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contributed to the high demand for herbal products. Thus, the identification of the most 
effective methods for extracting the phytochemicals from plants has become 
increasingly important (Abdullah et al., 2012). 
 
Simple preparation methods for processing the plant herbs by boiling the entire plant or 
selected parts of the plant in water have been traditionally used by herbal medical 
practitioners since ancient times. As the herb is soaked in the solvents, the 
phytochemicals will diffuse out from the herbal plant cell to the solvent medium. The 
boiling method can be used but it is time consuming as there is no other driving force 
except heat that will increase the diffusion of these phytochemicals. Currently, there are 
many methods that have been applied to obtain these valuable phytochemicals, such as 
microwave-assisted extraction (MAE), sonication extraction, supercritical fluid 
extraction and so on, which have more than one driving force. For example, the MAE 
method will use heat and microwave power as an additional driving force to increase 
the diffusion rate of phytochemicals. In addition, these driving forces also will increase 
the amount of extracted phytochemicals. All of these modern techniques use solvent as 
a transfer medium of phytochemicals. Every solvent will attract different 
phytochemicals as the “like dissolve like” theory is implemented (Barton, 1990). This is 
the reason why different solvents will give different results (yields) in the extraction 
process. 
 
In the case of herbal extraction, the main issue that needs to be improved with the 
current solvent selection method for extraction is the trial-and-error approach. The 
drawbacks of this solvent selection method are effort, cost and time (Samudra and 
Sahinidis, 2013, Karunanithi et al., 2005). For example, the trial-and-error method 
requires the use of a series of preliminary experimental studies that involve raw 
materials (solvent; dried and ground herbal plant) and energy consumption (heat and 
electricity). Then, the result from this trial-and-error method will be used to choose a 
suitable solvent before real experiments are conducted. Another disadvantage of the 
trial-and-error method is that the number of experimental repetitions is unknown and 
might require a lot of time. In addition, traditional methods have focused on 
experiments using classes of solvent (polarity) with different classes giving rise to 
different phytochemical extractions (Karunanithi et al., 2009). To extract one type of 
phytochemical, at least six solvents may be needed (Kerton and Marriott, 2013). If the 
number of solvents can be reduced, the amount of waste can be minimized, productivity 
can be maintained or increased and extraction time can be reduced (Kerton and 
Marriott, 2013). The combination of property-predictive models with computer-assisted 
search is one way to overcome these drawbacks (Samudra and Sahinidis, 2013). Most of 
the chemical products are designed through experimentally based trial-and-error 
techniques (Gani, 2004). Hence, computer-aided techniques for chemical product 
design have been developed (Gani and Brignole, 1983, Garg and Achenie, 2001). 
Computer-aided technique is defined by Karunanithi et al. (2005) as “given a set of 
chemicals and specified set of property constraints, determine the optimal mixture”. A 
way to solve this problem is to employ a systematic methodology consisting of a 
sequence of work flows that guides the user to get the needed product. The main 
objective is to match the desired product properties within the set target limit for every 
selected property. The computer-aided techniques also can speed up the process of 
designing a product and this method is more efficient because the validated chemical 
product models can be applied (Gani, 2004). However, the main challenge in this 
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approach is the availability of chemical product models that could be applied with 
acceptable errors. In addition, a chemical product cannot be designed without 
considering the profitability of the product (Hill, 2009, Lee et al., 2014). 
 
The computer-aided approach has been applied mostly in designing solvent for 
separation of solid–liquid and liquid–liquid systems. Previously, Karunanithi et al. 
(2005) designed an optimal solvent for the separation of acetic acid from water using 
liquid–liquid extraction (LLE) based on a computer-aided molecular/mixture design 
(CAMD), while Folić et al. (2005) also used the same method for the design of solvents 
involved in reaction processes. The CAMD framework has also been applied to design 
solvents for crystallization of pharmaceutical compounds by Karunanithi et al. (2006), 
whereas Cheng and Wang (2010) used this method to find a feasible biocompatible 
solvent for an extractive fermentation. Conte et al. (2012) designed a solvent blend for 
the formulation of paint and insect repellent using model-based computer-aided tools. In 
addition, Cheng and Wang (2007) applied mixed-integer hybrid differential evolution to 
design an optimal biocompatible solvent for an extractive fermentation process. 
Mathematical modelling was used by Vanderveen et al. (2014) to design switchable-
hydrophilicity solvents. The designed solvents can be used as solvent removal that does 
not require the use of volatile compounds in distillation systems. The mathematical 
modelling also was used to design a solvent in a coking wastewater treatment process 
by Liao et al. (2014), while Cheng and Wang (2008) used mathematical modelling to 
design a solvent for ethanol extractive fermentation with cell recycling. In addition, the 
same cases can also be approached using different methods. As an example, Damartzis 
et al. (2014) applied mathematical modelling, while Stavrou et al. (2014) used 
continuous molecular targeting–computer-aided molecular design (CoMT–CAMD) to 
design an optimal solvent based on the post-combustion of carbon dioxide capture 
process. Papadopoulos and Seferlis (2009) proposed a systematic approach for 
designing solvents in the separation of liquid–liquid mixtures using extractive 
distillation based on solvents’ economic and behavioural characteristics. Table 1 
summarizes the developed methods for various applications and case studies.In spite of 
using all of the previous methods, the validation of methodology used must be 
performed with selected case studies. This important step will determine whether the 
method is applicable or not with the current cases and the possibility of extending it to 
other cases. 
 
This study proposes a framework in designing binary solvent blends to extract the 
targeted herbal phytochemicals. The proposed framework involves five levels. Level 1 
is screening the pure component properties of solvents, Levels 2 and 3 consider linear 
and non-linear constraints, respectively, Level 4 is stability analysis and Level 5 is 
calculation of the cost and profit. Phytochemicals and solvent properties relationship 
will be evaluated as the aim is to design solvent blends that can extract the maximum 
amount of phytochemicals from herbs. The solvent to be designed will consider all of 
the safety, economic and environmental issues. The main objective of this work is to 
develop a new solvent blend for the maximum extraction of herbal phytochemicals 
using a computer-aided approach with cost evaluation. The method is demonstrated by 
designing a solvent blend for Kacip Fatimah herb as a base case study. 
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Table 1: Works on solvent design with their case studies 

Method used Case study References 

CAMD Solvent for the separation of acetic acid from water Karunanithi et al. 
(2005) 

 Solvent involved in reaction processes Folić et al. (2005) 

 Solvents for crystallization of pharmaceutical 
compounds 

Karunanithi et al. 
(2006) 

 Feasible biocompatible solvent for an extractive 
fermentation 

Cheng and Wang 
(2010) 

Model-based 
computer-aided tools 

Formulation of paint and insect repellent Conte et al. (2012) 

Mixed-integer hybrid 
differential evolution 

Optimal biocompatible solvent for an extractive 
fermentation process 

(Cheng and Wang, 
2007) 

Mathematical 
modelling 

Switchable-hydrophilicity solvents that can be used as 
solvent removal 

Vanderveen et al. 
(2014) 

 Solvents in coking wastewater treatment process Liao et al. (2014) 

 Solvent for ethanol extractive fermentation with cell 
recycling 

Cheng and Wang 
(2008) 

 Solvent based on post-combustion of carbon dioxide 
capture process 

Damartzis et al. 
(2014) 

Continuous molecular 
targeting–computer-
aided molecular design 
(CoMT–CAMD) 

Solvent based on post-combustion of carbon dioxide 
capture process 

Stavrou et al. (2014) 

Systematic approach Solvents in the separation of liquid–liquid mixtures 
using extractive distillation 

Fuel additives that are converted from biomass 

Papadopoulos and 
Seferlis (2009) 

 
2.0 METHODOLOGY 

This systematic methodology employs the reverse design approach (Gani, 2004), where 
the targets of the design problem are defined and the solvent blends that match the 
targets are identified. This reverse design approach has been chosen because it is ideally 
suited to handle “define target–match target” problems. In addition, the approach is able 
to manage the complexity of the design problem efficiently and to reduce the search 
space (Karunanithi et al., 2005). Normally, a set of solvents is systematically generated 
and screened. Note that, in this solvent design methodology, only binary mixtures are 
considered, but it can be easily extended to multicomponent mixtures. 
 
2.1 Systematic methodology of solvent design for phytochemical extraction 
In this study, the overall methodology is divided into two stages, namely, the model-
based design and experimental verification stages, as shown in Figure 1.  
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retrieved from the property models library (see Section 2.1.2). Task 3 is specifically for 
solvent design, whereas Tasks 1 and 2 are used as inputs in the solvent design 
algorithm. The objective of this task is to find solvent blend candidates that satisfy the 
solvent target properties at low cost. This algorithm must be tested with the case study 
to make sure that the algorithm is suitable with the current application. Task 4 is to 
evaluate the performance of the designed solvents. In this task, the optimal amounts of 
the phytochemicals that can be extracted by the designed solvents are estimated using 
an appropriate prediction model. Finally, the results obtained from the model-based 
design stage need to be verified experimentally at the experimental verification stage. 
The validation task is divided into two steps. The first step is to validate the selected 
solvent properties and it is then followed by the experiment on herbal extraction using 
the designed solvents. The second step is to validate the actual amount of the 
phytochemicals that can be extracted using the designated solvents. Both experimental 
results are then used to calculate the error between the predicted and experimental 
values. If the experimental validation for the first part gives a huge error, the task 
amendment must be done starting from Task 2 (model identification). Lack of success 
for the first part means that either a high error value is obtained (comparison between 
the prediction and experimental values for every selected property) or the property 
values are outside the set property constraints. 
 
If the experimental validation for the second part also gives a huge error, the task 
amendment must be done starting from Task 1 (problem definition). The problem might 
originate because of unsuitable property selections, property constraints or property 
models with the current tested case study that makes the selection of solvent blends 
inappropriate. 
 
2.1.1 Task 1: Problem definition 
This task is divided into three sub-tasks, namely, identify needs, translate needs into 
target properties and define constraints of the target properties. The output of this task is 
a list of properties considered in the design with their target boundaries or constraints.  
 
Task 1.1 Identify needs (performance criteria). This task is very important because it 
will determine the main function of the solvent to be designed. The needs are 
determined by defining the main functions of solvent in the herbal extraction process. 
For example, the solvent used in herbal extraction must be able to extract almost all 
phytochemicals from herbal plant or only one of the targeted phytochemicals. Thus, the 
needs here are to find what factor would influence the phytochemicals to diffuse from 
the herbal cell to the solvent medium. For this reason, the relationship of target 
phytochemicals and solvent used are very important. The most important criterion that 
must be emphasized is the diffusion mechanism of phytochemicals from the herb cell to 
the solvent medium, which can enhance the phytochemicals’ extraction yields. The 
main factor that affects the diffusion mechanism is the solubility of phytochemicals in 
the selected solvent. This solubility is measured using the solubility parameter property. 
The solubility of phytochemicals increases as the solubility parameters of the 
phytochemicals and solvent used become closer to each other. This methodology, 
however, may not consider all of the factors because not all factors involved can be 
measured by properties. For example, even though the size of the raw material (herbal 
plant) would influence the extraction yield, it could not be measured by any property. 
Thus, the raw material size could not be considered in this methodology. Therefore, this 
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methodology only considers all the factors that can be measured by properties. The 
solvents used for herb phytochemicals extraction also must have specific criteria, such 
as they must be miscible with each other in order to prevent the formation of two layers 
of solvents, which will cause the extraction to become inefficient. In addition, the 
solvent must also be easily separated from the phytochemicals to produce high purity 
phytochemicals and enable the solvent to be reused for the same purpose. 
 
Task 1.2 Translate needs into target properties. In this task, all of the needs that have 
been identified in Task 1.1 must be translated into target properties in order to evaluate 
them. This task requires knowledge for translation of needs into target properties. This 
knowledge is gathered and collected from the experts in the particular product or 
process as well as from patents and the literature (Lee et al., 2014). They are put into a 
database called the knowledge base. The needed knowledge for this task is shown in 
Table 2.  
 

Table 2: Needs, performance criteria and target properties employed in this study 

Needs Performance Criteria Target Properties 

Solvents must have almost the same value of polar 
property in order to make sure that phytochemicals 
can diffuse out from the herbal cell to the solvent 
medium. 

Polarity Log p 

Solvent that would be designed must not evaporate 
easily to make sure that in the extraction process, 
the solvent does not dry. 

 

Solvent that would be designed must not be too 
difficult to evaporate as it will be removed after 
the extraction process to get the crude extract. 

Boiling point T
b
 

Safety of the solvent to the users/ researchers must 
be considered. 

Toxicity LC
50

 

Compatibility of the solvent to the phytochemicals 
must be considered so that the solvent will be easy 
to handle and effectively extract the target 
phytochemicals. 

Solubility δ 

The solvent components must be miscible with 
each other to make sure that there is no undesired 
layer (immiscibility of solvent) in the extraction. 

Miscibility/Stability ∆G
mix

 

Solvent blend must not be too sticky as it will be 
removed from the mixture of solvent and herbal 
crude extract. 

Viscosity μ 

The solvent that will be designed must not only be 
considered in term of effectiveness but also 
economics.  

Price C 
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Table 2: (continued) 

Needs Performance Criteria Target Properties 

As existing solvent is sold by price per weight, so 
the density of the blend solvent is also needed. 

Density ρ 

 

Note that not all product needs can be translated into physicochemical properties. As an 
example, even though the herbs’ planting location would influence the extraction yield, 
it could not be measured by any property. The knowledge base about the principle of 
herbal extraction must be used in this task. Then, all of the needs are translated into the 
target properties. These target properties could be classified into three terms, namely, 
properties that determine: 1) the main function of solvent (properties related to the 
choice of phytochemicals); 2) the solvent performance (physicochemical properties of 
the solvent); and 3) the solvent phase stability. Table 2 summarizes the needs, 
performance criteria and target properties employed in this study. 
 
Task 1.3 Define constraints on the target properties. After the target properties in Task 
1.2 are obtained, the constraints for all target properties must be specified. The 
constraint values can be obtained from the existing solvents used in the extraction 
process. These values are used as a benchmark in designing a base case of solvent. They 
could be changed to allow improvement for a better solvent design. Some of the 
constraint values are obtained from legislation or local regulations. For example, the 
vapour pressure of solvent blends must be less than a certain limit set by legislation to 
ensure that the solvent does not easily release into the environment (Klein et al., 1992). 
All of the gathered target constraints are stored in the knowledge base. This limit is 
important in order to make sure that all designed blend solvents are within this set 
range. 
 
2.1.2 Task 2: Property model identification 
In this study, the physicochemical properties of interest are mixture properties because 
the solvent to be designed is in mixtures/blends. This requires mixture property models 
to estimate the mixture properties. The property models to estimate pure properties may 
also be needed if the pure properties are not available. Note that, whenever the 
experimental data are available, these data are directly employed in the calculations. 
The models to estimate both pure and mixture properties were collected from the 
literature and stored in a property models library, as listed in Tables 3 and 4. This 
library is created to store the related models that might be applicable for designing 
solvent blends. For pure component properties, it has been classified into primary and 
secondary properties. Primary properties could be directly determined using the group 
contribution (GC) method and only depend on molecular structure. Secondary 
properties could not be determined directly using the GC method, but it uses some of 
the primary properties as specified variables. As an example, the density calculation is a 
function of critical pressure, Pc, and temperature, Tc, in which both Pc and Tc could be 
determined using the GC method. 
 
Task 2.1 Retrieve models from the library. In this task, the needed property models to 
solve the solvent design problem are retrieved from the library. These property models 
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would be used to predict the target property values where it is easier and faster than 
performing experiments on the solvents. 
 
2.1.3 Task 3: Design solvent blend 
Task 3 focuses on searching the solvent candidates that satisfy all of the property 
constraints set in Task 1.3. The objective of this task is to generate and screen all 
solvent blend candidates. In this task, the main part is the solvent design algorithm 
(Task 3.2), where the solvent blend candidates are generated and screened through five 
levels. Before performing the algorithm, the input data must be chosen. This algorithm 
gives a result as a list of all potential solvent blend candidates that could be used in 
herbal extraction with the cost of 1 ml of solvent blend. Then, all of the feasible solvent 
blends are ranked in ascending order based on solvent cost obtained in Task 3.2. This 
task was performed using MATLAB software. 
 
Task 3.1 Choose input data. Results from Task 1 (Task 1.1: identify needs, Task 1.2: 
translate needs into target properties and Task 1.3: define constraints on the target 
properties) and Task 2 (Task 2.1: retrieve property models from the library) are used as 
inputs for this algorithm. In addition, selected phytochemical properties, the list of 
solvents with their associated properties and temperature that would be considered in 
the extraction process are also used as input data. Two types of input data must be 
listed, namely, solvent and phytochemical data. Both data must have all pure component 
property values for each solvent and phytochemical that affect the extraction of herb 
phytochemicals. 
 
Task 3.2 Run solvent design algorithm. The solvent blend design algorithm employs a 
decomposition-based solution strategy where the number of feasible mixtures is 
systematically decreased in subsequent levels (Karunanithi et al., 2005, Conte et al., 
2011, Yunus et al., 2014). Figure 2 shows the solvent design algorithm that has been 
applied in this study. The input information for the algorithm are solvent and 
phytochemical data (necessary pure compound properties are stored), both linear and 
non-linear property models, constraints on target properties and designed temperature. 
As shown in Figure 2, the algorithm has five levels and they are ranked according to the 
hierarchy of calculations with increasing complexity. Level 1 is for screening pure 
component target properties, while Levels 2 and 3 solve the linear and non-linear target 
property constraints, respectively. Level 4 is to analyse the stability of mixture solvents 
and Level 5 is to calculate the cost of use for all potential solvent candidates. Results for 
every level would be continued to the next level, where the result for the previous level 
would be the input data for the next level. As an example, the result for Level 1 is a 
binary mixture that satisfies Step 1-1 (S1.1). Then this result would be the input data for 
Level 2. 
 
The results from this algorithm are the solvent blends formulation with their 
composition, target property values and solvent blends cost. This algorithm is described 
and highlighted for binary solvent mixtures, but it can be extended to multicomponent 
solvent mixtures. A binary solvent mixture is a combination of two solvents, i and j, 
from solvent input data. Subscripts i and j represent the number of each solvent, where i 
is always less than j to avoid any repetition of formulation in binary solvent mixtures. 
As an example, input data contains three solvent cadidates namely solvent 1, solvent 2 
and solvent 3. If the binary solvents are to be designed, the possible combinations of 
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range 0.3–0.4. According to Equations (5) and (6), x ,LB is 0.5 while x ,UB is 0.4, which 
shows that this mixture fulfils the above mentioned condition. Thus, this type of mixture 
is rejected. 
 
(ii) Level 3: Non-linear constraints. At the end of Level 2, binary mixture candidates 
(solvent 1, S1 mix with solvent 2, S2) with their composition boundaries have been 
determined. At this level, non-linear constraints are applied for further screening of the 
solvent mixtures. 
 
Step 3.1: Solve non-linear models with xi as input. For this step, non-linear mixture 
properties, , , for the remaining binary mixtures are considered. These non-linear 
models are solved by using the overall composition range ( , < < , ) as input. 
As a result, new composition ranges that satisfy the non-linear constraints are obtained. 
 
Rule 3: All mixtures for which the calculated property values do not match the non-
linear property constraints are rejected. Then the remaining solvent mixtures will be 
evaluated in Level 4. 
 
(iii) Level 4: Phase stability constraints. At the fourth level, the stability analysis is 
performed, where the input data used are UNIFAC-LLE group representations 
(Magnussen et al., 1981) of solvent mixture and operating temperature used in the 
herbal extraction process. 
 
Step 4.1: Solve the stability routine for each mixture. The stability for each solvent 
mixture obtained after Level 3 is analysed using a developed stability test. The stability 
analysis provides the information whether the binary mixtures are stable or not. Stable 
means that the binary mixtures will not separate (miscible), while unstable means the 
binary mixtures will separate (either partially miscible or immiscible) at the tested 
temperature. The stability test is based on the trend of the Gibbs energy and its second 
derivatives as a function of composition. The Gibbs energy of mixing,∆  is 
calculated as follows: 

∆G
RT

GE

RT
∑ x . ln xNC                                            (7) 

 
where GE is the excess Gibbs energy of mixing, which is calculated from: 
 

GE

RT
∑ x . ln γNC                                                 (8) 

 
Rule 4: Mixtures showing phase separation at xi are rejected. According to Smith et al. 
(2005), stable mixtures must satisfy these two rules: 

• ∆G
RT

< 0 

• ∂ ∆G
RT

/ ∂x > 0 
All solvent mixtures that satisfy both rules will be evaluated at the next level. 
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(iv) Level 5: Cost calculation. The goal of this algorithm is to obtain the lowest cost 
of solvent mixtures that satisfy all listed constraints. It is in order to make sure that the 
solvent properties are within the property constraints as well as no solvent mixture 
separations occur at the set temperature. At this level, the inputs are solvent mixtures 
composition as well as pure solvent costs, which are obtained from (ICIS, 2014). 
 
Step 5.1: Identification of the mixture that minimizes the cost. Cost calculations for all 
stable binary solvent mixtures are performed using linear mixing rules (Equation 1). 
The composition of solvents resulting from Step 2.2 will be used and substituted in this 
equation. 
 
2.1.4 Task 4: Performance evaluation 
The objective of this task is to evaluate the performance of the solvent blend candidates 
obtained from the previous step. The performance can be evaluated in terms of 
extraction capability or profit, or both. Even though a solvent blend may satisfy all of 
the target properties, this does not guarantee that it is capable of extracting a high yield 
of phytochemicals. This is because many factors affect the extraction process. It not 
only depends on the solvents but also the process conditions, size of raw materials 
(herbs) and mixing process. Thus, a performance evaluation algorithm is developed to 
solve this problem. The goal of Task 4 is to find the binary solvent mixtures that are 
able to extract the maximum amount of target herbal phytochemicals as well as return a 
high profit when the phytochemicals are sold. 
 
Task 4.1 Run performance evaluation algorithm. Figure 6 shows the performance 
evaluation algorithm used in this study.  
The input for this algorithm is the result from the solvent design algorithm (solvent 
blends with specified composition) together with the extraction temperature and solvent 
to herb ratio (from the knowledge base). Then, the composition of targeted 
phytochemicals is computed using a solid–liquid equilibrium, SLE, model (Performance 
1). The output of Performance 1 is a list of solvent blends and the extraction yield. 
Then, the user can choose to continue to the next performance (Performance 2) or 
terminate the performance evaluation with Performance 1 only. Performance 2 
calculates the profit if the phytochemicals are sold by considering the raw material and 
solvent costs only (the utility cost is not included). The output of this performance is a 
list of solvent, extraction yield and profit. 
 
Step P1: Identification of mixtures that can extract a target phytochemical. The 
phytochemicals composition, x , is calculated using the SLE model (Smith et al., 2005) 
as follows: 

x γ exp ∆H
RT

T T
T

                             (9) 
 

wherex  is the solubility of the phytochemicals expressed as mole fraction, γ  is the 
phytochemical’s activity coefficient in the solution, T  is the phytochemical’s melting 
temperature, ∆H  is the phytochemical’s heat of fusion and T is the extraction 
operating temperature. 
By using this model, the amount of phytochemicals extracted using the listed solvent 
blends can be estimated. 
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Step P2: Identification of mixtures that are profitable 
The aim of Performance 2 is to evaluate the profit for solvent blends that can extract a 
high amount of phytochemical. The profit calculation is shown in Equation (11), 
 

P C CRW                                       (11) 
 

CRW
C CRH                    (12) 

 
where P is profit (RM/g), C  is the phytochemical price (RM/g), CRW is the raw 
material cost (RM/g), C  is the solvent cost (RM/g), v is the volume of solvent (cm3), 
ρ  is solvent density (g/cm3) and CRH  is the raw herb cost (RM/g). 
Rule 6: Solvent blends that give a negative profit if the phytochemicals are sold are 
rejected. 
 
Task 4.2 Rank solvent blend candidates. The last task in the model-based stage is to 
rank the solvent blends (result from solvent design and performance evaluation 
algorithms) according to the selection criteria: solvent cost, profit and predicted 
phytochemicals composition. 
 
 
2.1.5 Task 5: Experimental validation 
This task is under the experimental verification stage where it is divided into two tasks, 
namely, herbal extraction and property check. For herbal extraction, the extraction 
process is performed using the selected solvent blends resulting from the performance 
evaluation (Task 4). 
 
Task 5.1: Property check.Task 5.1 is needed to verify the model used with the 
experimental result for the selected property in this study. In Task 2, property model 
identification is used to search the model based on the targeted property set in Task 1. 
The calculation of the property is only based on the model, which might have some 
error and need experimental validation. The percentage error formula is used to 
determine the precision of the prediction model. Equation (13) shows the calculation of 
percentage error. 
 

% Error E  V P  V  
P  V

         (13) 
 

A percentage error value of less than 10% will be accepted, while the rest will be 
rejected. The amendment must be applied to the rejected value where the new model 
identification for the unsatisfied property is conducted (Task 2). 
 
Task 5.2: Herbal extraction. In Task 4, performance evaluation is performed, where this 
task only uses the SLE model to calculate the composition of herbal phytochemicals. 
Thus, this task is very important to compare the model used with real experimental 
work. 
 
2.2 Work-flow diagram for the solvent design in herbal extraction 
The methodology for solvent design in extracting phytochemicals from herbs in 
combination with the solvent design algorithm can be simplified. In the solvent design 
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Table 3: Methods and tools used in the solvent design for extraction of herbal 
phytochemicals 

Task Description Methods & Tools 
Task 1 Problem definition 

1.1 Understand user needs 
1.2 Translate the needs into target properties 
1.3 Define constraints on the target properties 

 
- Knowledge base1 
- Knowledge base1 
- Knowledge base/ toxicity/ 

phytochemicals consideration 
Task 2 Property Model Identification 

2.1 Retrieve models from the library 
 

 
- Property models library2 

Task 3 Design Solvent Blend 
3.1 Choose input data 
3.2 Run solvent design algorithm 
 
3.3 Rank blends candidates 

 
- Pure solvents data 
- Solvent design algorithm/ 

stability analysis/solvent cost 
- Optimal search 

Task 4 Performance Evaluation 
4.1 Phytochemicals composition prediction 

 
- Property models library2 
- Performance evaluation 

algorithm 
Task 5 Experimental Validation 

5.1 Herbal extraction 
 
5.2 Property check 

 
- Experimental procedure and 

equipment 
- Experimental procedure and 

equipment 
1 Information from patents and literature. 
2 Library containing property models for pure components and mixtures, and model for phytochemical 

composition calculation. 
 

3.0BASE CASE STUDY 
The methodology and its implementation are highlighted through a base case study: 
design of a solvent blend for extracting kaempferol from Kacip Fatimah herb. However, 
the results that are obtained are only for the model-based design stage. 

 
3.1 Case study: Solvent blends for extracting kaempferol from kacip fatimah 

herb 
The aim of this case study is to design a solvent blend that can maximise the extraction 
yield of kaempferol, which is one of the main phytochemicals in Kacip Fatimah herb. 
The solvent blend formulation is considered for non-consumable phytochemicals 
product used for the conventional extraction and the temperature considered is 90 °C. 
The result is then compared with the experimental data obtained from Karimi et al. 
(2011). Thirty solvents consisting of alcohols, hydrocarbons, ethers and esters were 
used as solvent input data, as shown in Table 4.  
 

Table 4: Solvents list with their respective properties 

No Solvents Tm,  
K 

Tb,  
K 

∆Hfus, 
kJ/mol 

Log 
Kow 

δ, 
MPa1/2 

-log LC50 
(mol/L) 

μ,  
cP 

ρ, 
g/cm3 

S1 Methanol 196.18 273.26 3.64 -0.23 22.03 2.51 1.32 1.49 
S2 Water 253.15 373.15 6.01 0.00 47.84 1.00 0.89 1.00 
S3 Acetone 204.41 308.29 6.92 0.32 18.32 -11.12 0.30 0.69 
S4 Chloroform 217.55 347.04 9.16 1.73 19.16 -2.21 0.71 1.27 
S5 Ethanol 205.36 315.30 6.28 0.15 27.56 14.17 1.63 0.88 
S6 Ethyl acetate 187.56 344.07 9.40 0.76 18.18 -2.38 0.43 0.88 



Journal of Chemical Engineering and Industrial Biotechnology V4(2018)60-89 

 78

Table 4: (continued) 

No Solvents Tm,  
K 

Tb,  
K 

∆Hfus, 
kJ/mol 

Log 
Kow 

δ, 
MPa1/2 

-log LC50 
(mol/L) 

μ,  
cP 

ρ, 
g/cm3 

          
S7 Diethyl ether 112.73 294.38 8.04 1.38 15.28 -3.62 0.29 0.70 
S8 Hexane 143.25 338.45 11.07 2.86 14.88 -2.08 0.30 0.74 
S9 1-propanol 263.23 362.05 13.30 -1.19 35.57 -2.71 3.42 0.35 

S10 Formic acid 214.01 350.66 8.92 0.60 26.37 -8.78 2.02 1.58 
S11 Acetic acid 305.74 395.30 9.55 -0.08 17.41 -2.18 1.12 0.93 
S12 Propionic acid 310.18 420.56 12.18 0.37 19.19 -2.15 1.39 1.15 
S13 Ethylene glycol 275.93 422.54 11.74 -0.78 33.79 0.66 20.83 0.77 
S14 1,3-propanediol 288.36 440.00 14.41 -0.30 62.68 2.88 25.76 1.28 
S15 Glycerin 291.35 504.45 16.35 -1.44 68.11 0.02 287.18 1.27 
S16 Benzene 197.70 361.79 8.88 1.84 18.54 -1.96 0.58 1.06 
S17 Cyclohexane 191.31 357.81 3.61 1.59 16.78 -2.34 0.71 0.94 
S18 Toluene 208.12 383.75 9.90 2.27 18.04 -1.85 0.60 0.83 
S19 Nitrobenzene 298.19 483.72 14.51 1.77 22.35 -1.89 1.96 1.17 
S20 Pentane 129.03 300.93 8.43 2.41 14.35 -2.44 0.24 0.69 
S21 Cyclopropane 89.11 203.56 0.40 1.06 14.23 -7.87 0.84 0.37 
S22 Butyraldehyde 229.77 326.56 12.00 0.79 17.67 -1.68 0.39 1.13 
S23 Acetaldehyde 198.70 273.00 10.18 0.17 18.19 -2.00 0.33 0.48 
S24 n-Propionaldehyde 207.73 315.09 12.82 0.62 19.48 -1.92 0.41 1.02 
S25 n-Butyraldehyde 216.23 350.47 15.46 1.07 17.97 -1.86 0.51 0.75 
S26 Isobutyraldehyde 229.77 326.56 12.00 0.79 17.67 -1.68 0.39 0.77 
S27 1-Heptanal 239.16 431.77 23.37 2.42 19.66 -1.70 0.96 0.87 
S28 1-Hexanal 231.91 407.83 20.73 1.97 19.72 -1.75 0.78 0.85 
S29 1-Octanal 246.07 453.39 26.01 2.87 19.69 -1.66 1.19 0.90 
S30 Isopropyl alcohol 208.55 329.32 5.23 0.48 25.45 -14.67 1.45 0.91 

 
The properties values are taken from the experimental results. However, if there is no 
experimental result available, the models in Table 5 were used to predict the desired 
properties. Meanwhile, the targeted phytochemical in Kacip Fatimah (kaempferol) is 
used as the phytochemical input data. In this paper, the case study is solved using the 
systematic methodology illustrated in Figure 1. 
 

Table 5: List of pure property models used in this work 
Property of pure solvent Model Reference 

Partition coefficient, Log Kow Marrero and Gani GC method Marrero and Gani (2002) 
Boiling point, Tb Marrero and Gani GC method Marrero and Gani (2001) 
Solubility parameter, δ Marrero and Gani GC method Marrero and Gani (2001) 

Mohammad Azmin et al. (2014) 
Toxicity, LC50 GC method Gao et al. (1992) 
Viscosity, μ GC method Cao et al. (1993) 
Density, ρ Modified Rackett equation Spencer and Danner (1972) 
*GC method is group contribution method 

 
3.1.1 Task 1: Problem definition  
Task 1.1 Identify needs. In this task, an understanding of the consumer needs would be 
the performance criterion. For herbal extraction, the solvents must have all of the 
following performance criteria, namely: can effectively extract the selected 
phytochemicals from the herb, can be removed from the crude extract mixture (so that 
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the pure crude extract can be obtained), have low toxicity, must be miscible with each 
other and with the phytochemical, stable, low price and good solvent appearance. 
 
Task 1.2 Translate needs into target properties. According to the knowledge base, the 
solvent needs are translated to the target properties. Therefore, the target properties 
affecting the performance criteria are listed in Table 6. 
 

Table 6: Translation of the performance criteria into target properties 
Solvents Mixture Performance Criteria Target Properties 
Effectively extract the selected phytochemicals log p, δ 
Can be removed from phytochemicals crude extract (after extraction) μ, Tb 
Low toxicity LC50 
Miscible with each other and stable δ, ∆Gmix 
Low price ρ, C 
Good solvent appearance μ 
 
Task 1.3 Define constraints on the target properties. The target value for all of the listed 
properties refers to the common existing solvent used in the herbal extraction process, 
properties of the target phytochemical and literature study. The target values for each 
property are set as listed in Table 7. 
 

Table 7: Target property constraints 

 

3.1.2 Task 2: Property model identification  
Task 2.1: Retrieve models from the library. The target properties, partition coefficient 
(log Kow), toxicity parameter (LC50), solubility parameter (δ), viscosity (μ), density (ρ) 
and cost (C) are estimated using linear mixing rules (Equation 1) while the others are 
predicted by using non-linear models, as listed in the property models library (Table 8). 
 

Table 8: List of mixture property models used in this work 
Target property Model Reference 

Partition coefficient, Log 
Kow 

Linear mixing rule  

Toxicity, LC50 Linear mixing rule  
Solubility parameter, δ Linear mixing rule  
Cost Linear mixing rule  

Target property value 
Property Solvent constraints Phytochemical constraints 

Partition coefficient Log Kow(follow target 
phytochemicals) 

-0.3 ≤Log Kow≤ 4.44  

Boiling point Tb ≤ 728.4 K - 
Toxicity parameter -2.5 ≤-log LC50≤ 2.5 - 
Stability ∆Gmix - 
Viscosity 0.20 cP ≤ μ ≤1.24cP - 
Density 1.0g/cm3 ≤ρ≤ 1.5g/cm3 - 
Price C - 

Solubility parameter δ (follow target 
phytochemicals) 

16≤ δ≤48 Mpa1/2 
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Boiling point, Tb 
1 , °

0 
Klein et al. (1992) 

Table 8: (continued) 
Target property Model Reference 

   
Stability, ∆Gmix G

RT
 ∑ . ln ,                   

 ∑ . ln  

Pinal et al. (1991) 

Viscosity, μ  Mehrotra et al. (1996) 

Density, ρ  Yunus et al. (2011) 

 

3.1.3 Task 3: Design solvent blend  
Task 3.1: Choose input data. Two sets of input data were used in this case study, the 
solvents and phytochemicals databases. The solvents input data consist of alcohols, 
hydrocarbons, ethers and esters, while four main phytochemicals in Kacip Fatimah: 
kaempferol, myricetin, quercetin and rutin were used as phytochemical input data. Input 
data means the data containing all of the considered pure properties of both solvents and 
phytochemicals. 
 
Task 3.2: Run solvent design algorithm. The solvent design algorithm is run following 
all listed levels. 
 
(i) Level 1: Pure component constraints 
Step 1.1: Pure component properties of the solvents in the input data and target 
phytochemicals are compared with respect to the target values. The aim for this level is 
to obtain a list of pure solvents that match the phytochemical target property values. For 
this step, two properties, the solubility parameter (δ) and partition coefficient (log p) are 
considered. These properties have an interrelation between solvent and phytochemicals 
that affects the extraction process efficiency while the other properties are used for the 
solvent selection only to ensure their safety and compatibility with the extraction 
process. 
 
After considering all of the constraints set in this level, 119 binary solvent combinations 
out of 870 possible total combinations of binary solvents satisfied all of the constraints. 
These binary solvents combination will be further screened in level 2. 
 
(ii) Level 2: Linear constraints 
Step 2.1: In this level, only properties that satisfy the linear mixing rule (Equation 1) as 
shown in the property library (Table 8) for binary solvent properties calculation will be 
considered. In this case, toxicity, density and viscosity are taken into account. The result 
for this step is the composition range for each binary mixture. 
Step 2.2: In this step, the overall composition range for each mixture is identified. This 
step gives the feasible mixtures with their upper and lower bounds of composition 
range. After performing Level 2, 36 binary solvents were left and will be considered in 
Level 3. 
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(iii) Level 3: Non-linear constraints 
Step 3.1: Level 3 is only for the properties that satisfy the non-linear model for binary 
properties calculation as shown in the property library (Table 8). In this case, only one 
property, boiling point, was applied to the non-linear model. The boiling point model 
was solved with x  (composition boundary) as input. 
Step 3.2: Mixtures that do not match non-linear constraints are rejected. After 
performing Level 3, only 12 binary solvents still remain. 
 
(iv) Level 4: Stability analysis 
Step 4.1: The remaining binary solvents are then described based on the UNIFAC-LLE 
group representation and the activity coefficients are calculated at the temperature of 90 
°C (operating temperature for the extraction of kaempferol from Kacip Fatimah) and the 
stability tests are performed for all of the remaining candidates. 
Step 4.2: All mixtures that show a phase separation at the composition boundary, x , are 
rejected. However, in this case study, none are rejected because none of the 12 binary 
solvents showed a phase separation. All 12 solvent mixtures with their properties 
considered in this study are shown in Table 9.  
 

Table 9: Binary solvents that satisfy Level 4 with their properties 
Solvent 

mixtures x1 δ, Mpa1/2 Log Kow Tm -log LC50 ρ, g/cm3 μ, cP Tb, K 
M:IB 0.92 21.67 -0.15 198.87 2.17 1.46 1.20 338.15 
M:PP 0.91 21.79 -0.15 197.22 2.11 1.45 1.19 321.15 
M:W 0.8 27.18 -0.18 227.37 2.21 1.39 1.22 340.65 
M:EA 0.35 19.52 0.41 190.58 -0.67 1.09 0.64 333.65 
M:AA 0.4 19.25 -0.04 261.92 -0.30 1.15 1.20 346.15 
PD:PP 0.03 20.78 0.59 210.15 -1.78 1.03 0.46 321.15 
PD:IB 0.03 19.02 0.76 231.53 -1.54 1.14 0.44 338.15 
M:PA 0.02 19.25 0.36 307.90 -2.06 1.16 1.39 336.65 
G:B 0.01 19.04 1.81 198.64 -1.94 1.06 0.62 334.15 
PD:P 0.03 16.09 2.38 136.39 -2.33 0.72 0.27 321.15 
PD:B 0.03 19.86 1.78 200.42 -1.81 1.06 0.65 322.15 
W:PA 0.7 39.25 0.11 270.26 0.06 1.04 1.02 340.14 

** M: methanol, IB:isobutyraldehyde, PP: n-propionaldehyde, W: water, EA: ethyl acetate, AA: acetic 
acid, PD: 1,3-propanediol, PA: propionic acid, B: benzene, G: glycerol 
 

The reduction in the numbers of solvent mixtures in all four levels is illustrated in 
Figure 8. 
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objectives are quickly to screen out a large number of alternatives and to reduce the 
search space at each hierarchical step. The methodology can be used to design blended 
solvent for extracting phytochemicals from any herb where the scope and size of the 
case study depend on the solvent database available and availability of models. This 
methodology is described and highlighted for binary solvent mixtures, but can easily be 
extended to multicomponent mixtures. For future work, this systematic methodology 
needs to be verified for extraction of different phytochemicals from various herbs as 
case studies. 
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