot (Figure 4): the weight force G is applied at the centre of the weight of the robot and is directed vertically 

downwards. The technological reaction N is applied at the centre of the weight and is directed perpendicular to the 

plane of the robot body; the adhesion forces Q1n and Q2n of the legs with the travel surface are directed along the 

normal’s to the planes. Normal reactions N1 and N2, are directed opposite to the forces of adhesion. The frictional forces 

Q1T and Q2T lie in the corresponding planes. Since the magnitude of the frictional forces Q1T and Q2T and their direction 

are unknown, we decompose each of them into two components Q1T (Q1x, Q1y), Q2T (Q2x, Q2y), one of which is parallel 

to the 0x axis, and the second is perpendicular to this axis and lies in corresponding to the plane. In addition, the torques 

M bend the legs of the robot, and the moments M1 rotate them around the gripper axles with which the robot is held on 

the travel surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The scheme of forces acting on the robot. 

 

The robot, under the influence of this arbitrary spatial force system, is in equilibrium, and therefore six equilibrium 

conditions must be fulfilled, namely: the algebraic sum of the projections of all forces on each of the coordinate axes 

equals zero: 
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where: G is the force of gravity, G=mg (m is the mass of the robot; g is the acceleration of gravity, g = 9.8 m/c2.  
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The algebraic sum of the moments of all forces relative to each of the coordinate axes must also be zero:  

 

 

1

0
n

ix

i

M
=

=
;    

2 2 2 2 2 2 2 2

2 2

(N Q )cos( ) y (N Q )sin( ) z Q cos( ) z

Q )sin( ) y cos sin cos sin 0

n n y

y c c c cG y G z N y N z

     

     

− − + − − − −

+ − − + + + =
 

1

0
n

iy

i

M
=

=
; 2 2 2 2 2(Q N )cos( )x Q cos cos 0n x c cz G x N x   − − + + − =

         

1

0
n

iz

i

M
=

=
;   2 2 2 2 2 2 2(Q N )sin( )x Q sin sin cos( )x 0n x c c yy G x N x Q     − − − − − + − =

 

                            

 

 

 

 (6) 

 



Mikhail Polishchuk et al. │ Journal of Mechanical Engineering and Sciences │ Vol. 14, Issue 1 (2020) 

6386   journal.ump.edu.my/jmes ◄ 

where, x2, y2, z2 – coordinates of the point of contact with the plane of the second leg; xc, yc, zc – are the coordinates of 

the center of the weight of the robot. 

In the system of Equation. (6), from the last two equations we exclude the unknown frictional force Q2x and we get a 

system of two equations with two unknowns: 

 

2 2 1 2 2 1 2(N Q )a yQ a Gb Nb− + = +
 

2 2 1 2 2 2 4(N Q )c yQ c Gb Nb− + = +
 

 

(7) 

where:     

1 2 2 2(y cos( ) z sin( ))a x    = − − + −
;  2 2 2 cos( )a x z  = −

; 

1 2 2y cos( ) z sin( )c    = − + −
;  2 2 2y sin( ) z cos( )c    = − − −

; 

1 2 2(z sin y cos )cb x  = −
; 2 2 2(z sin y cos )cb x  = +

; 

3 y cos z sinc cb  = −
; 4 y cos z sinc cb  = − −

. 

Solving the system of Equation. (7), we get: 

2 2 1 2N Q Gd Nd= + −
;  2 3 4yQ Gd Nd= +

 

 

(8) 

where:  

1 2 1 2a c c a = −
;   

1 2 3 2
1

b c b a
d

−
=

 ;   

 

2 2 4 2
2

b c b a
d

−
= −

 ;    

3 1 1 1
3

b a b c
d

−
=

 ;   

4 1 2 1
4

b a b c
d

−
=

  . 

Considering expression (4), from the last system of Equation. (6) we determine the component of the frictional force 

Q2x: 

2 1 2xQ Gh Nh= +
 

                                              

(9) 

         

in which: 

1 2 3 1 2(x (d cos( ) d sin( )) x sin ) / ych     = − − − −
; 

2 2 4 2 2(x (d cos( ) d sin( )) x sin ) / ych     = − + − −
. 

Further, from the system of Equation. (4), we find other unknown normal reactions and friction forces: 

1 1 3 4N Q Gh Nh= + −
;      1 5 6NhyQ Gh= +

;       1 2x xQ Q= −
         (10) 

where the designations for compact notation is: 

3 1 3cos d cos( ) d sin( )h     = − − − −
; 

4 2 4cos d cos( ) d sin( )h     = − − + −
; 

5 3 1sin d cos( ) d sin( )h     = − − + −
; 

6 4 2sin d cos( ) d sin( )h     = − − − −
. 
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The total frictional forces for each leg should not exceed the limit values, and the normal forces 

(Gh1+Nh2)2+(Gh5+Nh6)2 ≤ μ2(Q1+Gh3-Nh4)2  and force responses are positive, that is 

2 2

1 1 1 1T x yQ Q Q N= + 
; 

N1>0; 

2 2

2 2 2 2T x yQ Q Q N= + 
; 

N2>0. 

    

 

              

(11) 

 

We substitute expressions for the force responses into Equation. (11) and solve inequalities relatively to the reaction N 

of the technological load of the robot: 
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1 2 3 4 2 1 2(Gh Nh ) (Gd Nd ) (Q Gd Nd )+ + +  + −
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In the last two inequalities, similar elements are grouped, and as a result, square inequalities:  

2

1 2 32 0u N u N u+ + 
 ;   

2

4 5 62 0u N u N u+ + 
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where, 
2 2 2 2

1 2 6 4h h hu = + −
 ;  

2

2 1 2 5 6 1 3 4u G(h h h h ) (Q Gh )h= + + +
;       

2 2 2 2

3 1 5 1 3u (Gh ) (Gh ) (Q Gh )= + − +
;       

2 2 2 2

4 2 4 2u h d d= + −
 ;  

2

5 1 2 3 4 2 1 2u G(h h d d ) (Q Gd )d= + + +
;       

2 2 2 2

6 1 3 2 1u (Gh ) (Gd ) (Q Gd )= + − +
.       

After solving inequalities (13), we get ranges of numerical values of the robot workload force: 

2
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1

0
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− + −
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;   

2

5 5 4 6

4

0
u u u u

N
u

− + −
 

. 

 

(14) 

 

Among the values of the reaction force N, calculated from Equation. (12) and (14), choose a larger value that 

simultaneously satisfies all the inequalities. Thus, we determine the intervals of change of the allowable technological 

load of the walking robot. And here the technological load is determined by the reaction of its force N within acceptable 

limits Equation. (14), more precisely the reaction of the effort of the technological operation, which is performed by a 

mobile robot.  

PROGRAMMING THE COORDINATES OF THE MOVEMENT OF THE ROBOT 

To make a control program for the walking robot, it is necessary to find the equations by which the coordinates of 

the characteristic displacement points can be calculated. Suppose that the fulcrum of the hind leg is remote from the line 

of intersection of the planes of the travel surface by the amount а11. Then, by the cosine theorem, one can find the 

distance а22 of the fulcrum of the front leg from the indicated line of displacement 

2 2 2

11 22 11 222 cos( ) (2a)a a a a  + + − =
 

               

        (15) 
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where а – is the distance along the robot axis from the center of gravity to the attachment point to the robot body. Then 

from Equation. (15) find the distance а22 of the fulcrum of the robot's leg: 

2 2 2

22 11 114 sin ( ) cos( )a a a a   = − − − −
 

 

(16) 

                                

In this way, the coordinates of the fulcrum of the front leg relative to the selected coordinate reference system will be: 

 

2 0 0 12 sin sin45 2ox R b= +
 

2 11 22 cos( )y a a  = + −
;   2 22 sin( )z a  = −

 

 

(17) 

 

where,  2b1 – the width of the robot design in the place where the legs are attached; β0 – is the initial angle of the leg 

bend; the initial radius of the leg bend R0 =L/ β0. It must be remembered that the last two parameters are determined by 

the differences in pressures (p1 – p2) of gas or liquid in flexible conduits 15 and 16 (look Figure 2) robot legs.  

The angle ψ of the inclination of the central axis of the robot to the coordinate plane is calculated from formula 

22 0 0 1(a R sin sin 45 tg(45 )sin( ) h(cos( ) 1)
arcsin

2

o o

a

     


 − − − + − −
=  

   

 

(18) 

 

where, during movement, depending on the topology of the travel surface, the angle φ1 can vary within the limits 0 ≤ φ1 

≤ 90°; h = R - Rcos β; R = L/β. The angle β of the bending of the robot feet is found from equation: 

0

0 1

sin sin sin 45

cos(45 )

o

o

 

  
=

−
 

 

(19) 

 

An approximate solution of this equation, which determines the angle β of bending the robot's legs, looks as follows: 

 

0

0 1

sin sin 45
10 100 120 1

cos(45 )

o

o




 

 
= − − − 

− 
 

 

(20) 

 

Now we can find the coordinates of the center of the robot's weight, which, when the robot is controlled, will be 

processed by its digital reason:   

0 0 1sin sin45o

cx R b= +
 

0 0 1cos sin sin45 (45 )o o

cy a R tg  = − −
 

(1 cos ) sincz R a = − +
 

                                      

 

   (21) 

 

DETERMINATION OF THE ROBOT’S FORCES DURING THE EXECUTION OF THE TECHNOLOGICAL OPERATION 

Unlike the mode of moving a robot, when it moves with each pair of legs alternately, while performing 

technological operations, the robot does not move and stands on four legs. Then, in the general case, four normal 

reactions and four friction forces occurs, the directions of which are unknown, that is, the problem is statically 

indeterminate. This is explained by the fact that it is possible to compose six equations of equilibrium, and there are 

twelve parameters which is unknown in this case. However, the problem can be made statically determined if we 

assume that certain conditions are fulfilled, namely: 

• when carrying out the technological operation, the foot fulcrum are placed symmetrically with the vertical symmetry 

plane of the robot; 

• the external forces of adhesion Q, the weight of the robot G and the reaction of the technological load N lie in this 

plane or are parallel to the plane of symmetry of the robot; 

• the reactions in the symmetrically placed legs are identical and also parallel to the symmetry plane of the robot 

body; 

• since are interested in the maximum value of the technological reaction N, we assume that in one of the pairs of legs 

(where a smaller normal reaction), the frictional force reaches its limiting value. 
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Then, considering the above limitations, we can form three equilibrium equations, which include only three unknowns, 

namely:   
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  (22) 

 

From the last equation we find the component reaction N2 

2 12 2 12 12nN a Q b G c N= + −
 

 

(23) 

 

where, 

1 2 2 2 22(cos( ) y sin( )z ) 2 (cos( )z sin( ) y )         = − + − − − − −
 ; 

2 2
12

1

2(cos( ) y sin( ) z )
a

   − + −
=


; 

12

1

cos sinc cy z
b

 −
=


;    

 

12

1

cos sinc cy z
c

 +
=


. 

Further from the first two equations we find the friction force Q1y and normal reaction  N1 

1 2 12 12 12 12 12 12

1 1
(d a sin( )) G(d sin ) N(d sin )

2 2
y nQ Q b c   = − − + + − −

 ; 

1 1 2 12 12 12 12 12 12

1 1
(h a cos( )) G(h cos ) N(h cos )

2 2
n nN Q Q b c   = + + − + + − +

; 

 

 

(24) 

where, 12 sin( ) cos( )d     = − − −
;  12 sin( ) cos( )h     = − − − −

 

 

The reaction N2 is positive, and therefore the maximum value of the technological reaction should not exceed the next 

value 

2 0N 
      

2 12 12

12

nQ a Gb
N

c

+


 

 

(25) 

 

In addition, the frictional force Q1y must not exceed the limit value 

1 1yQ N
       

3 3

12 12 12 12(h c 0.5cos ) (d c 0.5sin )

N Q
N



  

−


+ − −
 

 

 

(26) 

 

where the normal reaction of the force of the technological load and the friction force will be:  
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3 1 2 12 12 12 12

3 2 12 12 12 12

1
(h a cos( )) G(h cos );

2

1
(d a sin( )) G(d sin )

2

n n

n

N Q Q b

Q Q b

  

  

= + + − + +

= − − + +
 

 

 

 

(27) 

 

In this way, the task of finding the forces of the technological load becomes statically determined for three typical 

positions of the robot in space, namely: 

• the robot is on the floor, then it is necessary to substitute in the above formulas the values φ=00, α=00;  

• if the robot is on the ceiling, then you need to substitute in the above formulas φ=1800, α=1800;   

• when the robot is on a vertical wall, then it is necessary to substitute in the above formulas the values φ=900, α=900.  

The developed analytical model of the robot allows you to design it with a forecast of the permissible technological 

load, which is determined by the intervals of values of the normal reactions of forces (25) and (26). Here, the 

permissible technological load should be understood as the load at which the fall of the robot from the vertical surface 

of its movement is excluded. 

RESULTS OF MODELING 

Actualization of the robot's behavior simulation at different angles of inclination to the horizon and the magnitude of 

the adhesion of the robot grips with the travel surface made it possible to establish the following. Figure 5 shows the 

graphs of the dependence of the technological load on the angle of inclination of the travel surface of the robot, when 

only four of its legs are on the same surface. Curves 1 and 2 show the state when the hind leg (1) and the front leg (2) 

do not detach from the travel surface, and curve 3 characterizes the state of the robot when it moves, but the grips of its 

legs do not slip over the travel surface. All three robot motion states exclude the possibility of an emergency, i.e. fall 

down robot from the travel surface. As we can see from the graphs, an increase of the friction coefficient of the robot 

grips with the travel surface from the value μ = 0.2 (Figure 5(a)) to μ = 0.5 (Figure 5(b)), namely by 40%, leads to the 

possibility of increasing the minimum technological load N from 350 (N) to 770 (N), i.e. by 45.5%. This effect is 

evidenced by the dominant influence of adhesion force on the increase in the technological load of the robot.  

 

  

(a) (b) 

Figure 5. Graphs of technological reaction change N = f (α) depending on the robot travel surface inclination angle   

to the horizon at a friction coefficient of the robot grips: (a) μ = 0.2 and (b) μ = 0.5. 

 

In the graph of Figure 6 shows the dependence of the technological load on the angle of inclination of the robot travel 

surface, when the travel surfaces are not only at an angle to the horizon, but the feet themselves are located on different 

surfaces, in particular at an angle φ – α = 30°.  
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Figure 6. Graphs of technological reaction change N = f (α) with the difference in the slope of the surfaces on which the 

robot legs rest φ – α = 30° and with a friction coefficient of the robot grips μ = 0.5. 

 

Here arises the effect of the convergence of states (2) and (3), namely, when the front leg of the robot does not 

detach from the travel surface, and the hind leg, diagonally disposed on the robot body, moves without sliding. 

Obviously, reaching the maximum technological load corresponds to state (1), when the robot does not move. 

Therefore, it can be recommended to use the robot in motion when performing light load operations, such as video 

shooting, diagnostics of the surface condition of hydraulic power plants, monitoring of large conduits and various 

industrial mines, and for performing technological operations such as applying special coatings to objects and welding 

operations. At the same time, the execution of operations with a large technological load should be carried out in a 

stationary state of the mobile robot. 

CONCLUSIONS 

A fundamentally new design of the walking robot with flexible pedipulators - walking mechanisms, makes it 

possible to perform various technological and transport operations in any production space. The specified technological 

operations are such production tasks as drilling, installing dowels and rivets, cutting metal or concrete structures, as 

well as other technological loads in the form of a force effect on the robot.  

The developed mathematical model makes it possible to calculate the possible technological load for a walking mobile 

robot with an arbitrary orientation of the displacement surface, namely, in the range of the inclination of the movement 

surface to the horizon from 0° to 180°. The system of equations for determining the coordinates of the movement of the 

legs of the robot and its center of gravity is recommended as a mathematical tool for programming the trajectory of the 

robot, taking into account technological loads. 
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