
JOURNAL OF MECHANICAL ENGINEERING AND SCIENCES  
ISSN: 2289-4659     e-ISSN: 2231-8380  
VOLUME 18, ISSUE 4, 2024, 10350 - 10381 
DOI: https://doi.org/10.15282/jmes.18.4.2024.9.0815 
 
 
 

*CORRESPONDING AUTHOR | Y. C. Tan |  tanyongchai@segi.edu.my 
© 2024 The Author(s). Published by Universiti Malaysia Pahang Al-Sultan Abdullah Publishing. This is an open access article under the CC BY-NC 4.0 license  10350 

REVIEW ARTICLE 

Indoor positioning system for warehouse environment: A scoping review  
 X. D. Zhang1,2, Y. C. Tan2*, V. C. Tai2, Y. N. Hao3  
1 Department of Automation Engineering, Henan Polytechnic Institute, 473000, Nanyang City, Henan Province, China 
2 Centre for Sustainable Design, Modelling and Simulation, Faculty of Engineering, Built Environment, and Information Technology, SEGi University, 
47810 Petaling Jaya, Selangor, Malaysia 

Phone: +603 61451777; Fax.: +60361452725 
3 Department of Electrical Engineering, Taiyuan Institute of Technology. No.31 Xinlan Road, Taiyuan, Shanxi 030008, China 

ABSTRACT - Advanced technologies and automation, driven by Indoor Positioning Systems 
(IPS), transform businesses by enhancing efficiency, intelligence, and digitalization. Despite 
the critical role of IPS, there remains a lack of comprehensive reviews focusing specifically on 
their applications in warehouse inventory management. To bridge this gap and provide 
actionable insights for both research and practical implementation, this study conducts a 
systematic literature review following the PRISMA checklist. Centered around three key 
research questions, this review explores the scope of IPS applications in warehouse 
environments, the specific technologies employed, and the methods to evaluate IPS 
performance. This paper analyzes the fundamental principles and recent applications of 
widely adopted indoor positioning technologies, including Wi-Fi, UWB, RFID, VLC, IMU, 
Computer Vision, and LiDAR. Furthermore, this paper evaluates IPS technologies through five 
key evaluation criteria, highlighting their advantages, limitations, and challenges. This study 
provides a comprehensive understanding of IPS technologies in warehouse inventory 
management, offering actionable methods to evaluate their performance. The insights 
presented aim to deliver strong decision support for researchers and practitioners seeking to 
optimize inventory operations in warehouse environments. 
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1. INTRODUCTION 
In recent years, indoor mobile robots have increasingly changed our lives thanks to the rapid development of robotics 

and sensor technologies. Boston Dynamics' Spot and Atlas robots are already proficient at assisting humans with complex 
tasks in everyday scenarios [1]. Additionally, an increasing number of robotic products are being used in the fields of 
industrial automation [2], warehousing and logistics [3], surveying and mapping [4], medical care [5], disaster response, 
and home services [6] to replace humans in performing repetitive and laborious tasks and to reduce human errors. As 
robotic technology continues to evolve, a greater diversity of fields can be expected to benefit from this technology in the 
future. Due to indoor environments' intricate and dynamic properties, Indoor Positioning Systems (IPS) have emerged as 
a significant gap in the advancement of location-based technologies. Unlike most outdoor positioning systems, which rely 
on the Global Navigation Satellite System (GNSS), IPS has challenges because GNSS signals are severely attenuated in 
indoor environments [7]. This attenuation can significantly reduce the accuracy of positioning technologies, such as 
satellite-based navigation systems, when used indoors, posing considerable challenges to developing effective indoor 
positioning systems [8]. Therefore, the research of IPS is attracting significant attention. 

IPS has garnered considerable attention and is useful in various indoor scenarios because most indoor mobile 
equipment operations rely on accurate positioning information. IPS can provide precise positioning information within 
indoor environments by utilizing a variety of sensors, wireless communications, and advanced positioning algorithms [9]. 
Sensors such as Wi-Fi, Bluetooth, Radio Frequency Identification Device (RFID), Ultra-Wideband (UWB), ultrasound, 
infrared, vision sensors, Light Detection and Ranging (LiDAR), and inertial measurement units (IMU) are leveraged by 
these systems to capture and analyze data related to signal strength, time delays, distances, directions, and angles. These 
systems offer positioning and tracking information in indoor environments, facilitating various applications, including 
indoor navigation. With the development of smart warehouses, mobile intelligent equipment is beginning to assist humans 
in warehouse operations such as inventory review, internal logistics, cycle counting, and stocktaking [9]. IPS plays a 
pivotal role in the advancement of modern smart warehouses. The basic characteristics of smart warehouses can be 
classified into the following categories: information interconnection, equipment automation, process integration, and 
environmental sustainability [10]. IPS is beneficial in all these aspects, especially for mobile equipment in warehouses 
represented by autonomous mobile robots [11]. For example, when IPS is applied to smart forklifts or Automated Guided 
Vehicles (AGVs) in a smart warehouse system [12], it allows these devices to run smoothly, and their movements are not 
restricted by changes in logistics activities or shelf layouts [13]. This technology also ensures real-time goods counting 
in dynamically changing warehouse environments, enabling faster goods picking, increased accuracy in warehouse 
operations, reduced operational costs, and minimized manual errors [14]. Combining robots, drones, and self-driving cars 
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can achieve partial or complete autonomy for most warehouse operations tasks [15]. These systems are instrumental in 
improving operational efficiency across various domains, including inventory management, logistics, and warehouse 
digitization. Among these applications, inventory management is a crucial component of warehouse operations, directly 
influencing stock reliability, economic performance, and productivity. 

However, to the author's best knowledge, no relevant scoping reviews have been conducted regarding IPS applications 
to warehouses. The main contributions of this review are: 

i) Describing current applications of IPS in warehouse environments. 
ii) Offering a comprehensive review of the current technology path for IPS applied in inventory-related tasks. 
iii) Proposing a framework for evaluating different IPS technologies applied in inventory management. 
iv) Providing guidance and prospects for future research on IPS technologies in inventory management, highlighting 

unresolved challenges and potential innovations.   

The article is structured as follows: Section 1 outlines the background of IPS applications in warehouse environments, 
explains the significance and necessity of focusing on inventory management, and clarifies the objectives of this scoping 
review. Section 2 presents the research methodology used for this scoping review. Section 3 presents relevant results 
related to the research objectives, focusing on inventory management applications. Section 4 discusses the findings, 
proposes practical recommendations, and concludes the review. 

2. SCOPING REVIEW METHODOLOGY 
The methodology of this research adheres to the scoping methodological framework proposed by Arksey and Hilary  

[16] and the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews 
(PRISMA-ScR) execution standards set forth by Tricco and O'Malley [17]. Additionally, techniques from other review 
research methods, such as systematic review and meta-analyses, are referenced [18]. The ScR research method allows for 
a comprehensive and objective review of research in a specific field. Utilizing the standardized Scoping Reviews 
(PRISMA-ScR) Checklist enhances the efficiency of the review process, making the results valuable to readers, 
policymakers, and practitioners.  

 
Figure 1. Scoping review process [16] 

The PRISMA-ScR Checklist [17] and other review studies that employed this method [20-22] were synthesised. The 
research methodology primarily encompasses stages such as "Clear Definition and Searching Preparation," "Searching 
and Selection of Data," and "Data Processing," which can be further subdivided into seven detailed steps. The process of 
the scoping review undertaken in this paper is depicted in Figure 1. 

2.1 STAGE 1: Definition and Searching Preparation 

2.1.1 The key terms identification 

The criteria of the PRISMA-ScR execution standard [12] are followed in this section for a pre-search investigation 
preparation process. Initially, the focus is on identifying key terms and providing accurate conceptual explanations for 
subsequent searches. However, it was found that the descriptions or concepts of these terms often lack consistency. Key 
concepts, similar terms, and near-synonyms related to the main research questions RQ1, RQ2, and RQ3 are synthesized 
and presented in Table 1, accompanied by brief explanations. 
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 Table 1. Key terms 

Key terms Abbreviation & 
Synonyms Related terms Explanation 

Warehouse None Cargo, Inventory, Shelf, Stock, A warehouse is a large facility for 
storing goods, including storage space, 
inventory management, and loading 
areas. 

Indoor 
Positioning 

IPS 
indoor location, 
indoor navigation, 
Odometry 

Sensors, Signal Sources, 
Mapping and Localization, 

Indoor positioning refers to the 
technology or methods used to track the 
location of objects or individuals within 
indoor environments. 

Mobile 
Robot 

Mobile Robotic, UAV (Unmanned Aerial Vehicle), 
MAV (Micro Aerial Vehicle) 
AGV, Drone, 

In a warehouse setting, mobile robots, 
often called logistics or storage robots, 
are automated devices that handle 
inventory and logistics tasks. 

Algorithm, 
Technology 

Techniques, 
Method 

Application The technology or algorithm mentioned 
here pertains to the key technologies 
used in the IPS for mobile robots in a 
warehouse setting. 

The initial search was conducted to refine the scoping review protocol, enhance the research questions, and adjust the 
search terms, upon which a more precise formal search would be conducted. The key terms employed in the search are 
defined in Table 1, and their synonymous expressions are elaborated. 

2.1.2 Identification of research question 

A comprehensive scoping review [17] addressing the questions outlined in Table 2 is aimed to be provided by this 
study. Through this approach, an in-depth exploration of historical development, a thorough comparison of diverse IPS 
technologies suitable for indoor warehouse environments, and the identification of research trends specifically applicable 
to inventory management within warehouse settings are offered to the reader. 

Table 2. Ultimate tensile strength values and elongation to fracture 
No. Research Questions Goal 
RQ1 What are the current IPS applications in a 

warehouse environment? 
Explore the applications of IPS in a warehouse environment, 
specifically focusing on identifying the role and criticality of IPS 
implementation in inventory management. 

RQ2 What current IPS technologies are utilised 
explicitly for inventory management in 
warehouse environments? 

Identify the techniques applied to IPS in a warehouse 
environment for inventory management, focusing on the key 
methods used for implementation and evaluating the advantages 
and limitations of each technology in enhancing inventory 
tracking and control. 

RQ3 How to evaluate different IPS inventories 
for logistics management applications in 
a warehouse environment? 

Develop a comprehensive evaluation framework for comparing 
IPS technologies in warehouse environments, focusing on their 
effectiveness, efficiency, and suitability for inventory 
management. 

2.1.3    Determine the information source 

Based on the findings presented in Table 3, it can be concluded that the relevant search terms for the scope of this 
scoping review include warehouse, indoor positioning, robot, navigation, and other related terms. Web of Science (WOS), 
Scopus, and Institute of Electrical and Electronics Engineers (IEEE)   were selected as the search databases because nearly 
all peer-reviewed literature in the field of engineering technology application can be searched through the combination 
of these three databases. 

2.2 STAGE 2: Data Searching and Selection 

The flow chart of article inclusion and exclusion, based on the PRISMA execution standard [18], is displayed in  
Figure 2. The steps for search preparation, sorting of search results, screening abstracts and conclusions, and full-text 
screening are included. Steps IV and Ⅴ will be utilized to detail how articles for inclusion in the review scope were 
obtained. 
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Figure 2. Flow chart of article inclusion and exclusion based on PRISMA criteria [18] 

2.2.1 Searching limitations and keywords 

The search strategy was designed to ensure comprehensive coverage of relevant literature on IPS technologies in 
warehouse environments. Searches were conducted in three major academic databases, Web of Science (WOS), IEEE 
Xplore, and Scopus, selected for their extensive engineering and technology-related publications indexing. The search 
queries combined keywords related to indoor positioning systems (e.g., "Indoor Positioning System," "IPS," "indoor 
localization") with terms specific to warehouse applications (e.g., "warehouse," "inventory management," "logistics"). 
Boolean operators such as "AND," "OR," and "NOT" were employed to refine the search scope, as illustrated in Table 3. 

Table 3. Searching keywords and limitations 
Database Search terms 
Scopus (TITLE-ABS-KEY ( warehouse )  AND  TITLE-ABS-

KEY ( "robot*"  OR  "drone"  OR  "UAV"  OR  "AGV" OR "MAV" )  AND  TITLE-ABS-
KEY ( "indoor positioning"  OR  "indoor 
localization"  OR  "navigation" ) )  AND  PUBYEAR  >  2013  AND  PUBYEAR  <  2024 
AND  ( LIMIT-TO ( DOCTYPE ,  "ar" )  OR  LIMIT-TO ( DOCTYPE ,  "re" ) )  AND  ( LIMIT-
TO ( SUBJAREA ,  "ENGI" )  OR  LIMIT-TO ( SUBJAREA ,  "COMP" ) ) 

WOS (TS=(warehouse)) AND (TS=(indoor positioning) OR TS=(indoor localization) OR 
TS=(navigation)) AND (TS=(robot*) OR TS =(drone) OR TS =(UAV) OR TS =(AGV) OR TS 
=( MAV))  
Refined By: Publication Years: 2014 2015 or 2023 or 2022 or 2021 or 2020 or 2019 or 2018 or 
2017 or 2016 or 2015 or 2014, Document Types: Article 

IEEE ("Abstract”: warehouse) AND ("Full Text & Metadata":"robot*" OR "Full Text & 
Metadata":"drone" OR "Full Text & Metadata":"AGV" OR "Full Text & Metadata":"MAV" OR 
"Full Text & Metadata":"UAV") AND ("Abstract":"indoor positioning" OR "Abstract":"indoor 
localization" OR "Abstract":"navigation") 
Filters Applied: Journals2014 - 2023 
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Specific filtering criteria were applied during the search to improve relevance and reliability. These criteria included: 
Articles published in English, Peer-reviewed journal articles and conference papers, Publications from the past decade 
(2014–2023); and a search scope limited to the title, abstract, and keyword sections. An initial search was conducted in 
June 2023 using these criteria, resulting in 100 articles from Scopus, 101 articles from WOS, and 17 from IEEE. After 
merging the results from all three databases and eliminating duplicates, 112 articles were retained for further filtering. 
The search process followed the PRISMA flowchart depicted in Figure 1. As the initial search results were reviewed, the 
search strategy was iteratively refined by adjusting keywords and Boolean operators to ensure comprehensive coverage. 
This iterative refinement maximized the inclusion of relevant studies while maintaining a focus on IPS technologies 
applied to warehouse environments. 

2.2.2 Screening and exclusion 

The inclusion and exclusion criteria were applied to ensure the selected articles aligned with the study's objectives. 
The exclusion criteria are presented in Table 4, emphasizing the selection of studies directly relevant to IPS applications 
in inventory management within warehouse environments. Articles were included if they Discussed IPS technologies 
specifically in the context of warehouse environments. Focused on inventory management, logistics, or warehouse 
digitization tasks. Provided experimental data, theoretical analysis, or practical case studies relevant to IPS applications. 
Articles were excluded if they focused solely on outdoor positioning systems or technologies unrelated to warehouse 
operations. Lacked detailed descriptions of IPS implementation or applications and were review papers or non-peer-
reviewed publications. The screening process was conducted in two stages: titles and abstracts were reviewed to eliminate 
irrelevant articles, followed by a full-text review to ensure alignment with the inclusion criteria. In this phase, the 112 
selected articles were reviewed thoroughly. Focus was placed on their titles, abstracts, and keywords to ascertain 
alignment with the research topic. After the abstracts and conclusions were screened, 64 articles were excluded for not 
matching the subject of this study based on conditions EC1, EC2, and EC3. A comprehensive review of the remaining 48 
full-text articles was then conducted. It was identified that 10 of these articles neither primarily focused on IPS nor 
provided detailed information about the implementation process of IPS. As a result, these 10 articles were excluded from 
further analysis. The methodology employed to extract and analyze data from the remaining 38 selected articles will be 
elaborated upon in the subsequent sections. 

Table 4. Exclusion criteria 
No. Exclusion criteria Description 
EC1 Exclusion of research that does not 

involve IPS 
Literature not primarily focused on IPS is excluded, as it is deemed 
irrelevant to the study 

EC2 Exclusion of items not relevant to 
inventory management in a warehouse 
environment 

Literature in which IPS is not applied, or is not intended to be 
applied, in the warehouse environment is excluded 

EC3 Exclusion the literature that without real 
experiments, the IPS 

Literature that has not been tested in practice or whose simulation 
tests do not resemble real-world warehouse environments is 
excluded 

2.3 STAGE 3: Data Processing 

2.3.1 Data Extraction 

The literature information included in the scoping review was categorized into three types: foundational data, 
distinctive data, and experimental data. This categorization facilitated the organization and comprehensive analysis of the 
extracted information. Foundational data included the title, author, publication year, keywords, and journal. A clear 
timeline of technological development in this field was outlined through the analysis of foundational data. Development 
trends were further analyzed by incorporating distinctive data. Distinctive data comprised research (application) 
objectives, conclusions, and future work. A clear understanding of the research problem's focal points, urgent issues 
requiring attention, and current challenges was gained through the organization and collection of distinctive data from 
each article. Experimental data included technologies used in the study, experimental (testing) platforms, experimental 
(testing) environments, accuracy, cost, energy efficiency, and scalability. A comprehensive analysis of the strengths and 
weaknesses of various techniques, methods, and algorithms was conducted by organising detailed experimental data and 
formulating a comprehensive evaluation framework. A standardized form developed in Microsoft Excel was employed 
to uniformly record data from articles that had passed the initial filtering and selection steps to ensure a systematic data 
extraction process. 

2.3.2 Data Analysis 

Quantitative and qualitative analysis was applied to the data and information extracted from the selected articles. This 
step involved the organization and analysis of data for RQ1, RQ2, and RQ3. To comprehensively address RQ1, the basic 
information of the included articles was first compiled. Based on the objectives of each study, the direction of IPS 
applications in warehouse environments over the past decade and the proportion of relevant literature were analyzed. For 
RQ2, both foundational and experimental data were utilized to generate a timeline that captures the development of indoor 
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positioning technologies in warehouse environments within the scope of the review. Regarding RQ3, key elements of 
experiments were derived from the Experimental data in the reviewed articles. An evaluation framework explicitly 
tailored for indoor positioning technologies in warehouse environments was established by referencing the house of 
quality evaluation system. Figure 3 outlines the review protocol employed in this study, which provides a systematic 
methodology for capturing knowledge and insights related to the topic and all relevant variables in a structured manner. 
The results of the scoping review based on the proposed review protocol are presented in the subsequent section. 

 
Figure 3. Conceptual framework and review protocol 

3. DATA ANALYSIS AND DISCUSSION 
In this Section, an analysis of the relevant data from the literature within the review scope was conducted. Statistical 

methods, connected papers [22] (a graphical literature search tool that utilizes co-citation and bibliographic coupling 
concepts to compile relevant literature lists and graphics), data visualization, and other means were employed to provide 
descriptive presentations and analysis of the results. The primary focus of this chapter was on describing the 
characteristics of the literature and presenting data relevant to the research questions (RQs). 

 
Figure 4. Publication counts of included articles in the past decade (2014-2023) 

3.1 Literature Characteristics  

An analysis of literature features can assist researchers in gaining a comprehensive understanding of the status and 
development trends in the research field. Initially, the quantity and temporal distribution of the included literature were 
analyzed to comprehend the research activity and trends in the application of IPS in warehouse environments. The 38 
articles included in this study were published between 2014 and 2023. As observed in Figure 4, the number of publications 
has been increasing annually, with significant acceleration noted in recent years. More than half of the articles were 
published in the last three years, reaffirming the timeliness and appropriateness of conducting a comprehensive review in 
this field. It is worth noting that no articles were identified for the year 2019. This absence results from applying the 
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exclusion criteria, where studies not directly relevant to the research objectives, particularly those lacking practical 
implications for IPS applications in warehouse environments, were excluded. Next, the keywords and topics of articles 
within the research scope were analyzed to identify main research directions, hot topics, and focal points, thus revealing 
research themes and trends. Interrelationships among these elements were examined, and a co-occurrence network was 
presented in Figure 5.  

 
Figure 5. Keywords co-occurrence network based on the selected 38 articles 

In Figure 5, each node expresses a keyword, representing a topic in the field of IPS research in warehouse 
environments. The node size indicates the number of articles related to the topic. Nodes are linked by arcs, signifying the 
co-occurrence between two topics, and the thickness of these arcs represents the closeness of the subjects. The legend in 
the lower right corner of the figure explains that the color of different nodes corresponds to the year of publication of their 
related literature, revealing the development trend of popular topics in the field. It is observed from the network that the 
primary research objects in this theme are robots (including UAVs), and the main positioning technologies of interest 
comprise LiDAR, Computer Vision, RFID, and UWB. A significant increase in warehouse research in recent years is 
also noted. In summary, an analysis of the literature has revealed the emerging popularity of the field, but it has not 
provided meaningful insights into the application of IPS in warehouse environments. To conduct a comprehensive 
investigation, an in-depth analysis and discussion will be centered around the research questions based on the literature 
within the scope of this review. 

3.2 RQ1: What are the current IPS applications in the warehouse environment? 

In the 38 articles included within the scope of this review, applications of IPS in warehouse environments are explicitly 
mentioned in 30 articles. In comparison, the remaining 8 articles focus solely on contributions to algorithms without 
testing in warehouse application scenarios. Analysis of the survey results reveals that the most frequent area of research 
is warehouse inventory applications; 14 out of the 30 articles (46.67%) focus specifically on this area. Since inventory 
management is critical to production efficiency and overall economic performance, a significant portion of IPS research 
in warehouse environments is allocated to improving these processes. Similarly, warehousing logistics management is 
another primary area where IPS is applied, as indicated by 13 articles (43.33%). For the maintenance of efficient 
warehouse operations, a well-functioning warehousing logistics management system is deemed essential. Research in this 
domain primarily concerns the localization or navigation of mobile devices like AGVs or forklifts within the warehouse 
setting. Furthermore, the application of IPS in the digitization of warehouses was discussed in 3 articles (10%). Two of 
these articles concentrate on constructing 3D models of warehouses, while the third article focuses on stack measurement 
for storing bulk materials. A summary of IPS applications in warehouse environments and corresponding literature is 
provided in Table 5. While reviewing applications of IPS in warehouse environments, the contributions and future works 
mentioned in the articles under review were also investigated. It was observed that challenges identified in prior research 
were targeted for resolution in all scoped articles or enhancements in one or more performance metrics were aimed for. 
These articles focus on metrics such as efficiency, safety, accuracy (precision), robustness (stability), and cost. Figure 6 
illustrates the distribution of these research articles over the years and their corresponding performance metrics. The 
horizontal axis represents the years of publication, while the vertical axis delineates the metrics. Each performance metric 
is depicted by a bar graph, where the intensity of the color signifies the relative number of articles published in that 
specific period. Darker shades indicate fewer articles, while lighter shades suggest more articles. 
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Table 5. Applications for IPS in the warehouse 
Application areas in the 

warehouse Percentage Articles 

Inventory 46.67% [23],[24],[25],[26],[27],[28],[29],[30],[31],[32],[33],[34],[35],[36] 
Logistics management 43.33% [37],[38],[39],[40],[41],[42],[43],[44],[45],[46],[47],[48],[49] 
Warehouse Digitization 10.00% [50],[51],[52] 
 

 
Figure 6. Areas of focus for IPS applications in warehouses (2014-2023) 

From the graph, it was observed that some articles address multiple performance metrics simultaneously. A focus on 
the positioning accuracy of IPS is seen in a total of 18 articles. A significant increase in articles addressing accuracy-
related issues in the past three years indicates a growing interest in this research area. Conversely, efficiency is the focus 
of 8 articles, with a steady growth rate observed year over year. Research on robustness, cost-effectiveness, and safety 
has received relatively less attention, although notable trends are still observable. An increase in research on system 
robustness since 2017 is evident, whereas hardly any relevant studies existed before that period. Starting in 2020, articles 
featuring research on cost-effectiveness and economics appeared. In contrast, a declining trend in publications addressing 
safety concerns after 2017 was noticed. Inventorying in a warehouse involves auditing goods, real-time tracking of 
inventory, and cross-checking inventory data with financial records to ensure accurate warehouse management. In 
traditional warehouse operations, this process relied heavily on manual staff or third-party audits to identify discrepancies 
in stock counting, inventory storage, and accounting. With the integration of IPS technologies, inventory management 
can be evolved into a highly automated and precise process, enabling real-time updates, reducing human errors, and 
enhancing overall efficiency. As illustrated in Figure 7, IPS technologies have been applied across three main warehouse 
tasks: inventory management, logistics management, and warehouse digitization. Among these, inventory management 
is the most frequently studied application, with the largest share of articles (46.67%) focusing on tasks such as real-time 
inventory tracking, cycle counting, and stocktaking. This dominance underscores the critical role of inventory 
management in warehouse operations, where precise localization and tracking are essential for operational efficiency. 

Logistics management accounts for 43.33% of the studies, primarily focusing on moving and handling goods, such as 
internal transportation, warehousing, and order picking. However, many logistics management tasks, particularly those 
involving the receipt, storage, and dispatch of goods, are closely tied to inventory management. For example, registering 
incoming goods and preparing items for dispatch relies on accurate inventory data and real-time localization capabilities 
provided by IPS technologies. In comparison, warehouse digitization comprises only 10% of the articles, focusing on 
environmental monitoring and surveillance tasks. While these applications are critical for safety and operational 
monitoring, their direct impact on inventory management is less pronounced. From this analysis, it can be concluded that 
inventory management represents the largest and most impactful application of IPS technologies and forms the foundation 
for many logistics-related tasks. This finding highlights the importance of inventory management when evaluating and 
implementing IPS technologies in warehouse environments. 

From Figure 7, it was noted that most research related to inventorying tasks utilizes UAVs. This preference is primarily 
attributed to the often elevated positions of shelves in warehouse environments, to which UAVs can easily fly, allowing 
them to perform real-time inventory checks and stocktaking tasks efficiently. UAVs exhibit distinct advantages in such 
scenarios compared to traditional ground-based mobile robots, particularly in high-density storage spaces and multi-level 
warehouses. Furthermore, UAVs enable the rapid scanning of inventory and the generation of accurate, up-to-date data 
critical for effective warehouse operations. Logistics management tasks within the warehouse, as shown in Figure 7, 
primarily involve the internal circulation of goods, including warehousing, material flow, transportation, and express 
delivery. In these tasks, mobile devices such as AGVs are predominantly utilized due to their ability to handle payloads 
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and navigate efficiently within the warehouse. However, many logistics-related activities, such as receiving, storing, and 
dispatching goods, are inherently tied to inventory management processes. These activities rely heavily on accurate 
inventory data generated and maintained through IPS technologies, further highlighting the integral role of inventory 
management in warehouse operations. Lastly, tasks related to warehouse digitization focus on inspecting and surveillance 
personnel, equipment, environment, and goods within the warehouse to detect potential risks and ensure safety. While 
these tasks may seem distinct, the real-time data generated by IPS technologies for inventory tracking also contributes to 
monitoring warehouse conditions, demonstrating the interconnected nature of these applications. Mobile devices such as 
UAVs and AGVs, equipped with advanced IPS technologies, are instrumental across all these tasks, with inventory 
management forming the foundation for their broader applications. 

 
Figure 7. Application of IPS in a warehouse environment 

In summary, various aspects of warehouse operations, including inventory, logistics management, and warehouse 
digitization, are covered by the current applications of IPS in warehouse environments. In inventory and warehouse 
digitization tasks, a significant performance has been shown by UAVs, which are widely used. In tasks related to logistics 
management, the predominant use of AGVs has been observed. Noteworthy is that the AGVs mentioned in the articles 
are equipped with indoor positioning capabilities and the ability to navigate indoors, differentiating them from traditional 
AGVs that follow predetermined routes. Therefore, a primary focus in the current applications of indoor positioning 
technologies in warehouses is the integration of IPS with mobile robots. Due to their superior space mobility, UAVs are 
mainly employed in inventory or inspection tasks. Conversely, logistics-related tasks necessitate mobile devices with 
specific payload capacities, resulting in a greater utilization of AGVs for these applications. 

3.3 RQ2: What current IPS technologies are utilized explicitly for inventory management in warehouse 
environments? 

The critical factor of technology choice for determining the suitability of an IPS for a given scenario is addressed in 
this section. A comprehensive review of indoor positioning technologies in warehouse environments was first developed. 
The technologies identified in the reviewed articles were initially classified, and the methods associated with different 
technology categories were subsequently organized and discussed in various research contexts. A deeper understanding 
of the relationship between IPS techniques and methods in the warehouse environment was gained by expanding a subset 
of the literature using the connected papers method. A comprehensive understanding of the current applications of IPS-
related technologies in warehouse environments is aimed to be provided through these three steps in this chapter. 

3.3.1 Classification of technology 

In some existing reviews, summaries for IPS have been provided. However, most of these reviews focus on a general 
overview of IPS, with little emphasis on its specific application areas. This study initially examined existing 
categorizations of IPS technologies from past reviews. Table 6 compares categorization results from three representative 
reviews published within the last five years. Subsequently, a comprehensive overview of indoor positioning technologies 
applicable to warehouse environments was developed based on the articles included in our scoping review. 
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Table 6. Classification of IPS technology based on existing review papers (2017-2023) 
Reviews Technology(different) Technology (similar) 
Basiri et al. [53] Infrared, Magnetometer Wi-Fi (WLAN) 

Tactile Odometer UWB 
Electromagnetic Systems RFID 
Mobile Network Zigbee 
Barometer Bluetooth (BLE) 
Pseudo lite Visible Light Communication (VLC) 

Zafari et al. [54] None Acoustic (Ultrasound) 
Mendoza-Silva et al. [55] Tactile Odometer Computer Vision (Camera) 

NFC IMU 

In their Meta-Review on IPS, Mendoza-Silva et al. [55] catalogued various mainstream indoor positioning 
technologies, including Light, Computer Vision, Sound, Magnetic Fields, Dead Reckoning, UWB, Wi-Fi, BLE, RFID, 
and ZigBee. It should be noted that technologies providing odometer information, such as inertial odometers and wheel 
encoders, were not included in their statistical analysis, as they were considered to achieve positioning indirectly. In 
contrast, in robot localization, these technologies were found to fundamentally serve the purpose of positioning [56]. 
Therefore, LiDAR technology was added, and some technologies (such as Bluetooth, Ultrasound, and ZigBee) that did 
not appear within the scope of our 38-article review were removed. An overview of the IPS technologies applicable to 
warehouse environments is provided in this section and summarized in Table 7. The technologies utilized in the articles 
scoped for our review are presented in this table, along with the accuracy reported in some representative studies. 
Although existing reviews contain literature that covers a broad spectrum of technologies, only those employed for IPS 
are considered in this study. For instance, in the paper by Krug et al. [23], although Computer Vision technology is 
mentioned, positioning information was achieved solely through LiDAR technology. Therefore, their positioning 
technology has been classified as LiDAR technology. The accuracy metrics presented in Table 7 were extracted from the 
articles within our review scope, and only the accuracy from representative research for each technology is displayed. 
The use of multi-sensor fusion techniques is also indicated with an asterisk (*) in the table. 

As shown in Table 7. In recent years, Wi-Fi positioning technology has been widely applied in warehouse 
environments, providing innovative solutions to enhance warehouse automation efficiency. The WiSion system leverages 
Wi-Fi signal multipath effects and inertial sensors to estimate a six-degree-of-freedom state in complex indoor warehouse 
environments without requiring access point positions, adapting to obstacles and multipath interference [57]. KF-Loc 
combines machine learning and Kalman filtering, utilizing millimeter-wave equipment to achieve high-precision 
positioning in dynamic warehouse environments, significantly improving smart warehouse management efficiency [58]. 
The UWB localization method proposed by Zhao et al. [59] achieves centimeter-level accuracy for AGVs without 
predefined paths, significantly reducing warehouse automation costs while improving system robustness through data 
diagnosis and optimization algorithms. Monica  [60] uses UWB technology to achieve high-precision localization for 
manual forklifts or personnel. It integrates with laser navigation, greatly enhancing the efficiency of positioning and 
managing various equipment and personnel in industrial warehouses. Li et al. [29] combined RFID technology with UAVs 
for warehouse inventory management, enabling efficient localization of tagged items on shelves and accurate horizontal 
and vertical classification. Alajami et al. [31] proposed the RFID-SOAN navigation system, which uses RFID tags as 
digital pheromones to help UAVs autonomously navigate and efficiently perform inventory tasks in mapless warehouses. 
Wu et al. [32] introduced the RF-SLAM method, which uses RFID devices to simultaneously localize robots and map 
tags, supporting rapid 3D spatial modeling in warehouse environments and enhancing warehouse automation capabilities.  

Louro et al. [43] proposed a visible light communication technology applied to warehouse management, enabling 
bidirectional communication between infrastructure and autonomous robots and communication among robots. This 
system supports robot positioning, transmission of rack information, and interaction on the status of transported items, 
enhancing the efficiency of warehouse logistics management. Another application is a VLC-based indoor navigation 
system, which uses warehouse LED lighting infrastructure to provide positioning and navigation for AGVs. Through 
uplink and downlink communication, automated control of AGVs in warehouse environments is achieved, optimizing the 
logistics operations of modern warehouses. The Dual-LiDAR navigation system proposed by Zhang et al. [42]is applied 
in warehouses to enable precise autonomous transportation and logistics operations, meeting the demands of intelligent 
warehousing with efficient mapping and navigation. The Relative Preintegration (RP) method developed by Kim et al. 
[61] enhances the performance of multi-sensor fusion navigation systems, enabling fast and accurate IMU data processing 
and improving the adaptability and efficiency of robotic operations in dynamic warehouse environments. Kwon's [27] 
system enhanced UAV inventory inspections by ensuring safe navigation in narrow and poorly lit warehouse aisles, 
improving operational efficiency. Prakash et al. [49] showcased how leveraging structural features like racks and ceilings 
can support precise robot navigation, reducing errors and enhancing automation in large-scale warehouses. Beul et al. 
[24] developed an autonomous MAV system that navigates warehouse aisles, identifies stock on shelves, and avoids 
obstacles, enabling fully automated inventory inspections guided by a warehouse management system. Gago et al. [51] 
designed an aerial robotic system for smart inventory in stockpile warehouses, automating the measurement of bulk 
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material volumes, such as fertilizers, with higher accuracy, safety, and efficiency, replacing traditional manual methods 
in challenging industrial environments. 

Table 7. Summary of indoor positioning techniques in warehouses 
Tech Typical Accuracy Remarks References 
Wi-Fi Positioning accuracy with RMSE (root-mean-

square error) is less than 37 cm [58]. Positioning 
and orientation errors are 31.77 cm and 2.27◦, 
within mild maximum errors and 95% 
confidence intervals [57]. Average errors of 89 
cm are reported [28].  

Despite a more significant error reported 
in the article [28], positioning across an 
expansive warehouse area is achieved. 

[58], [28], [57] 

UWB An average error of approximately 20 cm and a 
maximum of around 40 cm are reported [38]. An 
average 42.08% reduction in localization error 
is noted in three different anchor setups 
compared to a baseline approach. 

A significant reduction in error is 
achieved, but experiments in an actual 
warehouse are not conducted [59]. 

[38],[26], [59], 
[60] 

RFID Steady-state error averages no more than 28 cm 
[39]. Tracking accuracy ranges from 6 to 10 cm 
[29]. Position and orientation RMSE are 15 cm 
and 0.2 rad, respectively [63]*. A mean 
accuracy of 13 cm for 3D localization and 0.21 
cm for 2D is noted [48]. The mean and standard 
deviation of robot localization via LiDAR 
SLAM is 11.9 cm and 5.4 cm [32]. 

RFID technology is identified as a mature 
tag information system extensively used 
in logistics and warehousing. 
Simultaneous localization of both goods 
and mobile robots is achieved using RFID 
technology [32]. 

[39],[27]*, 
[29],[63]*, 
[31],[48], [32], 
[47], [34] 

IMU An average accuracy of 4 cm is reported [42]*. Both literature [61]* and [42]* discuss the 
utilization of IMU for improved 
positioning accuracy. However, IMUs are 
already integrated into many mobile 
robots, such as the Crazyflie nano-
quadcopter mentioned in the literature 
[59],  which does not address IMU sensor 
treatment. Hence, they are not included in 
this category. 

[61]*, [42]* 

VLC Positioning delay is found to be less than 3ms 
[43]. 

The positioning approach in [43] is 
commonly employed to locate target 
areas, focusing on latency. 

[40], [43] 

Computer 
Vision 

Average errors from ground truth are 3.8 cm for 
the proposed method [64]. After more than 60 m 
of flight, the final drift is less than 0.6 m, 
equating to around 1% [50]. 
Average and maximum localization errors are 
3.12 cm and 25.68 cm, respectively [27]*. The 
average error in X and Y dimensions is less than 
5 cm, and the angle is less than 0.1 radian [45]*. 

Experimental results and engineering 
experiences are comprehensively shared 
in the paper [50]. Multi-sensor fusion for 
autonomous cargo inventory counting in 
real warehouses is accomplished in paper 
[27]. 

[23]*,[25]*,[30], 
[35],[37]*, 
[64]*,[50], 
[61]*,[49]*, 
[44],[45]*,[33] 

LiDAR An average positioning error of 11 mm and a 
maximum error of 26.18 mm are reported [41]. 
An average accuracy of 4 cm is noted [42]*. The 
mean distance error is 98.2 mm [46]. 

A comprehensive system, including laser-
based positioning, planned navigation, 
obstacle avoidance, and information 
acquisition, is presented in the paper [24]. 
The Omniverse Isaac Sim simulation 
environment is employed in the paper 
[46], enhancing simulation experiment 
efficiency compared to traditional 
software like Gazebo. 

[23]*,[24], 
[64]*,[61]*, 
[25]*,[52], 
[41],[51], 
[42]*,[65], [45]*, 
[46] 

* Note: An asterisk (*) indicates using multi-sensor fusion techniques. 

Building upon these advancements, integrating diverse technologies like Wi-Fi, UWB, RFID, VLC, and LiDAR 
demonstrates the growing potential for intelligent warehouse systems. These innovations not only improve the efficiency 
of logistics operations but also set a foundation for scalable, fully automated warehouse solutions. By addressing 
challenges such as navigation in GPS-denied environments, precise inventory management, and real-time communication 
between devices, these systems pave the way for smarter, safer, and more adaptable warehouses, meeting the demands of 
modern supply chain and logistics industries. 
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3.3.2 Relationship between technologies, techniques, and algorithms 

While classifying the technologies, it was observed that specific techniques or methods corresponded to different 
technologies. To delve deeper into the underlying patterns and trends in IPS technology development, the methods 
employed to implement each technique were initially categorized based on the articles within the scope of this review. 
The relationship between Technologies, Techniques, and Methods is represented in a Sankey diagram, as displayed in 
Figure 8. In this diagram, three columns are presented, representing Technologies, Techniques, and Methods, 
respectively. Connections between these columns indicate various technical routes. The data visualized in Figure 8 is 
derived from the original data summarized in Table 7 of this paper. "Technologies" refers to the different types of 
technology utilized in IPS, "Techniques" specifies the unique ways a particular technology is deployed (such as specific 
signal attributes or types), and "Methods" predominantly alludes to the algorithms proposed in the research. Additionally, 
the label "Sensor Fusion" was added to account for studies that employed sensor fusion techniques for IPS 
implementation. Specific algorithm names did not explicitly characterize some optimization methods; these were marked 
as "Techniques-based" in their respective studies. 

From Figure 8, popular technologies, including LiDAR, Computer Vision, and RFID, were discernible over the past 
decade. Preferred techniques, such as Time-of-Flight (TOF), Received Signal Strength Indication (RSSI or RSS), and 
Feature Matching, were also identified. In articles within the scope of this review that utilized LiDAR, focus was mainly 
placed on the implementation or optimization of IPS. These articles used point cloud data provided by LiDAR for 
positioning but omitted details on how LiDAR generated this point cloud data. After this observation, a search was 
conducted on LiDAR-related literature. It was found that TOF-based LiDAR is a widely employed technique for distance 
measurement in single-point depth sensing and 3D mapping [68]. Therefore, most research on LiDAR technology in this 
context utilizes TOF-based distance sensing, with variations in the algorithms employed for data processing. This Sankey 
diagram systematically illustrates the relationships between Technologies, Techniques, and Methods, clearly visualising 
how different technical pathways are applied in IPS research. The diagram is divided into three columns: the left column, 
Technologies, includes various types of technologies such as IMU, VLC, Wi-Fi, UWB, RFID, Computer Vision, and 
LIDAR. The middle column, Techniques, represents the specific application methods of these technologies, such as 
Signal-to-Noise Ratio (SNR), Angle of Arrival (AOA), Received Signal Strength (RSS), Time Difference of Arrival 
(TDOA), Visual Odometry (VO), and feature extraction. The right column, Methods, summarizes the algorithms and 
solutions proposed in related studies, including machine learning approaches, optimization methods, and fusion strategies. 

 
Figure 8. Relationship between technologies, techniques, and methods of IPS in warehouse environments 

The connections between the columns illustrate the pathways from Technologies to Techniques and finally to 
Methods, showing how various technologies are applied to specific algorithms through techniques. For example, Wi-Fi 
technology is primarily associated with RSS and SNR techniques, which connect to multiple positioning algorithms. 
UWB technology is often linked with TDOA and trilateration methods, contributing to path planning and fusion strategies. 
Sensor Fusion is specifically highlighted, reflecting its cross-technology and multi-method applications. While not 
explicitly labeled with algorithm names, some optimisation approaches are summarized as “Techniques-based” pathways. 
It is important to note that the Methods listed on the right side of the diagram are derived from the original data 
summarized in Table 7 of this paper. By visualizing the data from Table 7, this Sankey diagram provides a comprehensive 
overview of the interconnections between technologies, techniques, and algorithms in existing research. It delivers a clear 
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analytical framework for understanding these relationships and serves as a valuable reference for future research in 
selecting technologies and planning technical pathways. 

3.3.3 IPS technology development in warehouse environment 

In the previous section, the organization of technologies, techniques, and methods relevant to IPS was carried out 
within the scope of the review, and their relationships were identified. Despite the review being limited to 38 articles, 
various technologies were observed. Consequently, challenges were faced in providing a comprehensive and clear 
background for these technologies, techniques, and methods based solely on the articles within the review. A methodology 
involving the search for secondary and tertiary literature referenced in the primary articles was employed to address this 
issue. This approach enhanced the technology framework and gave readers a more comprehensive and detailed field 
review. The 38 primary articles included in the review and the classification results from Table 8 were input as original 
data into the connected papers system [22], and secondary and tertiary literature related to each technology was 
systematically identified. Literature that cited each technology extensively was meticulously examined, and an expanded 
review library of relevant literature was subsequently assembled. The literature thus discovered is presented in Table 8. 

Table 8. Ultimate tensile strength values and elongation to fracture 
Tech Tracking Literature 
Wi-Fi [66], [67], [68], [69], [70], [71], [72], [73], [74], [75], [58], [76]  
UWB [77], [78], [79], [80], [81], [82], [83], [84], [85], [86], [87] 
RFID [88], [89], [90], [91], [92], [93], [94], [95],  
VLC [96], [97], [40], [43] 
IMU [98], [99], [100], [101], [61] 

Computer Vision [102], [103], [104], [105], [106], [107], [108], [109], [110], [111], [112], [113], [114] 
LiDAR [115], [116], [117], [118], [119], [120], [121]  

Seven different types of IPS-related technologies were included in the review. These technologies were classified into 
two types based on the measurement medium: wireless signals, such as Wi-Fi, UWB, and RFID, and other physical 
signals, like Computer Vision, LiDAR, IMU, and VLC. Algorithms for indoor positioning technologies based on radio 
signals were categorized into AOA [70], Time of Arrival (TOA) [67], [68], TDOA [69], and Received Signal Strength 
Indication (RSSI) [71]. These algorithms include geometric localization methods like triangulation and trilateration, as 
well as adjacency information and fingerprint localization methods such as adjacency-based positioning, multiliterate, 
and fingerprint recognition [85]. The algorithms associated with the other four types of physical signals (Computer Vision, 
LiDAR, IMU, VLC) used for IPS implementation were also summarized. 

Despite the extensive research on IPS technologies in warehouse environments, several critical gaps remain. First, 
while many studies emphasize technology adoption, there is limited focus on how these technologies address the specific 
challenges of dynamic inventory management in large-scale warehouses. Second, the trade-offs between cost, precision, 
and scalability are often overlooked, leading to a lack of practical guidance for technology selection. Third, few studies 
explore hybrid solutions combining multiple IPS technologies to balance their strengths and limitations. These gaps 
underscore the need for tailored evaluation frameworks and innovative approaches to optimize IPS deployment for 
inventory management. 

Table 9. Overview of common wireless localization methods and principles 
Methods  Described References 

Geometric 
Measurement 

TOA Determination of position by measuring the propagation time of a 
signal from transmitter to receiver. 

[67] 

TDOA Determination of position by measuring the time difference between 
signal arrivals at multiple receivers with known positions. 

[69] 

AOA Determines position by measuring the AOA of the signal using an 
antenna array or directional antenna on the receiver. 

[70] 

Fingerprinting RSSI 
(RSS) 

The fingerprint localization method establishes a correspondence 
between the geographic location of each point in the indoor space and 
the signal. It achieves positioning through feature matching. 

[70], [71] 

3.3.3.1  Wi-Fi-based IPS technology 

The principle of active positioning in Wi-Fi-based positioning is established by placing a certain number of Access 
Points (APs) in the indoor environment. When the mobile receiving end enters the positioning area, a search for the APs 
to transmit wireless signals is initiated, and location is determined through the received signal values, as shown in 
Figure 9. Currently, mainstream Wi-Fi positioning technologies fall into two categories: active Wi-Fi localization 
technologies that utilize geometric measurements and passive positioning technologies based on Wi-Fi fingerprint 
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information [66]. The categorization of Wi-Fi-based IPS technologies is presented in Table 9. In geometric measurement-
based Wi-Fi positioning technology, the distance from the receiving device to each wireless AP is calculated, and the 
target position is determined through distance intersection. However, the accuracy of distance measurement using Wi-Fi 
signals is compromised, as Wi-Fi signals are not explicitly designed for positioning. The performance of the Wi-Fi 
positioning method based on geometric measurement is negatively affected in indoor environments due to signal 
multipath, reflection, and refraction. Additionally, Wi-Fi positioning technology is susceptible to variations in signal 
strength. Active positioning schemes that rely on single wireless technologies, such as Wi-Fi, UWB, and RFID, include 
TOA [67], TDOA [69], and AOA [70], as shown in Figure 10. 

 
Figure 9. Schematic diagram of Wi-Fi-based IPS principle 

 

   
(a) (b) (c) 

Figure 10. Active wireless location method: (a) TOA, (b) TDOA, and (c) AOA 

The measurement object of both TOA and TDOA methods is the time signals are disseminated. By multiplying the 
speed of the signal by the TOA data, the relative distance between the signal source and the measurement point can be 
calculated. Therefore, the crux of the method lies in the accurate acquisition of signal propagation time. A mechanism to 
improve TOA or AOA localization performance by transmitting multiple predefined messages was proposed by Yang et 
al. [68], allowing for reduced network bandwidth and antenna requirements while maintaining high-accuracy 
performance. In a study by Cheng et al. [72], the Taylor algorithm was developed, achieving 1-decimeter positioning 
accuracy in indoor line-of-sight (LOS) environments with dynamic and static data. The AOA-based ranging positioning 
method relies on the angle between the target and at least two known positions to pinpoint the target's location. A robust 
phased array-based positioning system, which adopts a sparse reconstruction algorithm to improve AOA algorithm 
accuracy significantly, was proposed by Gong et al. [73]. In 2020, Vashist et al. introduced an indoor warehouse location 
system using a 60GHz wireless router and SNR as a feature of consumer-grade wireless APs in a machine learning-based 
location algorithm. The system achieved Remarkable centimetre-level accuracy with an RMSE of 0.84m and an MAE of 
0.37m, meeting the accuracy requirements for warehouses [58].  

In the realm of passive Wi-Fi positioning technology based on fingerprint information, the following concept applies: 
Wi-Fi fingerprint localization is predicated on the correspondence between the geographic location of each point in indoor 
space and the signal, achieving positioning through feature matching, as depicted in Figure 11. Indoor environments are 
partitioned into several blocks, each possessing a unique "fingerprint," which encapsulates the characteristic information 
of the location and other features that constitute part of the "fingerprint library" [68]. Two signals are primarily relied 
upon in fingerprint localisation methods: RSSI and CSI. RSSI represents a quantized measurement of the physical signal 
strength received, known as RSS, and is utilized in various wireless applications. CSI provides a more comprehensive 
assessment of channel conditions between the transmitter and receiver. The establishment of an accurate channel 
attenuation model is identified as critical for RSSI-based ranging and positioning algorithms. A wireless map with fine-
grained CSI was established by Shi et al. [74] to improve target location estimation accuracy. The SpotFi system, proposed 
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by Hoang et al. [75], utilized a convolutional neural network (CNN) to train signal features, thereby enhancing the 
accuracy of RSSI measurement. A deep learning model equipped with an attention module was employed by Brunello et 
al. [76] for the first time, improving fingerprint-based IPS in both theoretical aspects and localization accuracy, achieving 
a range of 0.8-1.0 m in accuracy. 

 
Figure 21. Schematic representation of the fingerprinting localization method for Wi-Fi-based indoor positioning 

In summary, geometry-based active Wi-Fi positioning techniques are constrained by their low accuracy in indoor 
environments affected by signal multipath, reflection, and refraction, as well as their susceptibility to fluctuations in signal 
strength. Based on the literature surveyed, the challenge lies in obtaining accurate signal propagation times through 
improved algorithms or device performance. Passive Wi-Fi positioning techniques based on fingerprint information face 
limitations, such as the significant effort required to build an offline fingerprint database and the difficulty adapting to 
environments undergoing substantial changes. Establishing an accurate channel fading model is a challenge for RSSI-
based ranging and positioning algorithms.  

3.3.3.2  UWB-based IPS technology 

The US Department of Defense first proposed UWB technology in the 1960s, and it was primarily utilized for military 
applications at that time [77]. It wasn't until 1998 that the Federal Communications Commission (FCC) authorised civil 
use of the technology. UWB technology utilizes an extensive frequency band, ranging from 3.1 to 10.6 gigahertz, by 
transmitting very short pulses, thus providing significant bandwidth advantages and short pulse periods. As a result, UWB 
can offer greater capacity and higher data rates. In addition, it performs well in low signal-to-noise ratio communication 
channel conditions and is immune to multipath propagation conditions. This makes UWB communications suitable for 
indoor positioning applications [78], especially in non-line-of-sight (NLOS) conditions. Since the transmission is in short 
pulses, UWB signals are transmitted with a low average power spectral density, placing them on the noise floor (typically 
-40 dBm/MHz), resulting in reduced transmit power consumption, improved power efficiency, and resistance to 
interference and interception, as shown in Figure 12 [122]. 

 
Figure 12. Comparison of UWB spectral properties with various positioning techniques [122] 

UWB technology shares similarities with Wi-Fi regarding technical routes, as both utilize wireless signals for 
positioning. However, their characteristics and application scenarios differ. Like UWB, Wi-Fi can achieve positioning 
through methods such as RSSI, TOA, or AOA, as shown in Figure 10 and Figure 11. Nevertheless, UWB employs ultra-
wideband frequencies and short-pulse transmission, providing higher precision and stronger resistance to multipath effects 
than Wi-Fi's narrowband communication, especially in non-line-of-sight (NLOS) environments. Meanwhile, Wi-Fi, with 
its widespread infrastructure deployment and lower costs, is better suited for large-scale indoor coverage scenarios. Thus, 
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while UWB and Wi-Fi share overlapping principles, the former focuses more on high-precision and low-latency 
positioning requirements, whereas the latter emphasizes accessibility and cost efficiency. The two technologies exhibit a 
complementary relationship in indoor positioning applications. 

In UWB-based geometric measurements, the primary focus of researchers has been on error reduction in NLOS 
environments, where obstacles can obstruct the direct path between the transmitter and receiver, leading to signal 
reflection, diffraction, or scattering. A machine learning-based algorithm for classifying signal propagation in LOS and 
NLOS situations was developed by Marano et al. [79], effectively reducing the resulting errors. The variation law of 
residuals between LOS and NLOS indoor environments was studied by Zhang et al. [80] using the Kalman Filtering 
algorithm (KF). NLOS errors were identified and mitigated by setting an appropriate threshold and comparing real-time 
residuals with ranging. Yu et al. [81] corrected signal arrival time estimation when UWB signals propagated in complex 
indoor NLOS environments. A method for NLOS error elimination based on TOA was proposed by Go et al. [82], where 
the distance measurement value of the signal propagation between different base stations and tags performs the distance 
compensation. An algorithm that combines the least squares method and the Kalman Filter algorithm was introduced by 
Wang et al. [83], demonstrating a positioning accuracy of 9.3 cm. Research into UWB-based fingerprint positioning 
methods has included techniques to reduce positioning errors from NLOS and multipath effects. Channel measurement 
[85], front-end energy sampling on the receiving end [86], and measurement error noise are commonly utilized techniques. 
A new UWB positioning system based on an unmanned aerial vehicle (UAV) using integrated Radio Frequency (RF) 
hardware and antennas was proposed by Tiemann et al. (2015) [87]. The challenges of achieving accurate UAV 
localization in large warehouses were discussed by Macoir et al. [84], especially considering the high costs associated 
with deploying complex wiring and power infrastructures required by large-scale UWB systems. 

High measurement accuracy is one of the main advantages of UWB positioning technology, with location errors 
reported to be less than 10cm in some instances [83]. Good multipath mitigation is also offered by UWB, making it 
suitable for environments with high-density tags and high mobility. However, limitations of UWB positioning technology 
include the time-consuming and expensive initial setup, which requires precise calibration and placement of transceivers, 
and the need for an unobstructed path between the transmitter and receiver. These limitations can compromise its 
effectiveness in specific indoor environment settings. UWB is widely used in warehouse environments for inventory 
tracking, AGV navigation, and real-time personnel monitoring. For instance, UWB-based positioning systems have been 
implemented to enable high-precision tracking of goods on high shelves, ensuring inventory accuracy while minimizing 
manual intervention. Moreover, UWB's ability to provide robust performance in high-mobility scenarios has been 
leveraged for AGVs, where its low latency and high accuracy are critical for collision avoidance and optimal path 
planning.  

UWB technology excels in indoor positioning with high accuracy, strong NLOS performance, and resistance to 
multipath effects, making it ideal for inventory tracking and AGV navigation tasks. However, it faces challenges such as 
high deployment costs, complex calibration, and scalability issues in large-scale environments. To overcome the inherent 
limitations of UWB, researchers have explored its integration with other positioning technologies. For example, UWB-
LiDAR fusion systems have enhanced 3D mapping and navigation accuracy, particularly in cluttered indoor environments 
[60]. Although these hybrid systems improve performance, they also increase complexity and costs. Future advancements 
in UWB technology focus on simplifying deployment and reducing costs by utilizing software-defined systems equipped 
with real-time calibration and adaptive algorithms. Additionally, integrating AI is anticipated to enhance NLOS error 
mitigation and boost signal reliability, further broadening UWB’s robotics, smart warehouses, and healthcare 
applications. 

3.3.3.3  RFID-based IPS Technology  

Derived from the rapid development of radar communication technology in the 1950s, RFID is a non-contact method 
for transmitting information. Utilizing RF signals through spatial coupling, this technology serves the purpose of 
automatic identification [88]. Over the years, substantial advancements have been made in the technical theory of RFID. 
Initially applied in the field of indoor positioning since the start of this century, RFID has given rise to classic positioning 
systems like the SpotON [89], LANDMARC system [90], and VIRE system [91]. As shown in Figure 13, RFID tags are 
deployed on the ground in a specified pattern for RFID-based positioning. The ID information of an RFID tag is tied to 
its coordinate position on the ground, so RFID-based e-maps can be defined based on the tag's ID and position [123]. The 
LANDMARC system operates by deploying a network of fixed reference points, such as access points or RFID readers, 
throughout indoor areas. These reference points are anchors for measuring the wireless signals emitted by mobile devices 
or tags carried by individuals or objects. Several modifications and enhancements to the LANDMARC system have been 
proposed to address the complexity of indoor environments. Gu et al. (2020) introduced a novel indoor positioning 
algorithm based on LANDMARC to balance cost and precision. The system replaced physical tags with "reference tags," 
reducing electromagnetic interference and system costs. Furthermore, Hu et al. [90] proposed an optimized LANDMARC 
positioning algorithm to mitigate significant differences in RSS between tags situated close to the reader [92].  

However, conventional methods like LANDMARC and K Nearest Neighbors (KNN) often suffer from limited 
accuracy due to signal reflection, diffraction, and non-occlusion factors. Zhou et al. [93] presented an improved KNN 
method that corrected target coordinates using a passive RFID system. Subedi et al. [94] achieved centimeter-level 
localization accuracy in complex environments using only RSSI measurements from multiple passive tags. Li et al. [95] 
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introduced the WIMEC-LANDMARC algorithm that incorporates average error correction, improving accuracy. 
Additional advancements include work by Teo et al. [39], who demonstrated effective autonomous mobile robot 
navigation using RFID signal strength sensing. Tao et al. [123] proposed a Monte Carlo and dual-antenna joint corrective 
fit-based scheme, which showed significantly higher localization accuracy than particle filter-based algorithms. A recent 
trend involves the incorporation of intelligent algorithms into RFID-based IPS. Notably, a neural network-based 
optimization method was proposed, significantly improving system localization accuracy [95]. 

 
Figure 13. RFID-based Indoor positioning system 

3.3.3.4  VLC-based IPS technology 

Visible Light Positioning has emerged as a dual-functional technology, offering illumination and communication 
features. This innovative approach is gaining significant traction in the field of IPS [96]. Specifically, VLP, a subset of 
VLC, is identified as an up-and-coming solution for indoor positioning, as shown in Figure 14 [97]. The system is a high-
precision indoor positioning solution based on a single LED lamp. It consists of an original VLP lamp paired with a small 
luminescent beacon mounted on its edge, which emits encoded visible light signals. Using a CMOS sensor with a rolling 
shutter mechanism, the system captures bright and dark stripes formed by the light signal. Image processing algorithms 
extract the pixel coordinates of the lamp and beacon, which are combined with the beacon's physical coordinates to 
calculate the precise position of the device using trigonometric functions. A beacon-searching algorithm further 
accelerates the localization process. The low-complexity design requires processing only a single set of bright and dark 
stripes without binarization or complex projections, ensuring high efficiency and low hardware requirements. The system 
achieves centimeter-level accuracy (average error of 2.26 cm) and millisecond-level response times (average positioning 
time of 6.3 ms), making it suitable for indoor navigation applications on low-cost embedded platforms. 

 
Figure 14. VLC-based IPS system architecture [97] 

In recent years, Chen et al. [124] proposed a method that employed fingerprinting and an Extreme Learning Machine 
(ELM) to achieve high localization accuracy, robust interference immunity, and excellent real-time performance. This 
method reported an average 3D positioning error of just 2.11 cm. Following this, Li et al. [96] presented an unbalanced 
single LED VLP algorithm and a fast beacon search method. For indoor settings with a height of 3 meters, their approach 
yielded a positioning accuracy of 2.26 cm. Practical applications of VLC in warehouse environments were researched by 
Louro et al. [40] [43]. A white LED lighting system was installed on the warehouse ceiling to enable bidirectional 
communication between the infrastructure and vehicles. This system comprises two core elements: VLC transmitters, 
LED lights, and AGVs with VLC receivers. Data is transmitted by white RGB LED emitters in the LED lights and 
collected by VLC receivers on the AGVs. An ON-OFF keying method is employed for data modulation [40]. Three 
primary color white LEDs and photodetectors are utilized for the transmitters and receivers. Each LED light provides 
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positional information to the vehicles through the adequate modulation of RGB emitters. Reliable data transmission is 
ensured by coding and synchronization techniques, and error detection and correction are enhanced through parity bits 
[43]. 

Table 10 highlights three key VLC-based indoor positioning methods, each leveraging unique techniques to achieve 
high precision and real-time performance. The Single Lamp and Beacon System stands out for its simplicity and low 
hardware requirements, making it suitable for low-cost embedded platforms, with an accuracy of 2.26 cm and a response 
time of 6.3 Ms. The Fingerprinting + ELM Method achieves the highest reported 3D positioning accuracy of 2.11 cm by 
using machine learning to enhance robustness and real-time performance, making it ideal for static environments requiring 
high precision. Similarly, the Asymmetric Single Lamp VLP Algorithm focuses on fast localization with simple hardware 
design, balancing cost and efficiency. The Bidirectional Communication and Navigation System integrates positioning 
with communication, facilitating warehouse AGV navigation by leveraging RGB LED lights and robust error correction 
techniques. The key advantages of VLC-based IPS include its compatibility with existing lighting infrastructure in indoor 
spaces, making VLP highly convenient. Additionally, in environments where wireless signals are susceptible to 
interference, such as hospitals with MRI equipment or factories with large electromagnetic devices, VLC-based IPS is 
highly applicable. VLC technology also demonstrates less susceptibility to multipath effects and interference from other 
wireless systems. Nevertheless, challenges are faced by VLC-based IPS, particularly in maintaining positioning accuracy 
in environments where light reflections, diffusion, or dynamic obstacles are present. Recent advancements in VLC 
technology have focused on improving signal processing using machine learning algorithms. For instance, convolutional 
neural networks (CNNs) have been applied to enhance the robustness of signal decoding under conditions of high ambient 
light interference. Additionally, hybrid systems combining VLC and Wi-Fi have been proposed, leveraging the high-
speed communication capabilities of VLC with the broad coverage of Wi-Fi to create a complementary system for large-
scale indoor positioning. 

Table 10. Overview of visible light positioning techniques and their performance 
Method Description Performance Features 

Single Lamp and 
Beacon System [96] 

Utilizes a single LED lamp paired with 
a small beacon. A CMOS sensor 
captures bright and dark stripes, and 
trigonometric functions calculate the 
device's position. 

Accuracy: 2.26 cm 
Response time: 6.3 
Ms 

Simple design, low hardware 
requirements, suitable for low-
cost embedded platforms. 

Fingerprinting + ELM 
[124] 

Matches light signal features with a pre-
built fingerprint database. Combines 
Extreme Learning Machine (ELM) to 
enhance accuracy and interference 
immunity. 

3D Positioning 
Error: 2.11 cm 

It relies on environment 
calibration, is suitable for 
fixed scenarios, and enhances 
stability via machine learning. 

Bidirectional 
Communication and 
Navigation System 
[43] 

It uses RGB LED lights to modulate and 
transmit position information. AGVs 
with VLC receivers enable bidirectional 
communication and navigation. 

Accuracy: Not 
specified 

Combines communication and 
positioning, high reliability, 
suitable for warehouse AGV 
navigation. 

3.3.3.5  IMU-based IPS technology 

Inertial Measurement Unit (IMU) positioning is a technology that achieves three-dimensional spatial position and 
orientation estimation through sensor fusion and is widely used in drones, autonomous driving, robotics, and indoor 
navigation. It relies on accelerometers, gyroscopes, and magnetometers, integrating sensor data using Direction Cosine 
Matrix (DCM) or quaternion methods to calculate attitude angles in real-time while correcting drift errors [98]. 
Accelerometers provide linear acceleration data for displacement calculation, gyroscopes measure angular velocity to 
estimate rotation, and magnetometers reference the Earth's magnetic field to determine heading. To address cumulative 
errors caused by traditional double integration, jerk integration is employed for displacement calculation, and Extended 
Kalman Filter (EKF) further refines multi-sensor state estimation. Barometric pressure sensors or laser rangefinders assist 
in altitude measurement, enabling comprehensive 3D localization [99]. Despite its low cost and operational convenience, 
indoor positioning technology based on inertial navigation is subject to inevitable accumulated errors and requires per 
iodic calibration through external information. Consequently, research focused on attitude update algorithms for this 
system has garnered considerable attention. The Pedestrian Dead Reckoning (PDR) algorithm, a method that uses inertial 
sensors to calculate the distance and direction of a target's movement, was first proposed by Wu et al. [100]. This method 
enables the calculation of the target's relative position. Figure 15 illustrates the general framework of an IMU-based 
Pedestrian Dead Reckoning (PDR) system, providing a comprehensive depiction of the process from sensor data 
collection to trajectory output. The system is centered on accelerometers, gyroscopes, and magnetometers, which measure 
linear acceleration, angular velocity, and geomagnetic direction, respectively, with barometers optionally used for altitude 
variation measurement. In the preprocessing stage, features are extracted through gait detection and motion classification. 
Gait detection leverages methods such as Zero-Velocity Update (ZUPT) and Zero-Angular Rate Update (ZARU) to 
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identify gait phases. At the same time, motion classification employs machine learning algorithms to distinguish motion 
types (e.g., walking, running), ensuring high-quality input for trajectory calculation. 

 
Figure 15. IMU-based pedestrian dead reckoning system framework [100] 

The core algorithms include Inertial Navigation Systems (INS) and Step-and-Heading Systems (SHS). INS estimate 
positions through integration while combining ZUPT and EKF to mitigate error accumulation. SHS calculates trajectories 
by incrementally adding step lengths and headings. Map matching and magnetic field correction also constrain trajectory 
errors, enhancing accuracy. Ultimately, the system outputs high-precision three-dimensional positions, trajectories, and 
orientation information. Through modular design, data fusion, and environmental constraints, this framework effectively 
addresses error issues in inertial navigation, providing a reliable solution for indoor positioning. Recent advancements in 
IMU-related algorithms have focused on improving positioning accuracy in dynamic and cluttered warehouse 
environments. For instance, Tong et al. [101] proposed an Enhanced PDR algorithm optimized for AGV navigation in 
high-density storage areas, achieving a 15% reduction in cumulative error compared to traditional methods. To mitigate 
the cumulative error inherent in IMU-based positioning, hybrid systems integrating IMU with Simultaneous Localization 
and Mapping (SLAM), LiDAR, or vision-based technologies have gained significant traction. For example, in a study by 
Qin et al. [113], the VINS-Mono system combined IMU with monocular vision to achieve precise localization in dynamic 
warehouse environments, demonstrating long-term operational stability with a maximum error of 8 cm under the EuRoC 
dataset. Similarly, Kim et al. [61] proposed a method for calibrating IMU and LiDAR pairings, enabling robust navigation 
in cluttered warehouse spaces. These hybrid systems leverage the complementary strengths of IMU and other sensors, 
significantly improving positioning accuracy and reliability in complex indoor environments. 

In conclusion, IMU-based indoor positioning is widely adopted in navigation and positioning equipment due to its 
cost-effectiveness, compact design, and ability to operate independently of external signals. This autonomy makes IMU 
systems particularly suitable for complex warehouse environments characterized by narrow aisles, high-density storage, 
and dynamic obstacles, where reliable and precise localization is critical. The development of Micro-Electro-Mechanical 
Systems (MEMS) has further enhanced the precision and reliability of IMU-based systems in indoor settings. However, 
challenges such as cumulative errors and sensitivity to external disturbances necessitate periodic calibration and 
algorithmic improvements. To address these issues, researchers are focusing on adaptive filtering techniques, enhanced 
sensor fusion methods, and the integration of IMU with technologies such as SLAM and LiDAR, which have 
demonstrated significant potential in improving positioning accuracy and robustness. Future advancements in real-time 
data fusion and error correction algorithms are expected to expand the applicability of IMU-based systems, making them 
a vital component of intelligent warehouse operations. 
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3.3.3.6 Computer vision-based IPS technology 

Computer vision technology was developed with advancements in sensor devices, computer computing power, and 
image processing technology. Since the 1980s, machine vision technology has been extensively researched. Techniques 
for vision-based positioning, including monocular vision, binocular vision, and RGB-D, are included. The process flow 
for obtaining environmental image information through the camera lens in computer vision positioning technology is 
illustrated in Figure 16. Firstly, images are captured by a calibrated camera [125], then image processing and analysis are 
performed, and finally, the required information about the external environment is derived. Computer vision-based IPS 
technology can be classified into known and unknown environments according to the prior information of the environment 
possessed by the receiving device [102]. 

 
Figure 16. Process flow of computer vision positioning technology 

In known environments, the location of equipment is established based on image data captured by a camera using 
visual positioning technology. Previously mapped environments with features such as artificial beacons or markers are 
referred to as known environments. During the localization process, the captured image is matched with images or markers 
stored in a database and location information is obtained from the most similar image. The first introduction of computer 
vision for indoor positioning was made by a mobile robot designed by Kriegman et al. [103]. Linear geometric features 
were extracted from images captured by a monocular camera on the robot, and the extended Kalman filter was used to 
reduce uncertainty and determine the camera position. Since then, various approaches for optimizing feature extraction 
methods and improving localization performance have been proposed. Simultaneous Localization and Mapping, a widely 
used technique in robotics and indoor navigation, has further advanced the integration of computer vision into indoor 
positioning systems. SLAM enables a device to construct a map of an unknown environment while simultaneously 
localizing itself within that map. The SeqSLAM method, proposed by Milford et al. [104], uses image differences to 
measure similarity between images and improves localization accuracy through graph matching. Vehicle speed and 
distance were estimated by an algorithm presented by Ho et al. [105] utilizing a monocular camera to measure optical 
flow and control inputs. The robustness of image recognition was enhanced by a place recognition method based on LDB 
(Local Difference Binary) features proposed by Arroyo et al. [106]. A neural network called NetVLAD for extracting 
image features was proposed by Arandjelovic et al. [107], using a large amount of image data to learn representations for 
VLAD (vector of locally aggregated descriptors) features [108]. 

In unknown environments where existing beacon methods are not applicable, the environment is reconstructed through 
real-time and online video. The position of the image sensor is calculated in real-time using Visual Simultaneous 
Localization and Mapping technology [102]. Feature point associations between two images are established by extracting 
and matching image feature points. Peripolar geometry is used to solve camera motion, and triangulation is used to 
calculate the 3D information of features [109]. Davison developed a SLAM technology positioning system based on 
monocular vision in 2003, combining the SLAM algorithm with visual positioning technology [126]. ORB-SLAM, a 
robust positioning system for locating vigorously moving targets, was proposed by Mur-Artal et al. [110]. Support for 
different vision devices and fully automatic initialization were added in the ORB-SLAM2 [111] and ORB-SLAM3 [112] 
systems, developed in 2017 and 2021, respectively. The components of ORB-SLAM1, ORB-SLAM2, and ORB-SLAM3 
are depicted with different background colors to indicate their version-specific functionalities in Figure 17. ORB-SLAM1 
centers on TRACKING, LOCAL MAPPING, and LOOP CLOSING modules for basic navigation and mapping. 
Additional features in ORB-SLAM2 include support for more camera types and enhanced accuracy [111]. ORB-SLAM3 
introduces IMU integration and the Atlas module for advanced map construction and localization, increasing accuracy 
across varied scenes. 

Hardware constraints and the ever-expanding range of positioning targets impose significant limitations on the 
localization accuracy of pure visual SLAM. Consequently, the development of multi-sensor positioning systems that 
incorporate vision technology, inertial navigation, LiDAR, and wireless communication technology has been deemed 
necessary. Such a system is the VINS-Mono, developed by Qin et al. [113], in which localization is achieved by 
integrating vision and inertial navigation IMU devices. High stability, contributing to long-term operational accuracy and 
robustness, is exhibited by the VINS-Mono and VIN-Mobile systems. Under the EuRoC data set, a maximum error of 8 
cm in the localization accuracy of the VINS-Mono system is recorded. A system that combines computer vision and Lidar 
was proposed by Mohta et al. [50], enabling rapid and reliable autonomous navigation even with limited prior 
environmental knowledge. This system achieves a maximum speed of 7 m/s and a final position drift of less than 2 m. 
The lowest-cost navigation platform for unknown cluttered environments to date has been implemented by Campos-
Macías et al. [114] using the Intel Ready to Fly drone kit. Overall, computer vision-based indoor navigation technology 
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promises accurate and real-time positioning in indoor environments. One of its main advantages is that no additional 
infrastructure or hardware installation is required, rendering it cost-effective and easy to deploy. Suitability for low-light 
conditions is another advantage. However, drawbacks exist, such as the requirement for high computational power, which 
may limit real-time performance. Additionally, accuracy may be influenced by the quality and quantity of visual features 
in the environment. 

 
Figure 17. The main system components of ORB-SLAM1-3 and their enhancements 

3.3.3.7  LiDAR-based IPS technology  

LiDAR (Light Detection and Ranging) is identified as a sensing technology in which lasers are employed to measure 
distances and construct precise 3D models of an area. Its capacity to operate in GPS-denied and weak signal indoor 
settings has contributed to its broad adoption for indoor positioning due to its accuracy and reliability in recent years 
[115]. In LiDAR indoor positioning technology, laser beams are emitted in all directions by a LiDAR sensor. These beams 
are bounced back upon encountering objects, and the Time-of-Flight between emission and return is analyzed to calculate 
the object's distance and position. This process is repeated multiple times, culminating in a large point cloud data set that 
represents the 3D environment. Technology has facilitated integration with the specific requirements of various fields, 
leading to its extensive application in diverse domains [116]. 

SLAM utilizing LiDAR technology has been recognized as a significant research direction in mobile robotics [111]. 
As illustrated in Figure 18, the basic framework of a LiDAR-based SLAM system consists of several key components 
that work together to achieve accurate localization and mapping. First, “data sensing” is handled by the LiDAR sensor, 
which emits laser beams to capture point cloud data representing the surrounding environment. This raw data is processed 
in the next stage, where “data processing and estimation” are managed by the odometer. The odometer estimates the 
sensor's position and orientation by aligning successive scans using Iterative Closest Point (ICP) algorithms. 
Subsequently, “global map construction” optimizes the alignment of multiple scans across a larger area, correcting 
cumulative errors and ensuring consistency in the 3D map. Finally, “loopback detection” identifies previously visited 
locations, aligning them with current scans to eliminate drift and enhance overall map accuracy, particularly during 
extended mapping sessions. Among its advantages is the technology's functionality in GPS-compromised environments, 
such as warehouse environments. LiDAR-based IPS technologies are widely utilized for inventory management, 
automated guided vehicle navigation, and high-density shelving structural inspection. Generating precise 3D models 
enables LiDAR-equipped AGVs to navigate complex warehouse layouts accurately, avoiding obstacles and optimizing 
path planning in real-time. LiDAR sensors mounted on UAVs have also been employed for inventory inspections in 
elevated storage areas, providing centimetre-level accuracy in locating and auditing goods. These applications highlight 
LiDAR's unparalleled ability to address the challenges of high-density, dynamic warehouse environments. 
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Figure 18. Basic framework for SLAM 

Several challenges exist in employing LiDAR for indoor positioning, including data processing and noise filtration. 
Various researchers have tried to enhance the accuracy of LiDAR for indoor positioning. A method combining motion 
models with LiDAR measurement data was proposed by Sánchez et al., which uses infrastructure elements as positioning 
references. Wang et al. [117] presented an efficient algorithm that employs LiDAR as the sole environmental detection 
sensor in IPS research, thus reducing computational effort while preserving localization robustness [118]. Recent 
advancements in LiDAR-based IPS systems have focused on improving point cloud data processing and reducing 
computational overhead. For instance, Shi et al. [119] proposed a lightweight SLAM algorithm that achieves real-time 
performance in high-density storage environments, reducing latency by 30% compared to traditional SLAM methods. 
Hardware innovations, such as the development of low-cost solid-state LiDAR sensors, are also expanding the 
accessibility of LiDAR technology in cost-sensitive warehouse applications. Two commercially available solid-state 
LiDAR SLAM frameworks with mature technology currently exist: the FAST LOAM framework [120], and the LOAM 
Livox framework [121]. A multi-sensor fusion framework was put forth by Kwon et al. [25] to facilitate practical 
autonomous UAV navigation in GPS-deprived, poorly lit warehouses, albeit at a relatively high cost.  

Future research on LiDAR-based IPS systems is expected to explore further integrating artificial intelligence (AI) 
techniques to enhance system adaptability and efficiency. Deep learning algorithms can process point cloud data, enabling 
more accurate object recognition and anomaly detection in warehouse environments. Additionally, the combination of 
LiDAR and predictive analytics may facilitate proactive maintenance and inventory forecasting, paving the way for fully 
autonomous and intelligent warehouse operations. In summary, the analysis of IPS technologies highlights their 
transformative impact on inventory management within warehouse environments. With its scalability and cost-
effectiveness, RFID is widely used for ground-level inventory tracking and bulk item identification. UWB stands out for 
its high precision and adaptability in dynamic inventory tasks, ensuring real-time updates even in complex and densely 
packed storage areas. LiDAR offers unparalleled 3D mapping capabilities, particularly suited for high-density and 
elevated inventory spaces. At the same time, Wi-Fi provides an accessible and cost-sensitive option for smaller 
warehouses or less complex layouts. These technologies collectively address critical challenges in inventory management, 
such as accuracy, real-time tracking, and scalability. Their integration improves operational efficiency and automates 
traditionally manual processes, reducing errors and optimizing resource utilization. As inventory management is the 
foundation for other warehouse operations, the strategic deployment of IPS technologies in this domain ensures broader 
improvements in overall warehouse productivity. 

3.4 RQ3: How can different IPS technologies for logistics management applications in a warehouse 
environment be evaluated? 

From the analysis in the preceding section, it is understood that IPS systems in warehouse environments feature a 
wide range of technologies. Classical positioning techniques are continuously evolving, and new technologies are 
emerging. Establishing an evaluation framework for IPS systems in warehouse environments would assist significantly 
in comprehending the development in this area. It would provide substantial assistance to engineers engaged in related 
projects. This section aims to summarize key metrics for various indoor positioning techniques and propose a 
comprehensive and comparable evaluation framework for applying indoor positioning technology based on these metrics. 
Unlike existing frameworks, which often generalize across warehouse tasks, this framework emphasizes criteria directly 
tied to inventory management, such as real-time accuracy, adaptability to dynamic environments, and cost-effectiveness. 

A review of five papers on indoor positioning technology [54] [127], [128], [129] underscores the significance of 
classification methods and evaluation metrics for establishing IPS systems. An assessment system that considers energy 
efficiency, cost, availability, reception range delay, scalability, and tracking accuracy was proposed by Zafari et al. [54]. 
Seco et al. [127] classified indoor positioning systems into four categories: geometry-based methods, minimization of the 
cost function, fingerprint localization, and Bayesian techniques. A division of positioning systems into 13 categories 
based on technical characteristics was systematically undertaken by Mautz et al. [128]. Detailed summaries of two review 
papers proposing evaluation frameworks for indoor positioning systems have been compiled. Performance benchmarking 
for indoor wireless location systems, including accuracy, precision, complexity, scalability, robustness, and cost, was 
provided by Liu et al. [130]. In Liu's paper, evaluations of the IPS systems were conducted using specific data and metrics. 
Zafari et al. [54] identified several key challenges in indoor localization and incorporated them as the main indicators in 
their evaluation framework. While researchers have proposed various classification criteria or evaluation frameworks for 
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indoor positioning technologies, many are designed for general academic research. In contrast, this study focuses on 
comprehensive evaluation criteria tailored explicitly for the warehouse environment. 

Table 11. IPS application evaluation metrics 
Metrics Description Evaluation method 

Applicability Using easily accessible technology that does not 
require specialized hardware on the user's end is 
crucial for widespread adoption. 

The amount of equipment and effort needed for 
deploying different indoor positioning 
technologies is compared, and applicability is 
evaluated as low, medium, or high. 

Accuracy The most critical aspect of a positioning system is 
the accuracy with which the user/device position is 
obtained. In the papers surveyed, the focus is 
predominantly on localization accuracy. 
Consideration for other functions or parameters is 
only given if accuracy is satisfactory. 

Data evaluation 

Cost While most positioning systems surveyed are in 
laboratory environments and rarely mention the 
cost. In this study, it is believed that high-precision 
positioning significantly increases system cost. 
Widespread consumer market adoption requires 
reasonable cost control. 

Cost assessment is based on a uniform 
applicable area within the same indoor 
positioning scenario. Market economic factors 
are considered mainly, and only the official 
selling price of the main equipment is used for 
relative evaluation as low, medium, or high. 

Energy 
Efficiency 

The design of a positioning system must prioritize 
power efficiency to enable extended operational 
periods without draining the device's battery. 
Therefore, reducing energy consumption is 
essential for the system's prolonged stability and 
reliability. 

The sum of the power consumption of major 
equipment is considered. Evaluations are made 
based on low, medium, or high energy 
efficiency. 

Scalability The system's scalability and applicability are 
considered essential. 

Uncertain factors that might arise during the use 
of the technology and their consequences are 
considered in the evaluation, which is measured 
as low, medium, or high. 

In general, scholars have undertaken substantial discussions on how to evaluate IPS systems. ISO/IEC 18305:2016 
International Standard, which identifies appropriate performance metrics and test & evaluation scenarios, also provides 
guidance on the best ways to present and visualize T&E results. However, a critical review of this standard was conducted 
by Potorti et al. [131], who believe many indicators are unsuitable for direct user applications. A perspective that IPS 
must be low-cost, low-power, and require a minimal amount of new infrastructure was expressed by Wirola et al. [132]. 
Performance metrics proposed in the reviewed articles have been synthesized, and popular research areas indicated in 
Figure 6 have been considered. Metrics of limited evaluation value in the warehouse environment, such as "robustness," 
have been excluded and merged into the "scalability" metric. Primary indicators more suitable for evaluating IPS in the 
warehouse environment, including "applicability," "accuracy," "cost," "energy efficiency," and "scalability," have been 
selected. The evaluation methods for these metrics are summarized in Table 11. 

To comprehensively evaluate IPS technologies for inventory management, this study compares RFID, UWB, LiDAR, 
IMU, Wi-Fi, VLC and Computer Vision across several critical dimensions: precision, cost, scalability, and environmental 
adaptability. These dimensions are essential for ensuring that selected technologies align with the specific requirements 
of inventory management tasks. UWB provides the highest precision, with localization errors typically below 10 cm, 
making it ideal for dynamic inventory tasks in large or multi-level warehouses. LiDAR offers comparable precision in 
static or semi-static environments, particularly high-density storage spaces. RFID and Wi-Fi, while less precise, are 
effective for routine stocktaking and bulk inventory identification tasks. RFID and Wi-Fi are the most cost-effective 
options, suitable for budget-constrained implementations or smaller warehouses. UWB and LiDAR, although more 
expensive, justify their higher costs with superior performance in high-complexity scenarios where precision and 
adaptability are paramount. Its high cost and environmental sensitivity limit LiDAR's scalability, while Wi-Fi scalability 
depends on robust network infrastructure. This comparative analysis highlights that no single IPS technology universally 
outperforms others; instead, its effectiveness depends on the specific priorities and constraints of the inventory 
management task. For instance, UWB is best suited for high-precision dynamic tracking, whereas RFID offers an optimal 
solution for large-scale, cost-sensitive implementations. These trade-offs underscore the importance of selecting 
technologies based on task-specific needs, as shown in Tables 12 and 13. In summary, comprehensive data analysis and 
compilation based on 38 selected articles are presented, addressing the RQs, providing substantial data support for the 
subsequent discussions, and providing insights into the field of IPS in warehouse environments. 
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Table 12. Comparison of IPS technologies in warehouse environments 

Tech. Evaluation Framework References 
Applicability Accuracy Cost Energy Efficiency Scalability 

Computer Vision High High Medium Low High [23],[37],[64] 
[50],[61],[25] 
[49],[30],[44] 
[45],[35],[33] 

LiDAR Medium High High Medium Medium [23],[64],[24] 
[61],[25],[52] 
[41],[51],[42] 
[65],[45],[46] 

RFID Medium Low-Medium Low Low Low [39],[27],[29] 
[63],[31],[48] 
[32],[47],[34] 

UWB Low High Medium Low Medium [38],[26],[59] 
[60] 

Wi-Fi Low Medium-High Medium Medium Medium [58],[28],[57] 
IMU Medium Medium Low Low Low [61],[42] 
VLC Medium Low Low Low Low [40],[43] 

Table 13. Advantages and limitations of IPS technologies 
Tech. Advantages Limitations 

Computer 
Vision 

Current vision SLAM technologies offer higher 
accuracy. Less reliance on external environment 
modifications is needed for positioning. Scalability in 
more complex and dynamic environments is provided. 
Object detection and tracking capabilities are present. 

Computational requirements are high, and much 
arithmetic support is needed. Positioning accuracy 
may be affected by external lighting conditions 
when using ordinary monocular or binocular 
cameras. Coverage is limited, generally within 10 
meters, and line-of-sight is required. 

LiDAR Distance to the target point is measured more accurately 
using TOF technology. A larger measurement distance 
and coverage area are provided. Strong adaptability in 
different lighting conditions is observed. 

High costs. Object detection on transparent or 
reflective surfaces may lack accuracy. Large 
amounts of point cloud data require processing. A 
direct line-of-sight to objects is needed for sensing. 

RFID NLOS tracking is enabled and suitable for complex and 
obstructed environments like warehouses. Costs are 
relatively low, especially for warehouse deployments. 

Positioning accuracy is limited. The detection 
range for RFID tags by the reader is limited. 
Performance may be affected by environmental 
factors such as metal surfaces, liquids, and 
electromagnetic interference. 

UWB High-precision positioning within a few centimetres is 
achieved. UWB signals can penetrate obstacles due to 
high adaptability to complex environments. Power 
consumption is relatively low. 

The range is limited. Initial setup may require 
careful planning and calibration, increasing the up-
front workload. High initial costs may be incurred. 

Wi-Fi Wide coverage is typically provided in various indoor 
environments. Existing Wi-Fi infrastructure is utilized, 
making it cost-effective. Large areas can be covered, and 
signals can penetrate obstacles. 

Interference and signal variations may occur in 
environments with high device density. Signal 
transmission faces challenges such as attenuation, 
reflections, and multipath interference. Reliance on 
the availability and coverage of Wi-Fi access points 
exists. 

IMU Real-time motion tracking and orientation information 
for continuous positioning updates are provided. 
Independence from external infrastructure is achieved. 
High-frequency data updates are offered to track fast-
moving objects. 

Measurement errors and drift over time result in 
accumulated positioning errors. Only relative 
positioning information is provided. Sensitivity to 
external factors like magnetic fields, temperature 
variations, and vibrations is high. 

VLC Existing indoor lighting infrastructure can be utilized, 
eliminating the need for specialized hardware. Operation 
in the visible spectrum results in less interference. High 
data rates for real-time positioning updates are enabled. 

Direct line-of-sight communication between the 
source and receiver is required. Performance may 
be affected by ambient light conditions. 
Dependency on the availability and proper 
functioning of light sources exists. 
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3.5 Challenges of IPS in Warehouse Environment 

Though some intelligent systems in warehouse environments that utilize IPS have transitioned from experimental to 
commercial stages, further analysis and discussion are still needed to address the proposed research questions and reveal 
the challenges of IPS application in warehouse settings. 

3.5.1 Complexity of environment 

The indoor warehouse environment is characterized by its dynamic and complex layout, including obstacles, 
fluctuating light conditions, and electronic interference [50]. Various interference sources typically plague indoor 
environments, such as illuminance affecting optical sensors and temperature and sound affecting ultrasonic sensors [133]. 
Furthermore, the density of shelf space can compromise the wireless and optical signals, affecting positioning accuracy 
[78] [134]. These complexities contribute to the unique challenges when implementing indoor positioning technologies 
in warehouse environments. 

3.5.2 Unknown environment 

Current positioning technologies often rely on prior environmental information, as is the case with Wi-Fi [14], [135] 
[136], UWB [84], and RFID [137], [138]. Pre-set beacons or signal base stations are commonly used in these technologies 
[33]. However, obtaining such environmental information in real-world warehouse settings can be challenging, as can 
mitigating interference with wireless base stations or accounting for randomly changing layouts. Therefore, the realization 
of environment-independent positioning technology remains a challenge. 

3.5.3 Balancing IPS accuracy and cost 

Economic efficiency serves as a key consideration in commercial applications [24]. Higher IPS accuracy often comes 
with a higher price tag [25], necessitating the development of low-cost, high-accuracy solutions. The focus has thus shifted 
to balancing cost and accuracy to facilitate the broader adoption of IPS technology. 

3.5.4 Multi-technology integration 

Due to varying positioning principles and methods, different technologies are employed for indoor positioning, each 
with its impact on indoor applications. Various factors such as accuracy, cost, and deployment difficulty often necessitate 
combining multiple technologies. For example, Kwon et al. [25] utilized a blend of images, LiDAR, and IMU information 
to obtain UAV attitude information for warehouse inventory applications. Challenges such as inconsistent signal 
measurement units, sampling frequencies, and accuracy restrict the growth prospects of IPS technology. 

3.5.5 Limited computing resources on mobile terminals 

The involvement of mobile terminals in IPS is crucial, and hardware limitations can restrict the operational lifespan 
and the capability to run complex positioning algorithms [24]. For instance, achieving high-speed positioning requires 
substantial onboard UAV computing power, which demands more energy supplies. This limitation hampers the broader 
use of IPS. 

4. CONCLUSIONS 
In the context of Industry 4.0, a growing need for intelligent warehouse management solutions is observed, and 

attention is increasingly directed towards IPS as the foundational technology for automating and informatizing the 
warehousing and logistics industry. The Scoping Review method was followed in this study, guided by the PRISMA 
checklist, to identify and synthesize existing literature on IPS applications in warehouse environments from databases 
within WOS, IEEE, and SCOPUS. Comprehensive survey and research results are provided in three aspects: (1) the 
current state of IPS adoption in warehouse environments; (2) the technologies utilized for IPS adoption in these 
environments; and (3) a framework for evaluating IPS in warehouse settings. Challenges identified in this scoping review 
for the holistic application of IPS in warehouse environments, particularly inventory management. 

Research Question 1 (RQ1) analysis found that IPS primarily focuses on inventory and logistics management tasks in 
warehouse environments. These applications aim to upgrade existing warehouse operations to enhance efficiency and 
minimize manual labor. Additionally, multiple studies aimed at integrating IPS with efforts to digitize warehouses were 
identified. These kinds of applications, distinct from the previous categories, may serve as foundational steps towards 
realising Industry 4.0 by enabling comprehensive digitization of warehouse processes. For Research Question 2 (RQ2), a 
comparative analysis of IPS technologies revealed their respective strengths and limitations in inventory management 
tasks. RFID is widely recognized for its cost-effectiveness and scalability, making it ideal for bulk inventory tracking and 
routine stocktaking. UWB excels in high-precision dynamic inventory tracking in large or multi-level warehouses, while 
LiDAR offers advanced 3D mapping capabilities for static or semi-static inventory spaces. Wi-Fi provides a cost-sensitive 
option for smaller warehouses with simpler layouts. The findings underscore the importance of selecting IPS technologies 
based on the specific requirements of inventory management tasks, such as applicability, accuracy, cost, energy efficiency 
and scalability. Regarding Research Question 3 (RQ3), the study proposed a framework for evaluating IPS technologies 
in inventory management, incorporating quantitative and qualitative criteria. Quantitative metrics, such as accuracy and 
real-time capability, can be directly obtained from existing studies, while qualitative criteria, such as scalability and 
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adaptability, require interpretative analyses. The framework emphasizes the need for task-specific evaluation to address 
the diverse concerns of inventory management in dynamic warehouse environments. 

Future research explores integrating IPS technologies with emerging advancements in artificial intelligence and deep 
learning. For instance, combining IPS data with deep learning algorithms can enhance localization accuracy and predictive 
capabilities in dynamic warehouse environments. Additionally, developing hybrid IPS solutions, leveraging the 
complementary strengths of technologies such as UWB and LiDAR presents a promising avenue for addressing the trade-
offs between precision, scalability, and cost. Finally, applying IPS in complex, multi-modal logistics systems and highly 
automated warehouses offers significant innovation potential, paving the way for realizing Industry 4.0. 
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