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INTRODUCTION 

 Application of lasers in medicine is a vast and rapidly expanding field. Laser is a very versatile tool in the techniques 

available of the dentist. Lasers can be used to achieve a near instant very high percentage of polymerization of resin-

based materials [1]. They can also be used to activate bleaching agents for in office bleaching of stained teeth [2]. In laser 

dentistry, modelling and experimentation of the tooth temperature and thermally induced stresses matter because it 

provides us with a good insight to the laser parameters appropriate for surgery [3]. So, one can adjust them to reach better 

results. In this regard, Celik et al. [4] studied the thermal effects in the teeth based on the variation of thermal stress and 

temperature distribution. A transient thermal finite element analysis was performed to investigate the temperature 

distribution and the resulting thermal stress after simulated temperature changes from 36°C to 4 or 60°C for a 2 second 

time period. In this research, the restoration models had similar temperature distributions at 2 seconds in both the thermal 

conditions. Compared with 60°C exposure, the 4°C condition resulted in thermal stress values of higher magnitudes. At 

60°C, the highest stress value observed was compressive stress (42 to 43 MPa). Oskui et al. [5] performed a numerical 

study for evaluation of mechanical behaviour of human tooth. Three-dimensional finite element analysis was done on a 

premolar model subjected to hot and cold thermal loadings. Elapsed times for heat diffusion and stress detection at the 

pulp-dentin junction were calculated as measures of the pain sensation. Extreme tensile stress within the enamel resulted 

in damage in cold loadings. Also, extreme values of stress at the pulpal wall occurred 21.6 seconds earlier than extreme 

temperatures in hot and cold loadings. Denise et al. [6] demonstrated that the enamel temperature rises 77°C when the 

tooth is irradiated by laser intensity of 3W/cm2. In this investigation, the amount of temperature under laser irradiation 

could be higher than that detected by infrared camera. Zhou et al. [7] performed a parametric study under conditions of 

various laser exposure times and tissue optical properties. Goodis et al. [8] studied pulpal safety of tooth irradiated by 

9.6μm laser with a repetition rate of 10Hz of microsecond pulses and reported this pulsed laser beam as a reliable and 

safe tool for caries prevention in human tooth. Lopez et al. [9] compared the Coefficient of Thermal Expansion (CTE) 

with the thermo-mechanical behavior of human teeth and determined if the CTE is a suitable parameter to describe tooth 

behavior. The thermal strain was measured between 20 and 50ºC. Fresh dentin (human -0.49% ± 0.27) contracted on 

heating under dry condition. Sagi et al. [10] considering a homogeneous cube for the tooth and calculated the temperature 

distribution of the tooth under laser beams. Malmstrom et al. [11] inspected experimentally the effects of repetition rate 

of CO2 laser pulses on the temperature of pulp chamber. In most of the theoretical models, the cubic geometries and 

homogenous constitutions were considered for tooth. Also the temperature distributions in the tooth layers were studied 

based on the classical Fourier’s law that implies an infinite thermal propagation speed. Furthermore, a comprehensive 

model for temperature profile and thermal stress is missing in the literature.  

 In this study, the numerical solutions are carried out based on the 2D axisymmetric assumption for living tooth under 

a laser surface heating. The present work has developed a new non-Fourier bio-heat conduction model under a transient 

ABSTRACT – The authors report the simulation of temperature distribution and thermally induced 
stress in the premolar tooth under ND-YAG pulsed laser beam. The Three-Phase-Lag (TPL) non-
Fourier model is proposed to describe the heat conduction in the human tooth with 
nonhomogeneous inner structures. A premolar tooth comprising enamel, dentin, and pulp with real 
shapes and thicknesses are considered and a numerical method of finite difference was adopted 
to solve the time-dependent TPL bio-heat transfer, strain and stress equations. The surface heating 
scheme is applied for simulation of laser therapy. The aim of this laser therapy is that the 
temperature of pulp reaches to 47oC. The results are achieved as a function of laser heat flux 
showed when laser beam is irradiated downward (from the top of the tooth), the temperature and 
thermally induced stress increase as a function of time. The temperature increment is high on the 
top layers of tooth that is a result of strong absorption of beams by enamel. The thermal stress and 
strain in the enamel and dentin layers are more than the pulp layer that is a result of weak thermal 
expansion of them proportional to the pulp layer.   
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pulse laser irradiation. This model is based on the Three-Phase-Lag (TPL) times due to non-homogenous structure of 

tooth. The temperature solution resulting of TPL equation is used to predict the thermally induced stress and thermal 

strain in the tooth. To be precise, all tooth parts with oblique boundaries are considered. The coordinate mapping method 

is used for overcome to irregular geometry problem of tooth and mesh generation. 

PHYSICAL MODEL AND BIO-HEAT CONDUCTION  

The premolar tooth consists of two main sections such as crown and root canal. The premolar tooth has a single root 

canal with uneven boundaries. A 2-D model of the premolar tooth with a maximum height of Z=12 mm, maximum radius 

of R=5 mm, and initial temperature of T0=37oC was considered (Figure 1). A dentistry laser is applied normally to the 

upper surface of the enamel layer with laser spot radius rL≤ 3mm. This laser has been selected based on the technical 

specification of Epic Pro team [12]. This suggestion dentistry instrument is a laser with output wavelength in range of 

0.1-100 µm (frequency 1PHz -10THz) while the initial intensity of laser is 10W/cm2. This dentistry laser is used for 

premolar tooth surgery. In total 40 pulses are used for duration of 15s, while the intensity of laser increases from 10 to 

14W/cm2. The each pulse duration (tp) of laser is 200 milliseconds. The periodical irradiation of laser on the top surface 

of tooth is defined with Heaviside function (H) as: 
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where q0 is the initial intensity of laser and Np is the pulse number. In which Heaviside function is defined as below: 
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The heat transfer coefficient between tooth and saliva is h=500W/m2C while the saliva temperature is Tamb=40oC. 

The bio-heat methods such as Pennes equation and thermal wave model lead to physical distortion like infinite 

propagation speed and temperature overshoot [7,13]. In the other hand, mismatch of material properties and variation of 

thermal properties are neglected by DPL Bio-heat transfer model [14], while these values might be vary from place to 

place in a tissue [13]. Based on a novel approach in this investigation, the properties of the tooth are considered as 

function of position. The TPL bio-heat equation is a new Non-Fourier method that is in conformity with this assumption. 

The temperature gradient is a constitutive variable in the DPL heat conduction equation, while the temperature 

displacement gradient is considered as a fundamental variable in the TPL heat equation [15]. The general form of the 

TPL non-Fourier heat equation has been presented by [15-17]. There are new parameters in the TPL non-Fourier equation 

such as k*, v and τυ that they are the rate of thermal conductivity, thermal displacement which satisfies dv/dt=T and 

phase-lag of thermal displacement gradient, respectively [16]. After take the divergence of general form of TPL equation 

and replace the bio-heat energy balance equation inside it, the TPL bio-heat transfer is obtained. By eliminating v with 

using the first order time derivation of the TPL bio-heat equation and replace dv/dt=T, the new heat conduction equation 

can be obtained that it is based on the non-Fourier TPL model for nonhomogeneous tooth. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Premolar tooth domain considered. 
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(3) 

 

where, index m and parameter λ are selected based on the particular sub-domains of the tooth. For the tooth pulp m=1 

and λ=1 while for dentin (m=2) and enamel (m=3), parameter of λ is zero (λ=0). The rate of thermal diffusivity (m2/s2) 

is defined as β=k*/ρC. 

Thermally Induced Stress and Strain  

Thermal stress is created by any change in temperature to a material. Quick heating or cooling causes localized 

movement of material then thermal stress is caused. Thermal stress can lead to fracture or deformation depending on the 

type of material. Human tooth are subjected to many changes in temperature each day. The magnitude of the stress is 

proportional to the mechanical behavior of tooth structure and the temperature change inside it. The enamel and dentin 

layers of premolar tooth are composite structure that the mechanical behavior and the thermal properties of them differ 

from together [18]. When a tooth is exposed under laser irradiation, the thermally induced stress and thermal strain are 

more important than thermal stress resulting of hot food or liquids. The enamel and dentin layers of tooth, which have 

low thermal expansion and low tensile strength, may crack as a result of the laser therapy. Thus, evaluation of thermally 

induced stress and strain is not only important during the one time loading situation, but also must be considered as a 

long term fatigue problem. The thermally induced stress ( ) and thermal strain ( ) are calculated using equation given 

by [19]: 
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where υ, αT, E and T0 are the Poisson's ratio, thermal expansion coefficient, young’s modulus and initial temperature 

respectively. 

Grid Generation 

The irregular geometry of premolar tooth is important for mesh generation and numerical simulation. Representing 

the tooth with complex boundaries is the main reason for making grids that are not rectangular. The coordinate mapping 

method transfers the tooth domain into a simpler domain. Also boundaries are aligned with a constant coordinate line 

[14]. In this method, the ξ and η coordinates are selected based on the r and z directions of tooth, respectively. In other 

words, the r and z directions are defined as the dependent variables r(ξ,η) and z(ξ,η), based on the arbitrary points of 

oblique boundaries (P1 to P4). In this investigation, the optional points P1(r=0,z=0) and P2(r=4,z=6mm) were located on 

the uneven edges of root canal and the P3(r=0,z=11mm) and P4(r=5,z=9mm) were defined on the oblique surface of 

enamel. The ξ and η directions were made between (P1,P2) and (P2,P4) respectively. Then each of them was divided by 

nodes 1:Nξ and 1:Nη. The boundary points of premolar tooth were detected by using of mapping coordinate equations 

given by [14]. The interior points of tooth domain were interpolated and defined based on these equations [14]. Figure 2 

shows that the mark points of A, B, C, D, E and G in the ξ and η coordinate are consistent with the real points of premolar 

tooth. 
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Figure 2. Detection of selected points in the premolar tooth. 

FORMULATION OF THE PROBLEM 

The governing mathematical equation (Equation. 1) becomes more complicated after using of coordinate mapping in 

the tooth domain, because the bio-heat equation will be discretized in the new grid system (ξ,η) after change of variables. 

The new expressions are derived based on the Jacobian matrix (J) as below: 
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The terms of ∂T/∂z, ∂2T/∂z2 can be obtained similar to the above equations. By replacing these terms and Equations. (9) 

and (10) into the Equation. (3), the final result will be: 
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where the main coefficients (such as Γ1, Γ2 and Γ3) were defined as below:  
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Initial and Boundary Conditions 

The governing equations will be solved with proper initial and boundary conditions as follow: 
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Method of Solution 

The uniform spatial grid of dimension Nξ×Nη was introduced where Δξ = rmax/ (Nξ -1) and Δη = zmax / (Nη -1) are the 

grid spacing and Δt = (time / number of step) denotes the time increment for each step. The Du-fort-Frankel finite 

difference method was applied for the numerical solution of the problem. The DFFD method is a trick which exploits the 

unconditional stability of the intrinsic method for heat transfer equations [20-22]. The DFFD scheme for governing 

equation was obtained by replacing the temperature of node (i,j) at time step (n) with the time average temperature of 

this node ( ) 21
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eliminated based on the DFFD scheme. The forward and central differencing schemes were used for the first and second 

order derivatives of time, when the third order of time derivative term has been discretized by Equation. (25). The 

temperature distribution in the tooth layers was predicted by the calculation of Ti,j at the time step (n+1). 
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This algebraic equation is solved by the MATLAB programming. The discrete equation involves the constant 

coefficients (i.e. Φ1 to Φ18) that are resulted based on the discretization relations [17]. The truncation-error of this 

numerical solution is approximated based on the difference of partial differential equation and finite difference equation 

(T.E=PDE - FDE). This error order was reported as a function of terms [(Δt)2, (Δt), (Δξ2Δη2), (ΔtΔξ2Δη2), (Δt2Δξ2Δη2)]. 

RESULTS OF COMPUTATIONS 

The thermo-physical properties [24-26] and mechanical behavior [27-30] of the premolar tooth have been presented 

in Table 1. The thermal properties of blood vessel such as ρb=1060(kg/m3) and Cb=3860(J/kg.C) were applied for 

numerical solution [24,25]. The rate of thermal conductivity was approximated as k*=0.02(W/m.C.s) based on the 

difference of maximum and minimum values of the thermal conductivity coefficient in the whole of premolar tooth after 

15s. The phase lag times for human tooth have been adjusted from 1 to 100 milliseconds. These parameters (i.e. τq=16, 

τT=6 and τυ=2ms) are selected based on the suggestion of [16] (
qTqq kkk  2, **  ).  

The test of grid independency of the temperature solution was first performed based on the temperature distribution 

at the all points inside the premolar tooth. Figure 3 shows the influence of mesh density after simulation time of 20s, 

while the time step was kept at Δt=0.01s. This figure shows that by continuing increment in the mesh density from number 

20×25 to 40×50, the changes of temperature at the similar points are high. But when the mesh values converted from 

40×50 to 60×75, the variations in temperature profile are negligible. In other words, both the options of mesh values 

(40×50 and 60×75) have predicted the same results. It can be seen from Figure 3 that the thermal effect of laser irradiation 

tends to movement toward the below layers of premolar tooth. The maximum temperature of 56.4 and 55.9 oC have been 

reported in the finite section of dentin layer (z=9.5mm) while the mesh densities were 40×50 and 60×75 respectively. 

After evaluation of the effect of mesh density on the numerical solution, a grid with 40×50 nodes and a time step of 0.01s 

was selected. The lower grid density was accompanied with lower volume of calculations and lower CPU time. The grid 

spacing for each is equal to Δξ=0.00012m and Δη=0.00024m. These options are believed to be adequate so as to give 

satisfactory results. 

Table 1. The thermo-physical properties of the tooth layers. 

Thermal properties Premolar tooth layers 

Pulp Dentin Enamel 

k, [W/m.C] 0.59 0.65 0.92 

C, [J/kg.C] 4200 1170 750 

ρ, [kg/m3] 1000 2100 2900 

α, [m2/s] 1.4×10-7 2.6×10-7 4.23×10-7 

E (Pa) 2×103 1.8 ×1010 8.4 ×1010 

T  (K-1) 10-5 10.6 ×10-6 16.9×10-6 

  0.45 0.31 0.3 

qmb, [W/m3] 1190 0.0 0.0 

Wb, [m3/s.mt
3] 18×10-4 0.0 0.0 
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Figure 3. Grid dependency of solution at point (r=0, z=0) with time step (Δt=0.01s). 

 

Figure 4 shows the transient variations of dentin and pulp temperature when the suggestive dentistry laser has been 

applied for the tooth surgery. As can be seen in Figure 4, the dentin and pulp layers have experienced the maximum 

temperature 57.5 and 48.2oC respectively after 17 and 19s from start of the laser treatment. This numerical solution of 

transient temperature has compared with the experimental observations of dentin temperature [19]. In this experimental 

study, the temperature increment has been made by using the electrical source on the tooth in the 5s of start time. The 

maximum temperature of dentin has been reported as the 51.6oC after 6s by this in vitro study. Figure 5 illustrates the 

time variation of thermally induced stress in the dentin based on the transient temperature of this layer at the selective 

point (r=0, z=8.5mm). The numerical solution of thermal stress resulting of the laser therapy was compared with 

experimental results of tooth thermal therapy with electrical source [19]. This figure displays that the thermally induced 

stress in the dentin has increased versus of time increment. The maximum value of compressive stress is reported as 2.7, 

4.1 and 4.8MPa for heat fluxes of 5, 10 and 15 W/cm2 respectively. Also, the value of 1.2MPa has been observed for the 

thermally induced stress by heat flux of 1W/cm2 resulting of electrical source. The thermal stresses in the pulp layer have 

been shown to be negligible. The pulp layer is highly permeable and compliant relative to the other layers and has been 

modeled as a soft layer. Based on the numerical simulation of this study, maximum value of thermally induced stress in 

pulp is 0.3 Pa for heat flux of 10 W/cm2. 

 
  

   Figure 4. The transient temperature in the      

dentin and pulp under laser therapy. 

Figure 5. The transient thermal stress in the dentin 

under laser therapy. 
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Figure 6 shows the radial temperature of premolar tooth layers, across the horizontal dashed lines that mentioned in 

the Figure 1. The radial distribution of temperature due to laser surface heating has been reported after 15 s from start of 

simulation. In this time, the suggestion dentistry laser has shot the final pulse of laser on the enamel surface. It can be 

seen from this figure that the impact of laser irradiation on the central nodes of enamel is so noticeable. The temperature 

values of 83, 54 and 45oC have been obtained for center nodes of enamel, dentin and pulp respectively. The radial 

temperature has decreased based on the increment of radius in the constant height of enamel, dentin and pulp. The radial 

temperature of exterior node of tooth layers is close together. The thermo mechanical response of enamel and dentin 

layers can give rise to thermally induced stress in two ways. First, limitation of thermally induced strain or contraction 

due to the property mismatch of the interface of enamel and dentine leads to stressing and flexure even in the case of a 

uniform change of temperature. Second, a non-uniform distribution of temperature even in a single layer can lead to 

stressing through frustrated expansion/contraction. Figure 7 depicts the radial distribution of thermally induced stress in 

the enamel and dentin across the horizontal dashed lines in them (refer to Figure 1) after 15 s from start of laser therapy. 

It can be seen that the enamel has experienced the more thermal stress in compare with dentin. This figure shows that the 

thermal stress in central nodes is more than the exterior nodes. So that, the maximum values of 2.2 and 40.3 MPa in the 

r/R=0 and minimum values of 0.98 and 8.2 MPa in r/R=1 have been reported for the dentin and enamel layers 

respectively. The thermal strain is resulted in following of thermally induced stress distribution. Figure 8 depicts the 

radial variation of thermal strain across the arbitrary horizontal dashed lines in the enamel and dentin layers. This figure 

shows that the strain of the enamel is more than dentin layer. Based on the numerical simulation of this investigation, the 

values of 0.012% and 0.05% have been reported for the dentin and enamel layers respectively. It can be seen in Figure 8 

that the strain curves have the downward trend versus of increment of tooth radius. Figure 9 shows the axial distribution 

of temperature across the vertical dashed lines in the premolar tooth layers (refer to Figure 1) when the final pulse of 

laser is shot (after 15s). The properties of dentistry laser and laser therapy were similar to the previous data. This figure 

displays that the axial distribution of temperature due to laser surface heating is critical in the top points of enamel layer. 

The maximum values of 103, 57 and 44oC have been obtained for the top surface of enamel, dentin and pulp layers 

respectively. The temperature values of 57, 44 and 41oC have been approximated for the lowest nodes of tooth layers 

respectively. In the other word, the axial temperature has increased based on the increment of height. 

 

  

   Figure 6. Temperature distribution across the 

horizontal paths in the tooth. 

Figure 7. Thermal stress across the horizon paths in 

the dentin and enamel layers. 
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  Figure 8. Thermal strain across the horizon path 

in the dentin and enamel.  

Figure 9. Temperature distribution across the vertical 

dashed lines in the tooth layers. 

 

Figure 10 shows the axial distribution of stress across the vertical dashed lines in the hard solid layers of tooth (enamel 

and dentin) after 15 s from start of laser therapy. This figure displays that the enamel layer has experienced the high 

thermal stress in range of 18 MPa to 109 MPa. In other word, the thermally induced stress has increased by increment of 

the tooth height. It can be seen that the thermally induced stress in the dentin layer is less than enamel layer. So that, the 

maximum value of 3.6 MPa and the minimum value of 0.9 MPa has been reported for the top and bottom zones of the 

dentin layer respectively. Also, the thermal strain of the dentin and enamel layers has been presented in the next step of 

this study. Figure 11 shows that the strain of the enamel across the X0-X3 dashed lines is more than the dentin layer 

across the X3-X5 dashed lines. Based on the numerical solution of this study, the variation of thermal strain of the dentin 

was in range of 0.004% to 0.018%, while the maximum and minimum values of 0.12% and 0.03% have been reported 

for the enamel. It can be seen that the strain curves tend to the increment while the height of tooth is increasing. 

 

  

Figure 10. Thermal stress across the vertical paths in 

the dentin and enamel. 

Figure 11. Thermal strain across the vertical paths 

in the dentin and enamel layers. 

CONCLUSIONS 

A numerical simulation employing the Non-Fourier bio-heat equations were used to understand how heat distribution in the 

premolar tooth during laser irradiation. In this investigation, new bio-heat model was used as the three phase lag time non-

Fourier heat conduction. The TPL bio-heat model is capable of determining the temperature distribution within the tooth layers 

during the tooth ablation by laser. To achieve the applicable results for biological tissues, the heat conduction equations based 

on the finite speed of thermal penetration were used by consider the phase lag times such as τq, τT and τυ. The laser with surface 

heat flux of 10W/cm2 and pulse duration of 200ms is effective for the thermal therapy of premolar tooth. Based on the 

numerical solution of this study, this optimum laser of dentistry has been suggested that makes adequate temperature elevation 

in range of 45 to 50°C inside the pulp layer. The laser therapy was accompanied by changes in mechanical behavior of tooth 
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layers such as tension and strain. It was observed that the thermally induced stress in the enamel is more than dentin. The 

thermal stress values, lower than 10 MPa has experienced in the dentin layer while this value for enamel layer is in range of 

10 to 100 MPa. In other hand, the results of thermal stress in soft layer of tooth such as pulp, is very small and negligible (0.2-

5 Pa). Also the thermal strain in the dentin layer is lower than 0.02% but this value for enamel layer is more than 0.05%. 

According to the reported results from this study, variations of temperature within the tooth layers satisfied the clinical 

protocols and are compatible with other vitro researches. 
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