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INTRODUCTION 
In principle, Multivariate Statistical Process Monitoring (MSPM) is an established as well as comprehensive 

statistical-tool driven system which primarily functioned to detect and diagnose abnormalities during operation. Among 
of the initial frameworks have been proposed in a number of numerous studies which focusing more on chemical-based 
industry (Kourti & MacGregor, 1995; J. F. MacGregor & Kourti, 1995; Martin et al., 1996). Two main statistics, namely 
Hotelling’s T2 and Squared Prediction Errors (SPE), have been extensively applied particularly for fault detection 
operation. By conception, the first is highly regarded to the magnitude of centrality, whereas the second critically analyses 
the stability of process variable correlations under investigation. Both parameters are typically ran together and 
complementary during monitoring implementation. Technically, a fault will be signalled if any one of these statistics 
located beyond of the monitoring limits (normally set at 99% confidence level) consecutively on the multivariate 
Shewhart’s control chart.        

In general, MSPM typically utilizes the conventional Principal Component Analysis (cPCA) approach as its 
foundation for data compression. This procedure is very important particularly to simplify the monitoring operation by 
transforming all the monitored variables linearly into multivariate numerical, or popularly known as PC scores (which 
lesser in numbers compared to the original variables) prior charting the monitoring statistics. However, various process 
industries suffer from acute non-linear behaviour. As a result, the risks of applying the conventional approach of MSPM 
within this context may include sluggish or failed in detection, misinterpretation of signals, incorrect fault diagnosis and 
also inflexible as well as insensitive to changing of operating modes.  In addressing these issues, (Yunus, 2012) has 
proposed Classical Scaling (CMDS), in which, the technique works almost identical to that of cPCA, but fundamentally 
different by means of variable correlations. In (Yunus, 2012), the author has also explained the benefits as well as 
demonstrated the unique features of CMDS against cPCA on a simulated process of continuous stirred tank reactor 
(CSTR) with recycle system. However, the monitoring statistics proposed in (Yunus, 2012) suffer from high frequency 
of missed detection situations which are similar to cPCA. In other words, both cPCA and CMDS in (Yunus, 2012) are 
having difficulty to ‘sustain’ the detection signals if the process is highly non-linear. In particular, this study defines the 
term ‘sustain’ corresponding to the ability of the monitoring system detecting faults consistently in the abnormal region 
of the control chart without allowing the statistics moving back to the normal area as long as the root cause that pertaining 
to the signals are retained in the process operation. In this light, a newly monitoring statistic which has been derived as 
well as expanded from (Yunus, 2012) is proposed in addressing the issue. Hence, the objective of this study is to 
investigate how reliable of the new monitoring statistic can sustain the detection signal of fault operation in oppose to 
cPCA based on the specified case studies.  

ABSTRACT – Multivariate Statistical Process Monitoring (MSPM) fundamentally adopts the 
conventional Principal Component Analysis (cPCA) as the main platform for data compression. 
The main challenge though, the association nature of most industrial process variables are highly 
non-linear. As a result, the risks of applying the conventional approach of MSPM within this context 
may include sluggish or failed in detection, misinterpretation of signals, incorrect fault diagnosis 
and also inflexible as well as insensitive to changing of operating modes.  In addressing the issue, 
this paper introduces new sets of monitoring parameters i.e. Sm2, Sr2 and Sr3, which have been 
derived within the frameworks of Classical Scaling (CMDS) and Procusters Analysis (PA) methods. 
The overall fault detection performance that applied based on the Tennessee Eastman Process 
(TEP) cases show that the Sr3 can detect the faults particularly for abnormal events number 3, 9, 
15 and 19 in higher rate compared to the cPCA-MSPM system. This proves that the new monitoring 
statistics work effectively in avoiding missed detection during monitoring which cannot be 
addressed effectively by the traditional monitoring system.   
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MULTIVARIATE STATISTICAL PROCESS MONITORING SYSTEM 
Conventional MSPM System & Its Advanced Applications 

MSPM basically applies linear-based foundation to correlate all the monitored variables in the form of matrices. The 
typical representations of this association either by means of variance-covariance or correlation matrix structure are shown 
in (1) and (2), respectively. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
where sample variances or covariances (var-cov), cab, , (in which ‘a’ equals to 1,2,…’m’ while ‘b’ is referring to 

1,2,…m), and also correlation measure, rab  (in which a=1,2,…’m’ while b=1,2,…m) are given by (3) and (4), respectively: 
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where x is a particular column (vector) of the original matrix data, X%×) (n and m are number of samples and variables, 

respectively). The PCs scores are obtained, as shown in (5) and (6), simply by the product of the original multivariate 
data (which usually normalized), X, and eigenvectors that extracted from the var-cov or correlation matrix (Everitt & 
Jackson, 1992). The complete procedures of connecting the PC scores and monitoring statistics can be obtained in (Kourti 
& MacGregor, 1995; J. F. MacGregor & Kourti, 1995; Martin et al., 1996). 
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Procedures that highlighted in (1) to (6) are the core of cPCA. There are also other applications of multivariate 

reduction techniques which have been utilised for monitoring including Partial Least Square (Nomikos & MacGregor, 
1995), Independent Component Analysis (Lee et al., 2004), Factor Analysis (Amigo et al., 2008) and Partial Correlation 
Analysis (Ibrahim, 1997). However, all of these extensions perceive the variable correlations as similar to the concept of 
cPCA, and thus, the earlier issues remained valid. Meanwhile, most advanced studies of MSPM have been on the 
improvement of cPCA itself which consists of dynamic PCA (Ku et al., 1995), Multi-scale PCA (Bakshi, 1998), Multi-
block PCA (John F. MacGregor et al., 1994) and also Non-linear PCA (Zhang et al., 1997). Among of these approaches, 
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Non-linear PCA is the only mechanism which specifically highlights and radically proposed modification on the 
traditional linear-based model structure by implementing principal curve technique. Alternatively, (Yunus, 2012) has 
proposed CMDS technique for monitoring application, which is also introducing a new scheme for constructing the 
variable model. Critical comments on the principal curve approach can be also found in (Yunus, 2012).  

Classical scaling and process monitoring  
Multidimensional Scaling (MDS) generally is an explorative technique, which initially as well as popularly adopted 

by the social science area (Oppenheim & Torgerson, 1961), particularly to provide the sense of general structure by means 
of graphical representation of any large scale data that investigated (Kruskal, J.B., and Wish, 1978). One of the core 
elements is dissimilarity/similarity measure which conceptually applied to represent the association among of the objects 
(samples) such that higher degree of connection between two objects is depicted by having both points located closely 
together relative to the other pair of settings which loosely connected (Borg & Groenen, 1997; T. F. Cox, 2005; T. F. Cox 
& Cox, 1994; Takane, 2004). In the cPCA term, this higher degree of connection can be in the range of 0.7 to 1.0 on the 
correlation matrix scale. In (T. F. Cox & Cox, 1994), the authors have suggested various options in representing the 
distance of the quantitative data which consists of Euclidean, City-block, Mahalanobis and many others.  

According to (Oppenheim & Torgerson, 1961), CMDS is originated from a study that published in (Trevor F. Cox, 
2001). The term ‘metric’ is also synonymous with CMDS because it assumes the input data to be in the form of ratio-
scaled distance (T. F. Cox, 2003).   Generally, there are four basic steps considered in developing the CMDS scores (Borg 
& Groenen, 1997; T. F. Cox & Cox, 1994): 

i. Firstly, the squared dissimilarity matrix, 𝚫𝟐, is computed.  
ii. Then, the double-centring operation is applied on matrix 𝚫𝟐to obtain B∆. 
iii. Next, the eigen decomposition of B∆ is calculated. 
iv. Finally, the Cartesian coordinate matrix, X𝑬, is found by multiplication of positive eigenvalues with their 

corresponding eigenvectors. 

For instance, the following illustrates the technical procedures in developing the multivariate scores (PCs scores) 
using the CMDS technique. Suppose the Euclidean Scale is chosen to be applied, and hence, the squared inter-distances 
(dissimilarity) matrix among of the objects (samples) can be calculated via (7). 

 
𝚫𝟐 = 𝐃𝟐=c1'+1c'-2X𝐗𝐓		 

 
where D2 is the squared dissimilarity matrix in terms of Euclidean distance, 1 is a vector containing element of 1 with 

size of column in X,  c is a vector containing the diagonal elements of X𝐗𝐓, and is the Euclidean’s major product moment. 
Then, the final form of 𝚫𝟐is given by way of (8): 
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Next, by applying the double centring operation on 𝚫𝟐, a corrected scalar product matrix is generated, which means 

the data origin are re-located automatically to be on the centre (or centroid) of the data as shown as follows:  
 
 Corrected scalar product matrix = 	B∆ = − '

+
J𝐧𝚫𝟐J𝐧      

 where, J% =	double centring = (I% − 𝟏%𝟏%1 /𝑛)																								 
Therefore,    B∆ 		= − 𝟏

𝟐
J(c1'+1c'-2X𝐗𝑻)J																																																																				 

= − 𝟏
𝟐

Jc1'J− 𝟏
𝟐

J1c'J+ 𝟏
𝟐
𝐉(2B𝑬)J																																																							  

As 1'J = J1 = 0, and thus:  	B∆ 	= − 𝟏
𝟐

Jc0− 𝟏
𝟐

0c'J+ 𝐉BJ 																																					                            
                                                   = 𝐉𝐁J (corrected scalar product matrix)                

 
By this, B∆ is a symmetrical and positive semi-definite matrix. Later, the eigen decomposition of B∆ is calculated by 

(Oppenheim & Torgerson, 1961):  

              					B∆ = UDUT																					 

where U is an orthonormal matrix of eigenvectors and D is a diagonal matrix of eigenvalues with customary order 
such that   𝜆' ≥ 𝜆+ ≥ ⋯ ≥ 𝜆%. At the final step, the recovery coordinate, usually by means of Euclidean space, X𝑬, is 
simply determined by:  

 
                                            X𝑬 = U4D4

𝟎.𝟓																																																												 

 (7) 

 (8) 

 (9) 

 (10) 

 (11) 
 (12) 
 (13) 

 (14) 

 (15) 



Yunus  et al. 

u journal.ump.edu.my/jceib  4 

 
where  D4

𝟎.𝟓 is a diagonal matrix with all elements of  𝜆#8.9 that are greater than zero and U4 is the corresponding 
eigenvectors of those selected  𝜆#8.9. 

In addition, CMDS minimizes the loss function of scalar product or namely Strain, S, as shown in (16). Meanwhile, 
it can be also alternatively defined as the comparison between the total variance in the original scalar product matrix, B∆, 
with the total variance of a derived scalar product matrix from the new configuration of Euclidean space coordinate, BE 
(Oppenheim & Torgerson, 1961).  

 
                                      S = ∑|BE-B∆|𝟐                                       

 
A comprehensive revision on the application of MDS in monitoring has been reported in (Yunus, 2012). In summary, 

the original idea was proposed in (Trevor F. Cox, 2001), and also described in (T. F. Cox, 2003). There were two 
approaches have been developed.  In particular, the first proposed the multivariate scores in terms of sample configuration, 
whereas the second adopted the variable profile scores. Hence, whenever a fault happened, the corresponding samples or 
variables will be moving away from the normal cluster either in a great magnitude of gradually. However, (Yunus, 2012) 
perceives the variable profile as rather advantageous as well as informative compared to the conventional score 
configuration for it shows directly which variables are responding to the situation that connected. However, neither in 
(Trevor F. Cox, 2001) nor (T. F. Cox, 2003) specifically suggested any mechanism in associating the CMDS scores with 
any established statistics for monitoring.  

As a result, three general CMDS monitoring frameworks have been proposed in (Yunus, 2012) particularly to extend 
the proposed methodology reported in (Trevor F. Cox, 2001). However, the proposed systems only utilise the multivariate 
variable score profiles for monitoring. The first framework, which adopts the moving window scheme, directly obtain the 
first monitoring statistic by way of measuring the resultant vector distance of the CMDS scores from the centre (which 
inspired by the original idea proposed in (Trevor F. Cox, 2001)). This parameter conceptually relates to the application 
of Hotelling’s T2 statistic in the conventional MSPM. Meanwhile, the second monitoring statistic is simply obtained by 
calculating the summation of squared errors in terms of the dissimilarity measure that applied (only Euclidean and City-
block were analysed). This second parameter is however imitates the representation of SPE which specifically analysing 
the degree of association among of the variables that monitored.  Nonetheless, this particular monitoring framework does 
not particularly introduce a mechanism of loading factor which typically used in the cPCA approach. As a result, two 
additional frameworks were proposed that particularly utilizing Procrusters Analysis (PA) in emulating the conceptual 
application of loading factors in cPCA. The main difference between the two methods however, the third system employs 
dynamic loading calculation in projecting the scores as oppose to the second approach. In analysing the whole CMDS 
monitoring frameworks against to that of cPCA performance, the second CMDS system (CMDS-PA) was found the most 
stable in terms of fault detection time particularly based on the case study that investigated.    

CMDS-PA MONITORING FRAMEWORKS 
The proposed procedures of CMDS-PA which have been upgraded from (Yunus, 2012) is shown in Figure 1. The first 

step basically involves collecting the normal operating condition (NOC) data, which is importantly applied in developing 
the correlation model for monitoring. In this study, the data is assumed to be pre-treated initially, whereby the 
comprehensive procedures of raw data pre-treatment can be referred in (Molina et al., 2011).  The collected set of NOC 
data is then undergone normalization or standardized as according to zero mean and one standard deviation, by which all 
the variables are treated equally regardless of the scales of operational measurements. In step 2, the original set of NOC 
data is divided into two parts - XNOC1 and XNOC2. This is mainly important for developing the benchmarked multivariate 
model particularly using the first set, XNOC1, whereas the second, XNOC2, is utilised to obtain the progression statistic 
profile especially for calculating the monitoring limits. The typical CMDS procedures, as explained in (7) to (15) 
previously, are employed in converting both XNOC1 and XNOC2 into YNOC1 and YNOC2 respectively. Then, the PA 
procedures are applied as described in the following (Borg & Groenen, 1997):  

 
i. Computation of the minor product moment between the first NOC scores, YNOC1 (originated from XNOC1), 

and the second NOC scores, YNOC2 (originated from XNOC2).   
CPA=YNOC1TJmYNOC2           

where Jm is given in (9) based on the size of variables instead of samples.  
ii. Decomposition of CPA into the eigen basic structures.   

CPA=PPAVPAPPAT            
where PPA and  VPA are the eigenvectors and eigenvalues matrices of CPA respectively. 

iii. Identification of the optimal rotation matrix: 
        R = PPAPPAT       

iv. Identification of the optimal dilation scale:  
s=(trYNOC1TJm YNOC2R)/(tr YNOC2TJmYNOC2)    

v. Identification of the optimal translation vector: 
t=(YNOC1sYNOC2R)T1/m; m=no. of variables     

 (16) 

 (17) 

 (18) 

 (19) 

 (20) 

 (21) 
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vi. The reproduction of Moving Window Observation Samples of Normal Operating Condition (MWOS-NOC) 
scores projected by PA for sample ‘k’ is  

given by: 
YPA-NOC(k)=s YMWOS-NOC(k)R+1tT       

    where YMWOS-NOC(k) = new CMDS scores of MWOS-NOC samples at time 
              ‘k’ that converted from XMWOS-NOC(k) based on the moving window scheme.                                

 

 
In step 3, three monitoring statistics are calculated in representing the monitoring progression. The first statistic, which 

denoted in (23), is the sum of squared errors in terms of projected variable vectors in the reduced dimensional space 
between YPA and YPA-NOC1 configurations. This particular parameter is conceptually addressed the magnitude of 
deviation of current process progression from the centre (further explanation can be found in (Yunus, 2012)).  

       

where and  are a particular score coordinate in YPA-NOC(k) and YPA-NOC1 by which can be 
calculated as in (24) and (25) respectively. The term ‘m’ is referring to the number of variables, ‘p’ corresponds to the 
number of dimensions that compressed, and ‘k’ is a particular moving window observation (MWOS) timing.  

     YPA-NOC1 =s YNOC2R+1tT 

 Meanwhile, the second statistic regards to measuring the correlation consistency as illustrated in (23). From (23), 
technically this parameter measures the sum of squared errors in terms of dissimilarity measures between the YPA-NOC(k) 
and YPA-NOC1 configurations. Detail descriptions are given in (Yunus, 2012).  

     ; i ≠ j  

where 𝑑:;<=>?(A)and 𝑑:;<=>?' are a particular inter-distance measure in YPA-NOC(k) and YPA-NOC1 respectively. 
The third statistic, Sr3 is the newly monitoring parameter that proposed through this particular study and expressed 
mathematically as in (26), whereby the terms are similar to that of 𝑆C+. This particular parameter is proposed to 
complement the performance of 𝑆C+ because 𝑆C+ is sometimes found to be problematic during the initial stage of transition 
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1. Collection and standardization 
of historical NOC data 

2. Development of NOC and 
MWOS-NOC scores by means of 

variables (CMDS-PA) 

3. Formulation of monitoring 
statistics based on MWOS-NOC 

scores (Sm2, Sr2, Sr3) 
 

5. Collection and standardization 
of the new process data 

6. Development of MWOS-new-
data scores by means of variables 

(CMDS-PA) 

7. Formulation of monitoring 
statistics based on MWOS-new 

scores (Sm2, Sr2, Sr3) 
 

8. Fault detection, analysis, and 
fault identification 

4. Calculation of control limits  

PHASE II  PHASE I  

Figure 1. CMDS-PA based MSPM framework 

 (23) 

 (24) 

 (25) 

 (22) 
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particularly when transforming from the normal to abnormal states. As a result, 𝑆C+ tends to be sluggish to detect fault 
compared to 𝑆)+.   

𝑆CD = ∑ ∑ E!"#$%&(()*)
F!"#$%&,()*)

)
G&'

)
#&' ; 𝑖 ≠ 𝑗	𝑎𝑡	𝑡𝑖𝑚𝑒	𝑘 

The last task of phase 1, which is step 4 deals specifically in developing the monitoring limits. As suggested in (Yunus, 
2012), this study adopts the chi-squared distribution as shown in (27).  

       

where α equals to 0.05 and 0.01 for warning (95%) and control (99%) limits respectively,  and ν are respectively 
representing the means and variances for each of the statistics. The phase II procedures, particularly steps 5 until 7, 
basically follow the same order as in phase I. In particular, the new samples are standardized as according the means as 
well as standard deviations that obtained in Phase I. Then, the scores are simply obtained through the CMDS normal 
procedures, as shown in (7) to (15), whereby the original new samples are dynamically changed through moving window 
mechanism (XMWOS-new(k)) in order to compute the new sample CMDS scores (YMWOS-new(k)). The projecting algorithm for 
the new sample scores is shown in (28).  

YPA-new(k)=sYMWOS-new(k)R+1tT       
 
where YPA-new(k) = reproduction of the scores projected by PA at MWOS-new sample ‘k’, whereas  YMWOS-new(k) = 

multivariate scores of MWOS sample ‘k’ developed by CMDS. This procedure is then completed by calculating the three 
monitoring statistics as shown in (23), (24) and (25) respectively. In step 8, a fault is detected whenever at least five (5) 
statistics (any of the proposed parameters) located consecutively beyond the 99% monitoring limits on the control charts.  

RESULTS AND DISCUSSION 
This study has applied Tennessee Eastman Process (TEP) (Downs & Vogel, 1993) case study in evaluating the 

strength of the proposed systems. From the literature, this particular process has been widely investigated in analysing 
various applications of new control strategies (Molina et al., 2011; Zheng, 1998) as well as monitoring systems (Juricek 
et al., 2000). TEP comprises of five major unit operations including an exothermic two-phase reactor, a vapor-liquid 
separator, a product condenser, a product stripper and a recycle compressor. It mainly produces two major products with 
one material as side product particularly by using four main reactants. There are 52 variables are utilised for monitoring, 
in which it consists of two main groups – 41 measured variables and 11 manipulated variables (the details can be obtained 
in (Chiang et al., 2000)). In (Chiang et al., 2000), there are twenty different types of malfunction operations are proposed 
as listed in Table 1.  

Table 1. Process Faults for Tennessee Eastman Process  

Fault No. Description Fault 
No. Description 

1 A/C feed ratio, B composition constant 
(stream 4) 11 Reactor cooling water inlet temperature 

2 B composition, A/C ratio constant (stream 4) 12 Condenser cooling water inlet temperature 
3 D feed temperature (stream 2) 13 Reaction kinetics 
4 Reactor cooling water inlet temperature 14 Reactor cooling water valve 
5 Condenser cooling water inlet temperature 15 Condenser cooling water valve 
6 A feed loss (stream 1) 16 Unknown 

7 C header pressure loss-reduced availability 
(stream 4) 17 Unknown 

8 A,B,C feed composition (stream 4) 18 Unknown 
9 D feed temperature (stream 2) 19 Unknown 
10 C feed temperature (stream 4) 20 Unknown 
 
This study has investigated simulation data that implemented in [29]. The number of samples of the NOC training 

data NOC is 500; meanwhile the number of samples of testing data, which includes NOC and fault data sets is 960 
individually. In this study, the fault signal has been introduced at the sampling time of 160 for each of the process faults 
respectively. Initially, the complete procedures of conventional MSPM were implemented and the Fault Delayed 
Detection Time (FDDT) were observed for each of the cases that investigated. This is followed by the application of 

( ) 2

,/22
2/lim

an
cna

m
m=

m

 (26) 

 (27) 

 (28) 
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CMDS-PA monitoring algorithms on each of the 20 cases respectively whereby the FDDT were also collected. Lastly, 
the results in terms of FDDT on those TEP cases were obtained individually by using the integrated framework of CMDS-
PA system. All applications have been tested based two main settings – 20 and 40 PCs/dimensions, whereby the 20 and 
40 dimensions relate to almost 70% and 90% of data variation, respectively.  In addition, the window size settings of 10, 
20 and 30 were also analysed in each of the dimension applications particularly for CMDS-PA and CMDS-PA-PCA 
systems. This study also has utilised the Euclidean distance as the main dissimilarity scale in constructing the overall 
variable relationship structure, whereby this particular scale has been identified as the most reliable performance 
compared to other measures that available for monitoring (Yunus, 2012). 

Phase I monitoring results 
The overall results of False Alarm Rate (FAR) analysis of CMDS-PA system are shown in Table 2 (the FAR results 

for the cPCA system are zero for all applications, and thus, not presented in this particular table). FAR is calculated based 
on the total number of samples which located beyond the 99% limit over total number of training and testing samples 
respectively. In general, the overall results of Table 2 depicts that the rates are generally lower than 10% which 
corresponding to testing data set. This suggests that the proposed monitoring limits should be robust in differentiating the 
normal and abnormal trending. It also indicates that if there are false alarm events take place, then the situation should be 
temporary within short period of time.  

     
Table 2. The Summary of FAR Analysis Results based on CMDS-PA System 

 
Phase II Monitoring Results 

The overall FDDT of CMDS and cPCA systems particularly for the 20 and 40 dimensions/PCs settings respectively 
are shown in Table 3. From Table 3, the results reveal that the CMDS-PA system performed comparatively superior 
relative to cPCA because the NFD achievements are higher than that of cPCA respectively at both dimension settings 
(65% fastest detection which represented by the bolded numbers). In this regard, cPCA has shown 50% succession of 
fastest detections relative to CMDS-PA, however, the time discrepancy between the two models is rather small, which is 
within the range of 2˗11 sampling times difference (see DTD column in Table 3). Meanwhile, the DTD negative values 
in Table 3 between the two systems is comparatively large from -238 until -14, which clearly shows that there was a great 
timing lagging of cPCA in detecting the fault compared to the proposed system.     

Furthermore, the number of slow detection (SD) cases which cPCA obtained based on at least 10 sampling time 
delayed is relatively higher compared to CMDS-PA. In particular, there were eleven (11) situations (referring to the ‘/’ 
marks in Table 3) where cPCA were found sluggish in detection, whereas CMDS-PA merely produced six (6) slow 
detection cases  based on 20 dimensions/PCs models. With respect to the 40 dimensions/PCs models, however, the SD 
cases for both methods were increased to twelve (12) and eight (8) respectively.  This shows that increasing the number 
of dimensions/PCs will complicate the detection operation rather than simplified. This could be due to the transformation 
of large variable scores in deducing the monitoring parameters at higher number of dimensions is truly a complex process. 
Hence, ideal number of dimensions which captured around 70% - 80% variance or configuration similarity is highly 
encouraged.   

The most intriguing part of the findings is cPCA suffers from four (4) major NED cases, which consists of abnormal 
event numbers 3, 9, 15 and 19, whereby no effective detection can be clearly observed on the control chart based on both 
PCs settings. The NED cases are situations where the signals cannot be maintained at the upper region of the control 
limits once the fault signal has been injected in the process.  
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Table 3. The Summary of FDDT Results for cPCA and CMDS-PA Systems based on 20 and 40 Dimensions 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Legends: NFD: Number of fastest detection cases; ‘/’: Correct; ‘X’: Incorrect; NED:  
No effective detection; DTD: Delayed detection time (DTD=detection time CMDS-PA-detection time cPCA) 

 
For instance, Figure 2 shows the chart progression of T2 and SPE of the cPCA system for abnormal cases number 3, 

13 and 15 that operated by using 20 PCs model.  From Figure 2, with regard to cases 3 and 15 specifically, both of the 
events cannot be detected effectively by cPCA via T2 or SPE, and as a result, the monitoring outcomes appeared as ‘NED’ 
for both cases as denoted in Table 3 previously.  On contrary, the fault of case 13 can be detected very effectively by 
cPCA through both statistics, whereby majority of the samples are located outside the boundaries particularly after the 
sampling time of 160 (from Table 3 the first detection was notified at sampling time 194 and 197 based on 20 and 40 PCs 
models respectively).   

Figure 3 on the other hand, illustrates the progression of CMDS-PA systems for cases 3, 13 and 15 particularly 
utilizing dimension 20 model. In particular, Figure 3 shows that the CMDS-PA system has effectively detected cases 3 
and 15 comparatively better than that of cPCA, where a large portion of samples are located consistently outside the 
boundaries after sampling 160. In the case of fault number 13, the CMDS-PA system was also found efficient in detecting 
the fault much earlier against cPCA as well as a great number of samples are plotted beyond the 99% limit constantly.  
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Figure 2. a) T2 Progression of Case 3, b) SPE Progression of Case 3, c) T2 Progression of Case 13, d) SPE 

Progression of Case 13, e) T2 Progression of Case 15, f) SPE Progression of Case 15 
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Figure 3. a) Sr3-CMDS-PA Progression of Case 3, b) Sr3-CMDS-PA Progression of Case 13, c) Sr3-CMDS-PA 

Progression of Case 15  
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CONCLUSION 
This study investigates the application of CMDS-PA monitoring framework particularly on detecting process 

abnormality based on TEP cases. The study involves the original methodology that discussed in (Yunus, 2012) but with 
an introduction of a new monitoring statistic, Sr3. This study analysed the performance of the proposed system against 
the cPCA detection outcomes. It turns out that the CMDS-PA has successfully detected all the faults effectively in relative 
to cPCA, whereby cPCA was observed struggling in sustaining the signal detection particularly for fault cases numbers 
3, 9, and 15. Perhaps, this outstanding performance can be further utilised as well as expanded for the current use of 
feature monitoring within the realm of big data environment for smart manufacturing (He et al., 2019; He & Wang, 2018).  
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