
INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING & COMPUTER SYSTEMS (IJSECS)
ISSN: 2289-8522 e-ISSN: 2180-0650
VOL. 9, ISSUE 2, 140 – 149
DOI: https://doi.org/10.15282/ijsecs.9.2.2023.7.0118

*CORRESPONDING AUTHOR | G. K. Afolabi-Yusuf | afolabi.ganiyat@summituniversity.edu.ng 140
© The Authors 2023. Published by Universiti Malaysia Pahang Publishing. This is an open access article under the CC BY license.

ORIGINAL ARTICLE

PERFORMANCE ANALYSIS OF SELECTED CLASSIFICATION ALGORITHMS ON
ANDROID MALWARE DETECTION

G.K. Afolabi-Yusuf1, Y.O. Olatunde1, K.Y. Obiwusi1, M.O. Yusuf2, O.C. Abikoye2

1Department of Mathematics and Computer Science, Summit University Offa, Kwara state, Nigeria.
2Department of Computer Science, University of Ilorin, Ilorin, Nigeria

ARTICLE HISTORY
Received: 22 May 2023
Revised: 17 November 2023
Accepted: 11 March 2024
Published: 18 March 2024

KEYWORDS
 Cyber security
 Malgenome

Drebin
Android
Malware Detection

INTRODUCTION

 Android mobile device is widely used across all platforms in the world with more than 85% of the market share.

Currently, millions of software applications are available for Android users on the device store and these apps record

billions of downloads yearly [1]. Android device users can install software applications from any source which has

unfortunately spurs the development of malicious apps that can compromise user’s mobile systems [2].

Malicious software has been created incessantly over the years to compromise the security of the Android device

platform. Android encryption and protection structure contribute immensely to the growth in the complexity of Android

Malware [3]. Malware developers evolve with the new detection capabilities and are always trying to counteract the

developers' security strengths. Malware always takes advantage of the least vulnerable and security flaws to infect [4].

Malware causes infliction on the affected mobile devices; it can render the phone unusable, account fraud and phishing

of private information or eradicate the user’s phone memory.

It has been discovered that there are millions of malicious Android apps available. These apps are designed to launch

innumerable attacks using Trojan horses, worms, exploits, and viruses [5]. Because there are many different versions of

these malicious apps installed, it might be challenging to identify, remove, or destroy them [6]. Researchers and analysts

have developed a number of Android malware detection apps that employ machine learning algorithms and data mining

approaches to detect and prevent malware in an effort to avert security breaches. Given the volume of newly released

harmful apps, a detection system that is effective in identifying these apps is required. Researchers have developed several

machine learning approaches, that learned from attributes extracted using static/dynamic approaches to identify malicious

applications. However, such models suffer from low detection accuracy, due to the presence of noisy attributes, extracted

from conventional feature selection algorithms [7].

In machine learning, the Synthetic Minority Over-sampling Technique (SMOTE) proves invaluable in mitigating the

challenges posed by class imbalance in datasets, particularly prevalent in binary classification problems [5]. The

imbalance arises when one class is significantly underrepresented compared to the other, a scenario common in real-

world applications such as fraud detection or medical diagnosis. SMOTE addresses this by generating synthetic instances

ABSTRACT – Android mobile devices are widely used across all platforms and the development
of malicious apps can compromise a user’s mobile system. Considering the large amount of new
malicious apps, there is a need for a detection system that can operate efficiently to identify these
apps. The study analyzes and compares the performance of DREBIN and MALGENOME data sets
with the dataset’s SMOTE version on selected machine learning algorithms using WEKA tools. The
performance of bayesian, function, rule, and tree-based classification algorithms on the two
datasets was explored in this work. WEKA tool was used in pre-processing and SMOTE class
balancing of the datasets before the model training using different classification algorithms on the
two datasets and the performance evaluation. In the performance evaluation, parameters such as
accuracy, precision, f-measure, the area under cover, true positive, recall, and false positive rate
were employed. According to the study, tree-based classifiers (Recursive Tree, Decision Tree and
Classification and Regression Tree) algorithms have 97.24%, 98.21% and 98.21% accuracy on the
Malgenome dataset and 97.30%, 97.33% & 97.28% of accuracy on Drebin dataset and function-
based classifiers (Support Vector Machine (SVM) and Logistic Regression) algorithms has 97.81%
& 96.87% of accuracy on Malgenome dataset and 97.00% & 97.81% of accuracy on Drebin dataset
which concludes that classifier algorithms in these groups proofed to be promising for the detection
of android malware. The function-based classifier is the most outstanding method for the two
datasets as it outperforms all other classifiers for both classes with 97.81% and 97.33%. SVM and
Logistic Regression, are highly effective in detecting malicious Android apps, outperforming other
classifier types with accuracy rates up to 97.81%. Tree-based classifiers also showed strong
performance across DREBIN and MALGENOME datasets. This research underscores the potential
of function-based algorithms as robust tools for enhancing mobile security against malware threats.

Afolabi-Yusuf et al. │ International Journal of Software Engineering and Computer Systems │ Vol. 9, Issue 2 (2023)

141 journal.ump.edu.my/ijsecs ◄

of the minority class, effectively rebalancing the dataset and preventing models from being biased towards the majority

class [1]

By augmenting the minority class with synthetic examples, SMOTE enhances model performance by allowing it to

better discern the characteristics of the minority class. This improvement translates into better generalization to unseen

data, as models are no longer skewed towards the majority class. Moreover, SMOTE aids in preventing overfitting, a

common pitfall in imbalanced datasets where models can become overly sensitive to the majority class. The technique

achieves this by introducing diversity through synthetic instances, thereby fostering more nuanced decision boundaries

and facilitating a more robust and accurate classification process.

The study analyzes and compares the performance of Bayesian, Function, Rule, and Tree-based classification

algorithms on the detection of Android Malware using DREBIN, MALGENOME and the SMOTE version of the two

datasets on selected metrics. This study is conducted using WEKA Tool and the classification algorithms used are

Bayesian Based classifiers [Naïve Bayes (NB) and Bayesian Network(BN)], Function-Based classifiers [Support Vector

Machine (SVM) and Logistic Regression (LR)], Rule-Based classifiers [Classification rule (CR) and Decision Table

(Dtab)] and the Tree-Based classifiers [Recursive Tree (RT), Decision Tree (DT) and Classification and Regression Tree

(CART)].

The remaining part of this paper is as presented herewith: A basic Review of related works is presented in Section II

while the methods used in collecting the Android Malware datasets, analyzing the performance of the machine learning

algorithms on the detection of the malware and evaluating the performance of the Machine Learning algorithm is

discussed in Section III. In section IV, the result of the evaluation is presented and section V discusses the conclusion of

this work.

RELATED WORK

This section presents a review of related works conducted on Android malware detection approaches.

Due to its widespread use, Android is susceptible to a variety of harmful attacks [8]. Therefore, in order to mitigate

this risk, malware detection is necessary. [4] studied how to use ensemble learning to detect Android malware more

accurately. An ensemble model was created by combining the predictions of the Random Forest, Support Vector Machine,

and K Nearest Neighbor algorithms as basis models with a majority vote combination function. With a sensitivity of

97.9% and a classification accuracy of 98.00%, Random Forest was found to have the highest performance among all

classifier-based algorithms in the study. The ensemble model's classification accuracy was 98.16%, while its sensitivity

was 98.16%. The study found that the most optimal detection model was the ensemble learner. [6] suggested a malware

detection technique that concentrates on the URLs that the programs on the device visit. Their technique makes use of a

multi-view neural network, which generates several input views and assigns soft attention weights to various input

features. The views don't require complex feature engineering, preserving the semantic information from inputs for

classification. The results of the experiment shown that the method was able to detect potentially harmful programs in

the third-party app market as well as malware that was found in various months of a given year. It also achieved timely

and robust malware detection.

While they employ distinct approaches, [4] and [6] both suggested strategies for identifying Android malware. [4]

optimized Android malware detection by ensemble learning. In order to generate an ensemble model, the study created

base models from three separate algorithms and aggregated their predictions using a majority vote combination function.

High sensitivity and classification accuracy were attained by their method. Conversely, [6] suggested a technique that

concentrates on the URLs that the programs on the device visit. The technique distributes soft attention weights to focus

on distinct input aspects by using a multi-view neural network to automatically generate numerous perspectives of the

inputs. The views preserve the semantic information from inputs for classification without requiring complicated feature

engineering. The method also achieved robust and timely malware detection.

[6] have proposed a multi-view neural network approach that may be used to generate multiple views of the inputs

(e.g., URLs visited by the applications on the device), and then combine the predictions of multiple base models created

from different algorithms using an ensemble learning approach akin to [4]. It is important to remember, nevertheless, that

in order to compare the efficacy of this strategy to the individual techniques put out by Christiana et al. (2020) and Wang

et al. (2020), it would need to be evaluated experimentally.

There are certain shortcomings in the research done by [6] and [4]. [4] did not investigate different classifiers or

feature selection strategies; instead, they solely employed three base classifiers to build the ensemble model.

Consequently, it's possible that the findings cannot be applied to other feature selection techniques or classifiers.

Furthermore, the study's dataset was neither particularly vast or diversified, which would limit how broadly the findings

can be applied to other datasets with other features. Last but not least, there is no assessment of the ensemble model's

performance in identifying zero-day or previously unidentified malware, which is a difficult undertaking in the realm of

malware detection. However, [6] suggested a technique that might not be useful for identifying malware that doesn't rely

on network connectivity or URLs that the device's applications visit. Since the study's dataset was small, it is uncertain

Afolabi-Yusuf et al. │ International Journal of Software Engineering and Computer Systems │ Vol. 9, Issue 2 (2023)

142 journal.ump.edu.my/ijsecs ◄

how well the strategy would work with larger and more varied datasets. The neural network used in the suggested method

has a lot of parameters, thus in order to get the best results, it could need a lot of processing power and training data.

Users' privacy and file integrity are seriously threatened by malware [9]. In order to identify and halt dangerous

behaviors, [9] introduce MADAM, a host-based malware detection system that correlates and analyzes features at four

levels. Using two parallel classifiers and a behavioral signature-based detector, MADAM is demonstrated to prevent over

96% of malicious apps from three big datasets. This method's drawback is that it depends on behavioral signatures, which

might not be able to detect every kind of malware.

But [10] unveiled SIGPID, a malware detection system that distinguishes between safe and dangerous programs based

on permission usage analysis. Using machine learning-based classification techniques, SIGPID determines which

permissions are most crucial for effectively distinguishing between the two. With 93.62% of the malware in the dataset

and 91.4% of unknown or novel malware samples detected, the study demonstrates that SIGPID is more effective than

alternative methods. This method's drawback is that it might miss malware that doesn't employ any dubious permissions.

Online Android Malware Detection (ONAMD), another method for Android malware detection proposed by [1],

makes use of both static and dynamic features. Applications are categorized as benign or dangerous by ONAMD using

SVM and Random Forest algorithms once it extracts the requested permissions. When compared to earlier deployments

to Androguard, the method achieves a higher recall rate and is demonstrated to be efficient, consuming half the time. This

method's drawback is that malware that employs obfuscation to avoid detection can slip through the cracks.

In general, the methods for Android malware detection proposed by [9], [10] and [1] yield differing degrees of

performance. While SIGPID achieves excellent precision, recall, accuracy, and f-measure while requiring less analysis

times, MADAM has a high detection rate and a low false alarm rate; ONAMD, on the other hand, is efficient and

outperforms Androguard in terms of recall rate. All approaches have drawbacks, though, like SIGPID's dependency on

permission usage, MADAM's reliance on behavioral signatures, and ONAMD's use of a restricted feature set.

[3] conducted an analysis of crucial prerequisites essential for the deployment of Android malware detection systems

in real-world scenarios. The examination delineated requirements that entail testing candidate approaches against a

continually evolving stream of data. The study identified the design and implementation of an ensemble approach for

automated Android malware detection that aligns with real-world demands. The Atomic Naive Bayes classifiers utilized

as inputs for the Support Vector Machine ensemble are based on distinct APK feature categories, ensuring rapid

processing and enhanced reliability against potential attackers through diversification. The research encompasses the

initial publicly accessible outcomes produced against evolving data streams, incorporating nearly 1 million samples, with

a model trained on an extensive sample set comprising 120,000 samples.

The technique known as DREBIN was presented by [11] as a means of identifying Android malware that functions

directly on the smartphone. It gathers application features via a wide static analysis and embeds them in a shared vector

space to find patterns suggestive of malware. DREBIN surpassed other equivalent methods in an examination of over

123,000 apps and 5,500 malware samples, detecting 94% of malware with few false alarms. The technique reveals

pertinent characteristics of the malware that has been found and offers reasons for each detection. DREBIN can be used

to examine downloaded applications right on the device because it takes an average of 10 seconds to assess an application

on common smartphones.

In conclusion, Android is vulnerable to malicious attacks and the detection of malware is crucial. Different approaches

have been proposed for Android malware detection, including ensemble learning, multi-view neural networks, host-based

malware detection, and permission-based analysis. These methods have varying levels of effectiveness and limitations.

Ensemble learning and multi-view neural networks show promising results, but further evaluation is needed to determine

their effectiveness compared to other methods. Host-based malware detection and permission-based analysis also have

their strengths and limitations. To effectively detect Android malware, it may be necessary to combine different

approaches and techniques to enhance the accuracy and effectiveness of the detection system.

It is deduced from the review of related works that several approaches have been developed for the detection of

Android malware such as MADAM, SIGPID, and ONAMD using existing and new datasets such as the NSL-KDD,

KDDCup1999, and DREBIN among other datasets. These approaches enabled the use of machine learning approaches

such as the Support Vector Machine SVM, Rough Set Theory, Random Forest, and K-Nearest Neighbor for enhancing

the detection. The performance of the approaches was evaluated based on some metrics such as the False Positive Rate,

Accuracy, and Average Cost of Misclassification and the results reported give high performance in terms of the metrics.

Afolabi-Yusuf et al. │ International Journal of Software Engineering and Computer Systems │ Vol. 9, Issue 2 (2023)

143 journal.ump.edu.my/ijsecs ◄

METHODOLOGIES

The performance analysis and evaluation approach is based on data collection, data pre-processing, SMOTE data

balancing, feature classification, model development, and model performance evaluation using selected data analysis

metrics and Performance Comparison as presented in Figure 1.

Figure 1: The Study Experiment Framework and Approach

Dataset Collection and Description

The first process in this study as presented in Figure 1 is data collection. The MALGENOME and DREBIN datasets

used in this study were obtained from the UCI repository

DREBIN dataset consists of approximately 123,453 Android applications (APK files) that were collected from various

sources such as the Google Play Store, third-party app stores, and online repositories. Each APK file in the dataset is

labelled as either benign or malicious. The malicious applications were collected from different malware databases and

websites, and they were manually analyzed by security experts to confirm their malicious behaviour. The benign

applications were collected from various sources, and they do not contain any malicious behaviour. The dataset provides

various information about each application such as permissions, API calls, intents, and other features that can be used to

analyze and classify them. The dataset also includes metadata such as the application name, version, and description, as

well as the SHA256 hash value of each APK file for easy identification and tracking.

The DREBIN dataset has been widely used by researchers to develop and evaluate different Android malware

detection methods.

MALGENOME is a publicly available dataset of Android malware, which was released in 2017. It contains 1,260

malware samples and 1,200 benign applications (i.e., non-malicious apps) that were collected between 2010 and 2012

from various sources, including the android market (now known as google play store), third-party markets, and various

other websites. Each android app in the dataset is provided in the form of an APK (Android Package) file, which contains

the compiled code and resources of the app. The dataset also includes a set of permissions that are requested by each app,

along with information about the package name, version, and file size.

Overall, the MALGENOME dataset is a valuable resource for the research community

Afolabi-Yusuf et al. │ International Journal of Software Engineering and Computer Systems │ Vol. 9, Issue 2 (2023)

144 journal.ump.edu.my/ijsecs ◄

Summarily, the Malgenome dataset has 1260 applications grouped into 49 malware families and the Drebin dataset

has a total of 5560 applications grouped into 179 malware families.

Data Pre-Processing
The data pre-processing was conducted by removing the noisy and inconsistent data from the dataset to extract a

suitable format required for the detection of Android malware using selected classification algorithms. Then, the values

in the input features of the datasets were scaled using a min-max scalar to improve the performances of the proposed

learning algorithms. Also, the SMOTE version of the dataset was carried out to remove class imbalance.

Thus, two sets of each dataset were used in this study: the cleaned raw data and the SMOTE data.

The SMOTE’s flow of control is attached herewith in Figure 2:

Figure 2: Synthetic Minority Oversampling Technique Flowchart (Sopiyan et al., 2022)

Feature Classification and Model Development
The k-fold cross-validation model was developed using WEKA. Attached below is the pseudocode used for each of

the datasets.

The pseudocode is as follows:

1. Start

2. Load the Dataset

3. Choose Classifier

4. Set Cross Validation Options to 10 folds

5. Run Cross Validation

6. Examine various evaluation metrics (accuracy, precision, recall, etc.) in the output

7. Repeat for Each Classifier

8. Save the cross-validation results for further analysis.

9. End.

In the process of developing a k-fold cross-validation model using Weka, the initial step involves loading the dataset

within the Weka Explorer interface. Subsequently, the choice of a classifier is made from options such as NaiveBayes,

J48 for Decision Trees, or SMO for SVM, and specific configurations are set using the "More options..." button. The

subsequent step involves configuring k-fold cross-validation by navigating to the designated tab and specifying the

desired number of folds, commonly set to 10. Initiating the model evaluation, the user clicks the "Start" button, prompting

Weka to execute the k-fold cross-validation process. Following completion, the results are thoroughly analyzed,

encompassing metrics like accuracy, precision, and recall, with additional visualizations and summary statistics provided

by Weka for comprehensive assessment. This iterative process was repeated for all the classifiers used and the cross-

validation results are saved for further examination or comparison.

Afolabi-Yusuf et al. │ International Journal of Software Engineering and Computer Systems │ Vol. 9, Issue 2 (2023)

145 journal.ump.edu.my/ijsecs ◄

Performance Evaluation
The effect of class imbalance on Machine Learning classification algorithms used in Android malware detection and

its SMOTE version was evaluated and analyzed using WEKA tools. Several evaluation metrics were used for the study

and are thus described herewith:

i. Accuracy: Accuracy is a fundamental metric used in classification to assess the overall correctness of a model's

predictions across all classes. It is the ratio of correctly predicted instances (both true positives and true negatives) to the

total number of instances in the dataset. Mathematically, accuracy is calculated using the formula:

(1)

ii. Area Under the Curve (AUC) is a metric commonly used in evaluating the performance of binary classification

models, particularly in the context of receiver operating characteristic (ROC) curves. ROC curves illustrate the trade-off

between a true positive rate (sensitivity) and a false positive rate (1 - specificity) at various thresholds.

AUC specifically quantifies the area under the ROC curve, providing a single value that represents the model's ability

to distinguish between positive and negative instances across different threshold settings. A higher AUC indicates better

discrimination, with a perfect classifier achieving an AUC of 1.

The AUC value ranges from 0 to 1, where 0.5 suggests that the model performs no better than random chance. AUC

is advantageous because it is threshold-independent, meaning it considers the model's overall ability to discriminate

without being sensitive to a specific decision threshold.

iii. Fmeasure: F-measure, also known as the F1 score, is a metric used to evaluate the performance of a classification

model, particularly in the context of binary classification. It combines precision and recall into a single value, providing

a balanced assessment of a model's effectiveness. The F-measure is the harmonic mean of precision and recall, giving

equal weight to both. It is calculated using the formula in Equation 2:

(2)

The F-measure ranges from 0 to 1, with 1 indicating perfect precision and recall. It's a valuable metric in scenarios

where achieving a balance between false positives and false negatives is crucial, such as medical diagnoses or spam

detection.

iv. Precision: Precision is a metric used in binary classification to evaluate the accuracy of positive predictions made

by a model. It is the ratio of true positive predictions to the total predicted positive instances, indicating the proportion of

correctly identified positive cases among all instances predicted as positive.

In simpler terms, precision answers the question: "of all the instances predicted as positive, how many were actually

positive?" A higher precision value indicates fewer false positives and, therefore, a more accurate positive prediction by

the model. Precision is especially important when the cost of false positives is high.

Mathematically, precision is calculated using the formula in equation 3:

(3)

v. Recall: Recall, also known as sensitivity or true positive rate, is a metric used in binary classification to evaluate

a model's ability to correctly identify all instances of a positive class. It is the ratio of true positive predictions to the total

actual positive instances.

Afolabi-Yusuf et al. │ International Journal of Software Engineering and Computer Systems │ Vol. 9, Issue 2 (2023)

146 journal.ump.edu.my/ijsecs ◄

laMathematically, recall is calculated using the formula in equation 4:

 (4)

In simpler terms, recall answers the question: "Of all the actual positive instances, how many were correctly identified

by the model?" A higher recall value indicates that the model is capturing a larger proportion of the actual positive

instances. Recall is particularly important in scenarios where missing positive instances (false negatives) is a critical error,

even if it results in more false positives.

vi. False Positive Rate (FPR): is a key metric in binary classification that measures the proportion of actual negative

instances that are incorrectly classified as positive by a model, out of the total number of true negatives and false positives.

FPR is calculated using the formula in equation 5:

(5)

In essence, FPR quantifies the model's tendency to produce false alarms or Type I errors, indicating the rate at which

negative instances are mistakenly identified as positive.

RESULTS DISCUSSION

The Android malware dataset collected was pre-processed and cleaned. Then the dataset’s features were selected for

the model-building stage which involves the detection of malware using the selected classification algorithms. The

performance of each of the algorithm’s models is evaluated using selected metrics and the results are analyzed and

presented in Table 1, 2, 3 and 4 attached.

The experimental analysis results are discussed in this section.

To conduct the performance comparison of the different classification algorithms on the processed datasets and

SMOTE datasets, Bayesian-based (NB & BN), Function-based (SVM & LR), Rule-based (Dtab & RT), and Tree-based

(DT & CART) classifiers were used. The classifiers were used separately for the classification of the features used for

the training of the K-fold model. The model performance is then evaluated using selected metrics such as accuracy, AUC,

fmeasure, precision, recall, TPR and FPR.

The performance evaluation outcomes for each classifier are detailed in Tables 1, 2, 3, and 4, organized according to

the specific datasets in use. These tables comprehensively present the classifier performance across various metrics,

encompassing accuracy, precision, f-measure, area under the curve, true positive, recall, and false positive rate.

Table 1. Performance Analysis of Malgenome Dataset

Classifiers Accuracy AUC F-measure Precision Recall TPR FPR

NB 92.58 0.992 0.927 0.935 0.926 0.926 0.048 Bayesian-based

Classifiers
BN 92.73 0.992 0.929 0.937 0.927 0.927 0.046

SVM 97.81 0.969 0.978 0.978 0.978 0.978 0.04 Function-based

Classifiers
LR 96.87 0.984 0.969 0.969 0.969 0.969 0.028

CR 75.44 0.809 0.761 0.843 0.754 0.754 0.139

Rule-based Classifiers
Dtab 93.81 0.977 0.938 0.939 0.938 0.938 0.066

RT 97.24 0.97 0.972 0.972 0.972 0.972 0.033

Tree-based Classifier
DT 98.21 0.983 0.982 0.982 0.982 0.982 0.022

CART 98.21 0.987 0.982 0.982 0.982 0.982 0.023

Table 1 presents the performance analysis of selected machine learning classification algorithms on the Malgenome

Dataset based on selected metrics.

The performance of the classifiers was evaluated on distinct metrics, showcasing the effectiveness of each algorithm

on the Malgenome datasets. In the Bayesian-based category, Naïve Bayes (NB) and Bayesian Network (BN)

Afolabi-Yusuf et al. │ International Journal of Software Engineering and Computer Systems │ Vol. 9, Issue 2 (2023)

147 journal.ump.edu.my/ijsecs ◄

demonstrated robust accuracy, AUC, and precision, with NB achieving 92.58% accuracy and BN slightly surpassing at

92.73%. Function-based classifiers, including Support Vector Machine (SVM) and Logistic Regression (LR), exhibited

high accuracy of 97.81% and 96.87%, respectively, emphasizing their efficacy in classification tasks. Rule-based

classifiers, represented by Classification Rule (CR), Decision Table (Dtab), and Recursive Tree (RT), displayed varying

performance, with CR achieving 75.44% accuracy, Dtab demonstrating 93.81%, and RT showcasing 97.24%. Lastly,

Tree-based classifiers, encompassing Decision Tree (DT) and Classification and Regression Tree (CART), excelled with

98.21% accuracy, reinforcing their reliability in classification scenarios.

These results could be construed as evidence that function-based and tree-based classifiers outperformed others in

terms of accuracy. Their ability to achieve higher accuracy rates across the evaluated metrics, including AUC, F-measure,

Precision, Recall, TPR, and FPR, suggests that these classifiers are effective.

In summary, the evidence from Table 1 shows that function-based and tree-based classifiers showcased superior

performance in the classification task compared to Bayesian-based and rule-based classifiers.

Table 2: Performance Analysis of DREBIN Dataset

Classifiers Accuracy AUC F-measure Precision Recall TPR FPR

NB 82.42 0.928 0.827 0.861 0.824 0.824 0.125 Bayesian-based

Classifiers
BN 82.78 0.928 0.831 0.862 0.828 0.828 0.124

SVM 97.00 0.964 0.970 0.970 0.970 0.970 0.043 Function-based

Classifiers
LR 97.81 0.995 0.978 0.978 0.978 0.978 0.027

CR 75.55 0.798 0.758 0.833 0.756 0.756 0.159

Rule-based Classifiers
Dtab 92.20 0.976 0.922 0.924 0.922 0.922 0.077

RT 97.30 0.972 0.973 0.973 0.973 0.973 0.030

Tree-based Classifier
DT 97.33 0.975 0.973 0.973 0.973 0.973 0.032

CART 97.28 0.98 0.973 0.973 0.973 0.973 0.033

Table 2 presents the performance analysis of selected Machine Learning classification algorithms on the Drebin

dataset based on selected metrics.

In Table 2, the performance of the classifiers on the evaluated metrics is demonstrated. The Bayesian-based classifiers,

Naïve Bayes (NB) and Bayesian Network (BN) both exhibited commendable accuracy, AUC, and precision, with NB

achieving 82.42% accuracy and BN slightly exceeding 82.78%. In the function-based category, Support Vector Machine

(SVM) and Logistic Regression (LR) showcased robust performance, particularly LR, which achieved the highest

accuracy at 97.81% and an impressive AUC of 0.995. Rule-based classifiers, represented by Classification Rule (CR),

Decision Table (Dtab), and Recursive Tree (RT), displayed varying performance, with CR achieving 75.55% accuracy,

Dtab demonstrating 92.20%, and RT showcasing 97.30%. Within the tree-based classifiers, both Decision Tree (DT) and

Classification and Regression Tree (CART) demonstrated strong accuracy at 97.33% and 97.28%, respectively. These

results provide valuable insights into the comparative strengths of each classifier, emphasizing the high performance of

function-based and tree-based classifiers in this specific dataset. It is thus, evident in Table 2 that Function-Based

Classifiers outperform other Classifiers in terms of Accuracy.

Table 3: Performance Analysis of SMOTE Version of Malgenome Dataset

Classifiers Accuracy AUC F-measure Precision Recall TPR FPR

NB 95.26 0.994 0.953 0.954 0.954 0.953 0.047 Bayesian-based

Classifiers
BN 94.5 0.994 0.945 0.948 0.945 0.945 0.055

SVM 98.24 0.982 0.982 0.983 0.982 0.982 0.018 Function-based

Classifiers
LR 99.33 0.998 0.993 0.993 0.993 0.993 0.007

CR 81.42 0.809 0.809 0.857 0.814 0.814 0.185

Rule-based

Classifiers
Dtab 93.64 0.986 0.936 0.937 0.936 0.936 0.063

RT 97.9 0.979 0.979 0.979 0.979 0.979 0.021

Tree-based Classifier
DT 98.06 0.983 0.981 0.981 0.981 0.981 0.019

CART 97.63 0.98 0.976 0.976 0.976 0.976 0.024

Afolabi-Yusuf et al. │ International Journal of Software Engineering and Computer Systems │ Vol. 9, Issue 2 (2023)

148 journal.ump.edu.my/ijsecs ◄

Table 3 presents the performance analysis of selected machine learning classification algorithms on the SMOTE

version of the Malgenome dataset based on selected metrics.

In Table 3, the classification performance of the classifiers is showcased. The bayesian-based category, Naïve Bayes

(NB) and Bayesian Network (BN) demonstrated strong accuracy, AUC, and precision, with NB achieving 95.26%

accuracy and BN closely following at 94.5%. Function-based classifiers, including Support Vector Machine (SVM) and

Logistic Regression (LR), exhibited exceptional accuracy, particularly LR, which reached an impressive 99.33% accuracy

and an AUC of 0.998. Rule-based classifiers, represented by Classification Rule (CR), Decision Table (Dtab), and

Recursive Tree (RT), displayed varying performance, with CR achieving 81.42% accuracy, Dtab demonstrating 93.64%,

and RT showcasing 97.9%. Among the tree-based classifiers, both Decision Tree (DT) and Classification and Regression

Tree (CART) achieved high accuracy at 98.06% and 97.63%, respectively.

These results underscore the robust performance of function-based and tree-based classifiers across the evaluated

metrics in this specific SMOTE version of the Malgenome dataset.

Table 4: Performance Analysis of SMOTE Version of Drebin Dataset

Classifiers Accuracy AUC F-measure Precision Recall TPR FPR

NB 85.61 0.945 0.855 0.869 0.856 0.856 0.144

Bayesian-based

Classifiers
BN 85.58 0.942 0.855 0.869 0.856 0.856 0.144

SVM 97.24 0.972 0.972 0.973 0.972 0.972 0.028

Function-based

Classifiers
LR 98.10 0.996 0.981 0.981 0.981 0.981 0.019

CR 80.10 0.798 0.795 0.840 0.801 0.801 0.199

Rule-based Classifiers
Dtab 92.41 0.976 0.924 0.924 0.924 0.924 0.076

RT 97.74 0.978 0.977 0.977 0.977 0.977 0.023

Tree-based Classifier DT 97.77 0.982 0.978 0.978 0.978 0.978 0.022

CART 97.65 0.984 0.976 0.977 0.976 0.960 0.024

Table 4 presents the performance analysis of selected Machine Learning classification algorithms on the SMOTE

version of the Drebin dataset based on selected metrics.

In Table 4, the performance of the classifiers is detailed. The Bayesian-based classifiers, Naïve Bayes (NB) and

Bayesian Network (BN) exhibited similar accuracy and AUC, both achieving around 85.6% accuracy. Function-based

classifiers, represented by Support Vector Machine (SVM) and Logistic Regression (LR), demonstrated high accuracy,

particularly LR, which achieved 98.1% accuracy and an AUC of 0.996. Rule-based classifiers, including Classification

Rule (CR), Decision Table (Dtab), and Recursive Tree (RT), displayed varying performance, with CR achieving 80.1%

accuracy, Dtab demonstrating 92.41%, and RT showcasing 97.74%. Among the tree-based classifiers, both Decision Tree

(DT) and Classification and Regression Tree (CART) achieved accuracy above 97.6%. These results underscore the

robust performance of function-based and tree-based classifiers across the evaluated metrics in this specific SMOTE

version of the Drebin dataset.

In all of the measures used for this evaluation, the function-based classifier outperforms all other classifiers as depicted

in Table 1, 2, 3 & 4.

CONCLUSION

The performance of Bayesian, Function, Rule, and Tree-based algorithms on publicly accessible benchmark datasets

(MALGENOME and DREBIN) is explored in this work, and the SMOTE version of the datasets is created to enhance

the evaluation. The four datasets were pre-processed in the same way and used to train and evaluate the specified

supervised learning algorithms. In the performance evaluation, parameters such as accuracy, precision, f-measure, the

area under cover, true positive, recall, and false positive rate were employed. According to the study, both tree-based

classifiers and function-based classifier algorithms have the most promising results in all of the metrics utilized for

assessment, even though the function-based classifier is the most outstanding method for the two datasets. The study also

concluded that depending on two datasets used for assessment, any of the function-based classifier algorithms can

efficiently detect and identify malicious apps on android mobile devices.

ACKNOWLEDGEMENT

The author would like to thank Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA) for accepting this article

Afolabi-Yusuf et al. │ International Journal of Software Engineering and Computer Systems │ Vol. 9, Issue 2 (2023)

149 journal.ump.edu.my/ijsecs ◄

REFERENCES

[1] R. Riasat, M. Sakeena, A. H. Sadiq, and Y. J. Wang, “Onamd: An Online Android Malware Detection

Approach,” Proc. - Int. Conf. Mach. Learn. Cybern., vol. 1, no. July, pp. 190–196, 2018, doi:

10.1109/ICMLC.2018.8526997.

[2] O. C. Abikoye, U. A. Ojo, J. B. Awotunde, and R. O. Ogundokun, “A safe and secured iris template

using steganography and cryptography,” pp. 23483–23506, 2020.

[3] P. Palumbo, L. Sayfullina, D. Komashinskiy, E. Eirola, and J. Karhunen, “A pragmatic android

malware detection procedure,” Comput. Secur., vol. 70, pp. 689–701, 2017, doi:

10.1016/j.cose.2017.07.013.

[4] A. O. Christiana, B. A. Gyunka, and A. N. Oluwatobi, “Optimizing android malware detection via

ensemble learning,” Int. J. Interact. Mob. Technol., vol. 14, no. 9, pp. 61–78, 2020, doi:

10.3991/ijim.v14i09.11548.

[5] O. C. Abikoye and B. Gyunka, “The Threat of Split-Personality Android Malware on Developing

Economy School of Computing , Engineering & Physical Sciences Computing and Information

Systems Journal Edited by Abel Usoro,” no. February, 2018.

[6] S. Wang et al., “Deep and broad URL feature mining for android malware detection,” Inf. Sci. (Ny).,

vol. 513, pp. 600–613, 2020, doi: 10.1016/j.ins.2019.11.008.

[7] A. Priya, S. Garg, and N. P. Tigga, “Predicting Anxiety, Depression and Stress in Modern Life using

Machine Learning Algorithms,” Procedia Comput. Sci., vol. 167, no. September, pp. 1258–1267, 2020,

doi: 10.1016/j.procs.2020.03.442.

[8] R. Singh and A. Gehlot, “Review on Intrusion Detection in Edge Based IOT,” 2022 Int. Interdiscip.

Humanit. Conf. Sustain., pp. 788–793, 2022, doi: 10.1109/IIHC55949.2022.10060587.

[9] A. Saracino, D. Sgandurra, G. Dini, and F. Martinelli, “MADAM: Effective and Efficient Behavior-

based Android Malware Detection and Prevention,” IEEE Trans. Dependable Secur. Comput., vol. 15,

no. 1, pp. 83–97, 2018, doi: 10.1109/TDSC.2016.2536605.

[10] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-An, and H. Ye, “Significant Permission Identification for

Machine-Learning-Based Android Malware Detection,” IEEE Trans. Ind. Informatics, vol. 14, no. 7,

pp. 3216–3225, 2018, doi: 10.1109/TII.2017.2789219.

[11] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and K. Rieck, “Drebin: Effective and Explainable

Detection of Android Malware in Your Pocket,” no. February, pp. 23–26, 2014, doi:

10.14722/ndss.2014.23247.

