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ABSTRACT - Intelligent system-assisted UAV-based observer platforms could achieve 
various complex observing tasks over traditional methods. However, due to the complexity of 
their algorithms, UAV’s first-flight route is still challenging to deploy quickly and minimise 
energy consumption in an emergency. Another challenge is that the UAV-based observer 
platform severely requires an efficient classifier with high processing speed for higher 
observing efficiency. As the first research objective, this paper artificially evaluated seven UAV 
first-flight routes by simulation and real-world flighting environments to identify one proper first-
flight route that could be deployed quickly. Secondly, a new integrated UAV-based observer 
platform, including a new three-colour channel-based online fuzzy classifier, is proposed for 
quickly detecting abnormal objectives in practical observing tasks. Simulation and real-world 
flighting experiments identified that the square helix with smooth turn consumes the most 
miniature battery and can cover the observing area among seven different first-flight routes. 
The results also proved the proposed integrated observer platform’s feasibility in detecting 
abnormal objectives while UAVs fly in a real-time, real-world environment. Most importantly, 
the proposed observer platform has good interpretability because it employs an actual image 
stream to train its classifier during flighting. 
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1.0 INTRODUCTION 

Before the invention of the Unmanned Aerial Vehicle (UAV), also named the drone [1], helicopters were tools 

primarily used for terrain surveillance. A licensed pilot can only operate it, and its flight has high operation and 

manufacturing costs. Primarily, it is unsafe in bad weather conditions. Compared to helicopters, UAVs are much cheaper 

to manufacture and operate than helicopters. Besides, it is easy to use and develop [2]. One significant advantage is that 

it can fly to indeterminate hazardous areas for ground inspections, meaning no personal safety is at risk [3]. Therefore, 

the invention of UAVs as an alternative to helicopters has brought considerable gains to the market. 

Unlike helicopters and other aircraft that require much fuel to sustain long flights, UAVs are primarily designed for 

efficiency and convenience. In today’s intelligent industry 4.0 age [4], the UAV can be significantly applied in big smart 

cities [5] to protect city dweller health from some diseases [6]. Therefore, the method combining the efficient UAV and 

intelligent system abstracts the focus of the research. On the one hand, energy efficiency has always been a critical 

industry concern. Many reasons limit the energy efficiency of a UAV [7], such as external environmental disturbances 

(weather and wind) and internal issues (UAV’s weight, payload, battery type, and flight speed). Understandably, this 

problem is exacerbated when flying first in unknown and unobstructed areas. Therefore, determining a practical and easy-

to-control first flight route is crucial to observing unknown barrier-free areas [8]. On the other hand, intelligent system-

assisted UAV not only has better recognition ability to abnormal objectives than people, but also intelligent UAV could 

be deployed for more complex working environment, that also means deploying intelligent systems on UAVs is one 

indispensable topic in today’s intelligent era. In sum, this paper will achieve the following two objectives: 

1) To identify one optimal first flight route for UAV, 

2) To propose an intelligent UAV platform for detecting abnormal objectives. 

This research will first analyse and determine a practical UAV first-flight route that can be easily used for the first-

flight mission in barrier-free areas with minimal energy and maximise area coverage. Moreover, this paper will propose 

a new powerful online observer platform by employing a unique online fuzzy classifier based on one EDA (Empirical 

Data Analytics) technique [9, 10], allowing the observer platform to run in real time. In sum, this paper’s contribution 

can be summarised in the following three: 

1) Proposing an integrated UAV-based intelligent observer platform, 

2) Determining one optimised first flight route while minimising UAV energy consumption, 

3) Proposing an EDA-based online fuzzy classifier to capture abnormal objectives. 
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The rest of this paper is organised as follows: Section II (RELATED WORKS) will review some critical references 

as the fundamentals of developing the proposed integrated UAV-based Observer Platform. Section III (METHODS AND 

MATERIAL) presents the overall methodology. Section III (RESULTS AND DISCUSSION) presents the experimental 

results, and Section IV (CONCLUSIONS) will summarise this research. 

2.0 RELATED WORKS 

First, to deal with the UAV flight routes problem, the research [11] proposed an energy-efficient route planning 

algorithm for UAVs, and they noticed that filtering and choosing the best route to deploy to that specific area is one 

problem. The authors [12] determined the optimum UAV flight route for disaster areas. They categorised two disaster 

areas: distributed and centralised areas. They calculated energy utilisation and paired the optimum UAV flight route [13], 

as Figures 1 and 2 showed. Their results pointed to using quad-copters UAVs rather than winged drones because they are 

more manoeuvrable and more accessible to deploy. Depending on their flight routes, O-path and Rectangular-path will 

cover the edges of the area but leave a massive gap within the area, while the Zig-Zag path and S-path cover most of the 

area to reduce the gaps, but with O-path Compared to Rectangle-path, Zig-Zag and S-path are not efficient in execution 

time. There is a problem with the steering angle of the Zig-Zag path. The larger the turning angle, the more pronounced 

the gap between the tracks. In contrast, the smaller the turning angle, the longer the flight time. 

Table 1 summarises the above routes. For distributed area patterns (floods, hurricanes, and landslides), UAVs need 

longer flight times to scan the area. Therefore, the S-path is the optimal flight path for distributed mode, as the UAV can 

cover most of the area without gaps. For concentrated area patterns, such as earthquakes, volcanic eruptions, tsunamis 

and tornadoes, the UAV needs a shorter flight time to scan the area. Therefore, the O-path is the best flight path, and the 

rectangular path is the next best, followed by the Zig-zag path. 

In addition, many studies [8, 14-16] have proposed many high-level optimised UAV flight routes while considering 

the minimisation of battery consumption. However, the process by which the studies described above determine an 

optimal route means they do not apply to drones with uncertain geographic conditions on the first flight missions. There 

is not enough time for this kind of preparation in some emergencies. Identifying a default first-flight route to minimise 

energy consumption while providing optimal coverage is critical. 

On the other hand, many other conditions (natural and experimental) affecting flight status cannot be ignored [17, 18]. 

Therefore, limiting external influencing factors as much as possible to ensure a more accurate objective evaluation of 

research is a critical evaluation consideration [19]. Considering the UAV evaluation, the research [20] measured the 

energy consumption of the UB-ANC UAV flight, which measures when: 

1) The straight-line distance is 20m, 40m, 60m, and the speed is 5m/s, 

2) The straight-line distance is constant at 40m, and the speed is at 5m/s and 10m/s, 

3) For rotation angles of 0°, 45°, 90°, 135°, 180°, the distance is constant 40m and the speed is constant 5m/s. 

The comparison of the total energy results for distance, speed, and turn angle was summarised in [13]. Its results show 

that the greater the distance, the higher the energy consumption. The higher the speed, the less energy is consumed. With 

the increasing angle, the steering angle makes the drone consume less energy to the maximum. 

Table 1. The Integrated UAV-based Observer Platform 

 Use Case Damage Pattern Flight Duration Suggested Flight Pattern 

 Flood Distributed Long S-Path 

 Hurricane Distributed Long S-Path 

 Landslide Distributed Long S-Path 

 Earthquake Centralised Short 1st) O-, 2nd) Rectangular-, and 3rd) Zigzag-path 

 
Volcanic 

eruption 
Centralised Short 1st) O-, 2nd) Rectangular-, and 3rd) Zigzag-path 

 Tsunami Centralised Short 1st) O-, 2nd) Rectangular-, and 3rd) Zigzag-path 

 Tornado Centralised Short 1st) O-, 2nd) Rectangular-, and 3rd) Zigzag-path 

 

  
Figure 1. O-Path and Rectangular-Path Figure 2. Zigzag-Path and S-Path 
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The research [20] also identified some factors affecting the power consumption of UAVs and investigated their power 

consumption when performing horizontal movement, vertical movement and hovering. Wind and temperature are 

External factors that affect a UAV’s power consumption. Different wind directions and speeds can benefit or harm the 

UAV, and temperature conditions can affect battery consumption and capacity. The intrinsic factors that affect the energy 

consumption of UAVs are the flight speed and payload. UAVs have three important flight modes: hover, horizontal, and 

vertical movement. The three kinds of motions have different energy consumption for UAVs. In addition, the weight of 

the UAV itself, as well as the weight of cameras, sensors, and other accessories, are also constraints on the energy 

consumption of the UAV. 

Second, the classifier is one indispensable tool for developing a detecting system [21, 22]. The fuzzy classifier is 

popular among various classifiers because it can interpret a trained model [23]. It is worth noting that various EDA-based 

fuzzy classifiers were proposed for real-time data streams and complex problems [24, 25]. Their advantages make it 

possible to develop an efficient and intelligent system for the proposed integrated UAV-based observer platform. Its 

methodology details will be introduced in Section 3.4. 

3.0 METHODS AND MATERIAL 

The proposed integrated UAV-based observer platform contains four parts: UAV Controller, UAV, Operator, and 

Computer. Figure 3 shows their working collaboration. It is worth noting that the computer has deployed a new online 

fuzzy classifier to detect abnormal objectives in the picture stream. According to the two identified objectives in Section 

1, this methodology needs to identify the following five parts:  

1) UVA device, 

2) UAV First Flight Path, 

3) Observing zone, 

4) online fuzzy classifier, 

5) Evaluation method. 

3.1 UAV Device 

UAVs are divided into multi-rotor and fixed-wing. Multi-rotor UAVs fly with the fuselage as the centre and 4-8 rotors 

as powered propellers, while the design of fixed-wing UAVs is similar to that of aeroplanes, with the fuselage as the 

centre, two wings, and one powered propeller. Both multi-rotor and fixed-wing UAVs have their deployment 

specifications. Therefore, both have similarities, differences, and advantages and disadvantages. Multicopters have better 

manoeuvrability than fixed wings because they can take off and land vertically, while fixed wings require a larger takeoff 

and landing area. Multirotors are 7 to 10 times cheaper in exact specs and mass than fixed wings. The multi-rotor can be 

folded, and the fixed wing cannot be folded, making it more compact. It is easier to use than a fixed wing and has a high 

payload capacity. Hence, a multi-rotor UAV equipment, MAVIC AIR (Figure 4), is employed in this research. 

 
Figure 3. The Proposed Integrated UAV-based Observer Platform 

 
Figure 4. Multi-rotor Quadcopter and Fixed-wing UAVs 
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3.2 UAV First Flight Path 

As the reference [12] recommended setting the test area square or rectangular, this research also adopts the same 

strategy to restrict the test area boundary to a square. The flight path standard requires complete coverage of the entire 

test area during flight. Meanwhile, to ensure the first route’s diversity, simplicity, and practicality, as summarised in 

Figure 5, the seven UAV flight routes are extended based on the research [11], including circular helix, square helix, zig-

zag, S-path, smooth-turn square helix, smooth-turn zig-zag, and smooth-turn S-path. The expansion rules of these paths 

are based on practical experience and are more convenient to operate. This ensures that they can be easily deployed for 

emergency missions. Hence, the evaluating experiment will not limit their exact routes. Instead, it will be controlled by 

an operator’s direct control. 

3.3 Observing Zone 

Testing was conducted through Mission Planner simulations and actual experiments with drone equipment. Figure 6 

illustrates the entire testing procedure. First, create a test area for simulation and real experiments. It is recommended that 

the test area be square or rectangular. Then, plan possible UAV flight routes for the first flight mission. The flight route 

standard requires complete coverage of the entire test area. The Mission Planner software is used, and the actual 

experiment uses the DJI Mavic Air with the “Lychee” application.  

For the simulation, there was only one flight test for each of the seven flight paths. This is because the algorithms in 

Mission Planner are fixed, and there are no external disturbances in the simulation. Therefore, the results of UAV battery 

consumption are always accurate. In contrast, the actual test of the UAV unit will be tested 15 times on each route. This 

is because external disturbances such as wind and temperature can affect the accuracy of the UAV’s battery consumption. 

 
Figure 5. Extended Seven Routes for First Flight Route 

 
Figure 6. The Overall Procedure of Simulation and Real Experiment 
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Before conducting the research tests, experiment limitations need to be defined to avoid this research being too broad 

and unfocused. The limitation is as follows: 

1) DJI MAVIC AIR is used for a real experiment.  

2) Mission Planner is used for simulation.  

3) The testing area is set to 210099 𝑚2. 

4) The UAV’s flying height is 95m.  

5) The UAV’s flying speed is 5m/s. 

6) The UAV flying test amount for the real experiment is set to 15. 

7) The UAV flying test amount for simulation is set to 1. 

8) The UAV flying test time for the real experiment is set to 6 p.m. 

 

3.4 Online Fuzzy Classifier-based Observer 

EDA technology has been employed frequently to propose online fuzzy classifiers [24-26] because it enables the 

classifier to operate with high operational efficiency, especially when dealing with high-dimensional data problems. 

Based on the above advantages, this research will also employ EDA to propose one online classifier for a UAV to observe 

abnormal objectives. Proposing the EDA-based online fuzzy classifier follows the following five steps: 

 

STEP 1: Identifying Online Observer’s Structure 

First, the observer should support the online environment when a flying UAV is searching for abnormal objectives. 

That stresses that the observer has higher speed and efficiency in processing vision information. The EDA-based fuzzy 

classifier [24, 26, 27] has a natural advantage because it employs no-parameter data clouds to explain data distribution. 

Therefore, the observer core is the online fuzzy classifier.  

Considering the different information in the three-channel colours of an image, this research expands three T0FC as 

a parallel structure to process different colour channels simultaneously. Due to three parallel structures, a decision fusion 

maker is required to make the final decision (predicting label). 

Last but not least, the vision information is extremely high-dimensional [28], which means various unknown 

distributions or features will occur. Typical classifiers [19, 29] are weak to process because too many unknown 

distributions are hard to track, summarise, and explain. For such problems, data augmentation [30] techniques are 

necessary for the observer. However, original vision information (consisting of continuous images) contains a massive 

number of high-dimensional vectors. This paper proposes a chunk-searching method to alternate directly with objective 

detection techniques. This method can save serious computing resources. It is worth noting that employing this method 

has the belief of the robust online fuzzy classifier in processing high-dimensional information. 

At this moment, the final observer’s structure could be built, as summarised in Figure 7:  

1) flying UAV-based observer is recording video (a picture stream) in real time,  

2) a chunk-searching method will collect various smaller image chunks,  

3) these chunks will be sent to three classifiers in different colour channels,  

4) these chunks will be augmented and sent to the classifier again for training,  

5) once unknown chunks come with a requirement for a label, three local decision-makers will process them, 

the decision fusion maker will decide the final predicted label for an unknown chunk.   
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STEP 2: Chunk Searching and Augmentation Method 

Supposing the operator of the UAV-based observer has noticed one abnormal objective, the observer will hover there 

and randomly collect some small chunks (squares) of the observing zone, as shown in Figure 8. However, the chunk size 

must be defined in advance because the proposed observer is not fully automatic. When a fixed flying height is collected, 

the chunk size can be calculated based on the sizes of the observing image and objective. This paper suggests that the size 

of chunks is not more than two times the length of one objective. For instance, this paper uses poker as the objective. The 

chunk size (pixels) is not higher than 1.5 times the length (pixels) of poker. 

Chunk augmentation will employ two standard traditional methods, including rotation and rescale. The rotation range 

is set randomly between 0° and 360°. Due to the chunk being square and being rotated, the rescaling value is randomly 

set higher than one and lower than 1.5. It is worth noting that this research does not augment chunks only once, but a 

variable (augmenting times, 𝑁𝑎) is given, as Figure 7 shows. This paper suggests 𝑁𝑎 ≥ 5. 

 

STEP 3: Online Fuzzy Classifier 

As Figure 7 shows in STEP 1, three fuzzy classifiers will compose one online observer system. They will be trained 

in three different colour channels. Each classifier’s structure is one classic structure [26] and is identified as the following: 

{

𝑅𝑈𝐿𝐸1: 𝐼𝐹(𝐷 = (𝜉11~𝑋𝑘)) 𝑇𝐻𝐸𝑁(𝐶1)

⋮
𝑅𝑈𝐿𝐸𝑖 : 𝐼𝐹(𝐷 = (𝜉1𝑖~𝑋𝑘)) 𝑇𝐻𝐸𝑁(𝐶𝑐)

  , (1) 

 
Figure 7. Proposed Online Fuzzy Observer’s Structure 

 
Figure 8. Chunks searching from observing zone 
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where 𝐶 means the class label that a fuzzy rule has. 𝐷 means the similarity (~) between a prototype (an actual data sample) 

𝜉𝑟  and the current data instance 𝑋𝑘. In EDA, the similarity is defined by the local density value. The local density is 

followed by Cauchy distribution as the following expression: 

𝐷(𝑋) =
1

1 +
‖𝑋 − 𝜉‖2

Ψ − ‖Φ‖2

 , 
(2) 

where Φ is the mean of a Data Cloud in a fuzzy rule, and Ψ is the scalar product of the data cloud. 

STEP 4: Classifier Learning Machine 

The key to learning from data is identifying outlier data that differs from previous data distribution in the cloud. EDA 

employ global density inequality [24, 26] to resolve this problem. The proposed inequality is expressed as the following: 

(𝐷𝐺(𝑿) > 𝑚𝑎𝑥 𝐷𝐺(𝝃)) 𝑂𝑅 (𝐷𝐺(𝑿) < 𝑚𝑖𝑛 𝐷𝐺(𝝃)) ; (3) 

‖𝑋𝑘 − 𝝃‖ ≤ 𝐷(𝑿) ∗ ∅𝐺  , (4) 

∅𝐺 =
1

2
√2(𝛹𝐺 − ‖𝜱𝐺‖2) ; (5) 

where 𝐷𝐺  is a global data cloud’s density of fuzzy rule, summarising all data samples as a global Cauchy distribution. ∅𝐺 

is its global spreading radius calculated by 𝛹𝐺  and 𝜱𝐺  of a global data cloud in a fuzzy rule. 

According to the above inequality, a new fuzzy rule will be built once satisfied. Otherwise, a fuzzy rule should be 

updated based on the current data instance. As the equation expresses, Φ and Ψ are essential for explaining the data 

density distribution. Based on EDA, the two variables are updated as the following process: 

𝑁 = 𝑁 + 1 ; (6) 

Φ =
𝑁

𝑁 + 1
Φ +

1

𝑁 + 1
𝑋 ; (7) 

Ψ =
𝑁

𝑁 + 1
Ψ +

1

𝑁 + 1
‖𝑋‖2 . (8) 

After every updating step, the learning machine will update the nearest DC’s focal point (𝜉) according to the following 

strategy satisfied or not. The updating strategy is summarised as the following: 

𝐷(𝑿) ≥ 𝐷(𝜉) ; (9) 

STEP 5: Identifying Decision Maker 

As Figure 7 shows, the proposed observer contains two kinds of decision-makers: Local Decision Maker (LDM) and 

Decision Fusion Maker (DFM). LDM will identify the nearest local Data Cloud to the current data sample with the highest 

similarity (Local Density Value) in each class. Notably, it does not make any decision on the class label. Once all 

similarities are received from all fuzzy rules, the DFM will output one predicted label for the current data sample. 

The LDM is identified as the following: due to the powerful explaining ability of the Data Cloud among fuzzy rules, 

one classic decision-making strategy, winner-takes-all, is employed to identify the nearest Data Cloud. The strategy is 

summarised as follows: 

𝑀 = 𝑚𝑎𝑥(𝐷(𝑋)) . (10) 
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The DFM is proposed as the following: Once all local maximum similarities (𝑀) are collected from the LDM in each 

Fuzzy Rule, DFM will normalise them together between 0 and 1. Then, the exponential distribution (𝑌 = 𝑒−𝑋) [24] is 

employed for the final decision. Their normalising and deciding zones are illustrated in Figure 9. The decision strategy 

employed is summarised as follows: 

𝐿𝐴𝐵𝐸𝐿 = 𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝐿=1,…3;𝑖=1,2 𝑒−𝑀∗
𝐿𝑖  ; (11) 

𝑀∗ = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑖𝑛𝑔0
1(𝑀) . (12) 

 
Figure 9. Normalising and Deciding Zone in Exponential Distribution 

No Code Paragraph Equation 

1 Initialising T0FC  

2 form the first Fuzzy Rule by 𝑿;  

3 FOR 𝑘 →  ∞  

4 IF 𝑿𝑘 with Label  

5 IF new Label  

6 form a new Fuzzy Rule;  

7 ELSE  

8 IF condition 1 is satisfied 𝐸𝑞. 3 

9 form a new local DC  

10 ELSE   

11 IF condition 2 is satisfied 𝐸𝑞. 4 

12 update the nearest DC 𝐸𝑞. 6,7,8 

13 update focal point of the nearest DC 𝐸𝑞. 9 

14 ELSE  

15 form a new local DC  

16 END IF  

17 END IF  

18 END IF  

19 ELSE  

20 calculating all local similarities of 𝑿 𝐸𝑞. 2 

21 identify maximum similarities in each Fuzzy Rule 𝐸𝑞. 10 

22 normalising the maximum similarities 𝐸𝑞. 12 

23 predicting a Label for 𝑿 𝐸𝑞. 11 

24 END IF  

25 END FOR  

Figure 10. Online Observer’s Pseudocode 
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As the last step, the whole online observer’s pseudocode can be given as shown in the following Figure 10: when the 

observer receives the first data sample, as No.2 summarised, it will use the data sample to build three rules in three 

classifiers for different colour channels, respectively. Then T0FC will go into an infinity loop from No.3 to No.25. If the 

current data sample has a label, T0FC will train itself from No.4 to No.18. Otherwise, T0FC will predict one label to the 

current data sample by following No.19 to No.24. 

 

3.5 Evaluation method 

This paper focuses on two tasks: identifying one optimal first flight route among seven routes and identifying the 

proposed online observer as effective. Identifying the first flight route is an empirical process. Hence, this paper will not 

precisely match them. Instead, this paper will only pay attention to their effect on the battery consumption of UAVs. On 

the other hand, identifying the real-time performance of the proposed observer requires tracking its accuracy (False and 

True Accuracies). In sum, this paper will check the performance on the following conditions: 

1) Identify a first flight route with minimised battery consumption, 

2) Identify the accuracy of the proposed online observer is over 0.9 at least, 

3) Identify the real-time performance of the proposed online observer, which can converge by itself. 

4.0 RESULTS AND DISCUSSION 

4.1 Simulation Experiment 

The simulation is undertaken using Mission Planner software. First, open the simulation section and choose the UAV 

multi-rotor as the model, as shown in Figure 11. Then, open the flight plan and determine the UAV flying area to be  

210099𝑚2 by putting the polygon point shown in Figure 12. Next, plot the seven UAV flight paths into the simulation 

area. 

 

 

Figure 11. Open simulation and choose multi-rotor 

 

 

Figure 12. Set the simulation area using a polygon point 
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The Round spiral pattern of the UAV’s flight path is shown in Figure 13. All the waypoints are set to “spline” mode, 

allowing the drone to follow the waypoints curvedly. The drone will take off from waypoint 1 to an altitude of 95m, as 

shown in the upper left corner of Figure 13. When the drone reaches a height of 95m from waypoint 1, it flies horizontally 

to waypoint 2, then waypoint 3, until waypoint 9. When the drone reaches waypoint 9, it will change the mode to “return 

home”, which is waypoint 1. After the drone returns to waypoint 1, change the mode to Landing. Cells used for circular 

spiral patterns are reported in mAh. In addition, the procedures and parameters for the circular helix were used for the 

rest of the path tests, and these routes are all illustrated in Figures 14 to 19, respectively. 

  

Figure 13. Round spiral 

 

Figure 14. S path 

 

  

Figure 15. S path with smooth turning 

 

Figure 16. Square spiral path 
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Figure 17. Square spiral with smooth turning Figure 18. Zig zag path 

 

Figure 19. Zig-zag path with smooth turning 

In the simulation experiment, the seven UAV flight paths from Figure 13 to 19 will undergo simulation to calculate 

their battery used in mAh to determine which UAV flight path is ideal for the first flight route.  

The simulation result states that the round spiral path consumes 1633mAh, the Square Spiral path consumes 1499mAh, 

the S path consumes 1679mAh, the Zig Zag path consumes 2637mAh, the Square Spiral with smooth turning consumes 

1453mAh, the S path with smooth turning consumes 1606mAh, and Zig Zag path with smooth turning consumes 

2370mAh. They have been summarised in Table 2 of Section 4.3.  

The results show that the Zig-zag path has the highest battery consumption because every turning 135 degrees takes 

the highest energy consumption for UAV compared to 45 degrees, 90 degrees, and 180 degrees. Both the S path and S 

path with smooth turning consume more energy than the Square Spiral path and Square Spiral path with smooth turning. 

This is because the S path and S path with smooth turning have higher turning amounts than the Square Spiral path and 

Square Spiral path with smooth turning. The Square Spiral with smooth turning takes the minor energy consumption 

among the seven paths because it has angular turning, while the Square Spiral has a straight 90-degree turning angle. 

4.2 Real Environment Experiment 

This experiment was undertaken using DJI Mavic Air. Firstly, switch on the smartphone, DJI UAV, and remote to 

check the battery. It needs to be fully charged status. Then, connect the smartphone to the DJI remote, turn on the GPS 

location, and open the ‘litchi’ apps using the smartphone, as shown in Figure 20. Then, take off the drone from the home 

point to an altitude level of 95m to ensure that there is no blocking disturbance and a clear field of view. The home point 

location and altitude level must be similar to the simulation. 
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Figure 20. Open ‘litchi’ apps. 

After completing the setup, inside the ‘litchi’ apps, open the ‘Set Waypoint’ function, as shown in Figure 21, to set 

and save waypoints in ‘litchi’ apps according to the simulation for the seven UAV flight paths. Due to the high temperature 

being a disturbance to UAV battery consumption, the experiment of flying UAV devices is conducted at 6 p.m. as the 

temperature is lower than in the afternoon. Thus, it creates the slightest disturbance to the UAV battery consumption. 

 

 

Figure 21. Open the ‘Set Waypoint’ function. 

The Round spiral pattern of the UAV flight path is set in Figure 22. All the waypoints are set to ‘curve turn’ mode to 

make the UAV fly in a curved way following the waypoints. The UAV will take off from HOME (blue dot) to an altitude 

level of 95m, as shown in the upper left in Figure 23. When the UAV reaches an altitude of 95m, it flies horizontally to 

waypoint 1, followed by waypoint 2 until waypoint 7. When the UAV reaches waypoint 7, it changes the mode to ‘Return 

Home’. Once the UAV returns to HOME, it changes the mode to ‘Land’. The battery used in mAh for the round spiral 

pattern is recorded. Similarly, the same procedure and parameters were used for the Round helix for the rest of the path 

tests, and these routes are all illustrated in Figures 23 to 28, respectively. 

 

  

Figure 22. Round Spiral Figure 23. S path 
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Figure 24. S path with smooth turning 

 

Figure 25. Square Spiral path 

 

  

Figure 26. Square spiral with smooth turning 

 

Figure 27. Zig Zag 

 

 

Figure 28. Zig Zag with smooth turning 

 

The seven UAV flight paths from Figure 22 to 28 undergo a real experiment to determine the battery consumption in 

mAh and which UAV flight path is ideal for the first flight mission.  

The experiment results state that the round spiral path consumes 532mAh, the Square Spiral path consumes 519mAh, 

the S path consumes 585mAh, the Zig Zag path consumes 817mAh, the Square Spiral with smooth turning consumes 

510mAh, the S path with smooth turning consumes 569mAh, and Zig Zag path with smooth turning consumes 798mAh. 

The results have been summarised in Table 2 of Section 4.3.  

The table shows that the Zig Zag path takes the highest battery consumption because every turning angle of this path 

pattern is 135 degrees. The turning degree of 135 takes the highest energy consumption for the UAV compared to 45 

degrees, 90 degrees, and 180 degrees. Both the S path and S path with smooth turning consume more energy than the 

Square Spiral path and Square Spiral path with smooth turning. This is because the S path and the S path with smooth 

turning have a higher turning amount than the Square Spiral path and Square Spiral path with smooth turning. The Square 

Spiral with smooth turning takes the minor energy consumption among the seven paths because it has angular turning 

while the Square Spiral has a straight 90-degree turning angle. 
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For a round spiral pattern, UAV battery consumption in simulation is 1633 mAh, while in a real experiment, it is 532 

mAh, a difference of 1101 mAh. For the square spiral pattern, UAV battery consumption in simulation is 1499 mAh, 

while in the real experiment, it is 519 mAh, a difference of 980 mAh. For the S path pattern, UAV battery consumption 

in simulation is 1679 mAh, while in the real experiment, it is 585 mAh, a 1094 mAh. For the Zig Zag pattern, UAV 

battery consumption in simulation is 2637 mAh, while in the real experiment, it is 817 mAh, a difference of 1820 mAh. 

For a square spiral with a smooth turning pattern, UAV battery consumption in simulation is 1453 mAh, while in the real 

experiment, it is 510 mAh, a difference of 943 mAh. For an S path with a smooth turning pattern, UAV battery 

consumption in simulation is 1606 mAh, while in the real experiment, it is 569 mAh, a difference of 1037 mAh. For a 

zig-zag path with smooth turning, UAV battery consumption in simulation is 2370 mAh, while in the real experiment, it 

is 798 mAh, or 1572 mAh. 

In addition, UAV flight tests are limited in simulation and real experiments. In the simulation, the UAV flying speed 

is fixed to default at 4m/s to 5m/s, and the flying altitude is fixed to default at 95m. Furthermore, wind and temperature 

are the external disturbances to the UAV during the flight test that affect the accuracy of the result data. 

The results revealed that a UAV flying in a square spiral with a smooth turning pattern takes the lowest battery 

consumption in simulation and real experiments among the seven UAV flight paths. Besides the lowest battery 

consumption for Square spiral with smooth turning, this flight pattern also fulfils the criteria to cover all the testing areas.  

There are three reasons why square spiral with smooth turning for UAVs takes minor battery consumption. First, the 

total amount of tuning for a Square Spiral with smooth turning is less than that for Zig Zag, Zig Zag with smooth turning, 

S path, and S path with smooth turning. This is because the UAV needs to decelerate its speed to turn and accelerate to 

fly in a straight line, and the acceleration and deceleration in flying speed take higher energy consumption than when the 

UAV flies in a straight line. Therefore, the greater the turning amount of UAV, the higher the energy consumption. 

Second, the turning for a square spiral with smooth turning is angular, so it takes less energy consumption, while the 

turning for a square spiral is at a 90-degree angle, which UAV takes higher energy consumption. This is because the speed 

transformation rate for a UAV to make a turning in angular is lower than turning in 90 degrees. When the speed 

transformation rate for a UAV is lower, the UAV flies with lower energy consumption. Third, the travelled distance of a 

UAV in a square spiral with a smooth turning pattern is lower than the round spiral pattern. This is because the lower the 

travelled distance of the UAV, the lesser the time the UAV is in flying mode, hence the lower the energy consumption of 

the UAV. 

4.3 Energy Consumption Comparison 

All values of artificially operation are summarised in Table 2. For a round spiral pattern, UAV battery consumption 

in simulation is 1633 mAh, while in the real experiment, it is 532 mAh, a difference of 1101 mAh. For the square spiral 

pattern, UAV battery consumption in simulation is 1499 mAh, while in the real experiment, it is 519 mAh, a difference 

of 980 mAh. For the S path pattern, UAV battery consumption in simulation is 1679 mAh, while in the real experiment, 

it is 585 mAh, a 1094 mAh. For the Zig Zag pattern, UAV battery consumption in simulation is 2637 mAh, while in the 

real experiment, it is 817 mAh, a difference of 1820 mAh. For a square spiral with a smooth turning pattern, UAV battery 

consumption in simulation is 1453 mAh, while in the real experiment, it is 510 mAh, a difference of 943 mAh. For an S 

path with a smooth turning pattern, UAV battery consumption in simulation is 1606 mAh, while in the real experiment, 

it is 569 mAh, a difference of 1037 mAh. For a zig-zag path with smooth turning, UAV battery consumption in simulation 

is 2370 mAh, while in the real experiment, it is 798 mAh, or 1572 mAh. 

In addition, UAV flight tests are limited in simulation and real experiments. In the simulation, the UAV flying speed 

is fixed to default at 4m/s to 5m/s, and the flying altitude is fixed to default at 95m. Furthermore, wind and temperature 

are the external disturbances to the UAV during the flight test that affect the accuracy of the result data. 

The results revealed that a UAV flying in a square spiral with a smooth turning pattern takes the lowest battery 

consumption in simulation and real experiments among the seven UAV flight paths. Besides the lowest battery 

consumption for Square spiral with smooth turning, this flight pattern also fulfils the criteria to cover all the testing areas.  

Table 2. Battery consumption in simulation and real experiment 

UAV Flight path Battery consumption in Simulation Battery consumption in Real Experiment 

Round Spiral 1633 532 

Square Spiral 1499 519 

S path 1679 585 

Zig Zag path 2637 817 

Square spiral smooth turn 1453 510 

S path smooth turn 1606 569 

Zig Zag smooth turn 2370 798 

 



Wan Din et al. │ International Journal of Software Engineering and Computer Systems │ Vol. 10, Issue 2 (2024) 
 

99 
journal.ump.edu.my/ijsecs 
 

There are three reasons why square spiral with smooth turning for UAVs takes minor battery consumption. First, the 

total amount of tuning for a Square Spiral with smooth turning is less than that for Zig Zag, Zig Zag with smooth turning, 

S path, and S path with smooth turning. This is because the UAV needs to decelerate its speed to turn and accelerate to 

fly in a straight line, and the acceleration and deceleration in flying speed take higher energy consumption than when the 

UAV flies in a straight line. Therefore, the greater the turning amount of UAV, the higher the energy consumption. 

Second, the turning for a square spiral with smooth turning is angular, so it takes less energy consumption, while the 

turning for a square spiral is at a 90-degree angle, which UAV takes higher energy consumption. This is because the speed 

transformation rate for a UAV to make a turning in angular is lower than turning in 90 degrees. When the speed 

transformation rate for a UAV is lower, the UAV flies with lower energy consumption. Third, the travelled distance of a 

UAV in a square spiral with a smooth turning pattern is lower than the round spiral pattern. This is because the lower the 

travelled distance of the UAV, the lesser the time the UAV is in flying mode, hence the lower the energy consumption of 

the UAV. 

4.4 Observer Performance Investigation 

In the real flying experiment, the UAV randomly collected 1680 chunks (including 143 chunks capturing abnormal 

objectives (poker) and 1538 chunks covering grassy, sandy, and mixed land texture) from the observing zone. In order to 

save more computing resources for online system speed, this paper did not expand all chunks but only expanded 143 

chunks (True Chunks) covering abnormal objectives or partial objectives. The statistic of chunk augmentation is 

summarised in Figure 29. 

The observer’s real-time performance (including the True Accuracy plot in Red, False Accuracy plot in Yellow, and 

Global Accuracy plot in Blue) is recorded in Figure 30. The results proved that the online observer has high detecting 

performance and can guarantee its converging ability over more chunks collected in real time. In contrast to the proposed 

online observer, this research also recorded the real-time performance of a single classifier without data augmentation, as 

plotted in Black in Figure 30. The result revealed: 

1) Augmentation can support a classifier to converge itself as soon as possible, 

2) The colour channels-based classifier can have higher performance and robustness. 

 
Figure 29. Distribution of Original Chunks and Augmented Chunks 

 
Figure 30. Online Observer’s Realtime Performance (Accuracy) 
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As the last step, this paper explored the observer inside. All of the observer’s fuzzy rules are illustrated in Figure 31. 

Three colour blocks mean three colour channels. Each block contains two trained rules with different class labels (the 

upper rule is False class, and the lower rule is True class). These rules are combined with captured chunks containing 

multiple local prototypes and one global cloud. These also support the idea that the proposed online observer performs 

excellently in system interpretability.  

 

Figure 31. The Prototypes and Clouds in Trained Fuzzy Rule 

 

5.0 CONCLUSIONS 

This research artificially evaluates seven practical UAV’s first flight routes through simulation and real-world 

experiments to determine the optimal UAV first flight route. All seven flight paths route the fundamental criteria: 

maximise area coverage. The simulation and real test results showed that the UAV flies in a square spiral with smooth 

turn mode and consumes the least power. It has less steering than the S-Path, Smooth-Steering S-Path, Zig Zag Path, and 

Smooth-Steering Zig Zag Path. The fewer turns, the less energy the drone expands, as turning from a straight flight 

requires a speed transition, slowing down before and accelerating after the turn. This change in speed causes the drone to 

use more energy than flying in a straight line. Second, it travels less than a circular spiral path. The shorter the flight 

distance, the less energy the drone consumes. Third, it applies curved turns, while the square spiral path applies straight 

90-degree turns. Hence, as an optimal UAV’s first flight route, a square spiral with a smooth turn can quickly be deployed 

to a UAV in an emergency, and the UAV will save more battery energy.  

On the other hand, one new colour channel-based fuzzy classifier is proposed and hybridised to the inside of the online 

observer. The proposed integrated observer can support UAVs in detecting abnormal objectives when flying. Also, its 

performance proved to have higher real-time accuracy and higher robustness (converging ability). Most importantly, this 

integrated observer is interpretable. This paper also reveals a few future works: a more powerful Decision Fusion Maker, 

higher efficiency image preprocessing techniques, refining classifier techniques. 
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