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INTRODUCTION 

Alzheimer’s disease (AD) is a fatal disease that slowly destroys brain’s cells causing serious damages in the patient’s 

body, mentally and physically. The symptoms start to appear gradually, starting from memory loss, confusion, and 

depression, and ending at losing the ability to eat and walk [1]. The prevalence of AD within the next 30 years is really 

shocking. A study conducted in 2013 to estimate AD prevalence in the United States from 2010 until 2050 revealed that 

the number of elderly people suffering from AD dementia will increase from 4.7 million to 13.8 million [2]. In fact, the 

continuous increase in the number of deaths due to AD dementia in the US has made it the fifth leading cause of death 

for people aged 65 and older [1]. Furthermore, the global impact of AD is more dreadful. According to the latest world 

health organization fact sheet for dementia statistics around the world, there are nearly 10 million new cases of dementia 

worldwide, and 60 to 70 % of them are caused by Alzheimer’s disease. Extensive research has been conducted to discover 

the real reasons behind this mysterious disease and find the perfect cure that can impede this rapid increase in AD cases 

[3]. Unfortunately, an effective cure for AD has not been discovered yet [4]. However, as the cognitive impairment 

progressively increases, an early prediction of AD will greatly help reduce its impact through an early therapeutic 

intervention [5], and it will give the patient more time to adjust with its symptoms and improve their lifestyle [6]. 

Therefore, several machine learning and deep learning techniques have been proposed to detect AD at early stages. 

Nevertheless, proposing an optimal approach able to efficiently predict AD with high accuracy is still a big challenge. 

Artificial intelligence (AI) is one of modern technologies that has been largely used in many applications to build 

intelligent systems that simulate human’s way of thinking. Machine learning is a subset of Artificial intelligence. It was 

defined in 1959 by Arthur Samuel, a pioneer in AI and computer gaming, as “field of study that gives computers the 

ability to learn without being explicitly programmed”. Machine learning algorithms could overcome the static program 

instructions and create computational models able to automatically learn from data and derive different decisions and 

predictions [7]. There is a wide variety of ML algorithms that were successfully used in many fields such as healthcare, 

marketing and education [8] . However, with the advent of big data, deep learning, which is a subset of machine learning, 

has remarkably surpassed traditional methods [9]. DL algorithms have achieved high levels of accuracy in many areas 

such as voice and face recognition [10].  

ABSTRACT – Alzheimer’s disease (AD) is a progressive neurodegenerative disorder. It can cause 
a massive impact on a patient's memory and mobility. As this disease is irreversible, early diagnosis 
is crucial for delaying the symptoms and adjusting the patient's lifestyle. Many machine learning 
(ML) and deep learning (DL) based-approaches have been proposed to accurately predict AD
before its symptoms onset. However, finding the most effective approach for AD early prediction is
still challenging. This review explored 24 papers published from 2018 until 2021. These papers
have proposed different approaches using state of the art machine learning and deep learning
algorithms on different biomarkers to early detect AD. The review explored them from different
perspectives to derive potential research gaps and draw conclusions and recommendations. It
classified these recent approaches in terms of the learning technique used and AD biomarkers. It
summarized and compared their findings, and defined their strengths and limitations. It also
provided a summary of the common AD biomarkers. From this review, it was found that some
approaches strove to increase the prediction accuracy regardless of their complexity such as using
heterogeneous datasets, while others sought to find the most practical and affordable ways to
predict the disease and yet achieve good accuracy such as using audio data. It was also noticed
that DL based-approaches with image biomarkers remarkably surpassed ML based-approaches.
However, they achieved poorly with genetic variants data. Despite the great importance of genetic
variants biomarkers, their large variance and complexity could lead to a complex approach or poor
accuracy. These data are crucial to discover the underlying structure of AD and detect it at early
stages. However, an effective pre-processing approach is still needed to refine these data and
employ them efficiently using the powerful DL algorithms.
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Machine learning algorithms have been increasingly utilized to analyse medical data and extract several features that 

can be used to understand many aspects related to the disease such as the disease pathology and human brain malfunctions 

[11]. And with the current progress in machine learning technology, new techniques have been developed to predict AD 

and model its progression [12], among which supervised machine learning algorithms have proven their efficiency to 

learn from a massive amount of data within a very short time, and demonstrated their capability of helping doctors to 

accurately predict diseases at early stages [13]. However, with the extensive breakthrough in neuroimaging technologies 

resulting in high complex and large-scale data,  deep learning technology has intriguingly exhibited its preference over 

traditional ML methods at interpreting neuroimaging data with high dimensionality and precisely detect AD [14]. In fact, 

it was recently proven that DL technology has become the foundation for the prediction of AD [15]. 

Although ML and DL have achieved high precision at detecting AD with neuroimaging data, most of these approaches 

could lack the ability to discover the susceptibility of the disease early enough [16]. Therefore, some researchers have 

supported their analysis by including genetic data to other neuroimaging modalities [17]–[19] . This is because AD is 

considered as a complex disease with a genetic basis [20]. The complex nature is derived from the many factors that can 

contribute to the disease such as environmental factors and genetic or inheritance factor [21], in which the latter plays a 

fundamental role in the disease pathogenesis as it may contribute to 70% of risk factors [22]. 

According to age pattern, AD onset was divided into two subsets: early onset AD (EOAD) and late onset AD (LOAD). 

The first set affects people aged less than 65 and has 5% of total AD cases, whereas the second one has 90% to 95% of 

total cases and affects elderly people aged more than 65 [23]. EOAD is less complicated and more understandable than 

LOAD, in which many genes can be associated with it [21], [23]. Hence, many technologies have emerged to understand 

and decode the human genome and turn it into a readable format so researchers can study it closely and extract vital 

genomic biomarkers [24], [25]. These markers can enrich the knowledge about LOAD characteristics and its etiology, 

and lead to an early diagnosis and therapy development [26].  

Machine learning algorithms with their powerful abilities at manipulating multi-dimensionality data have proved their 

excellence at increasing prediction precision of complex diseases using genetic markers (usually known as SNPs) [27]. 

They have been involved in many approaches and helped discover many disease genes associated with AD dementia.  

The wide adaptability of machine learning technology into the health sector has resulted in a broad range of available 

medical datasets for researchers [28]. In fact, a great deal of open access data repositories and a wide range of medical 

datasets can be easily accessed such as massive electronic health records, neuroimaging datasets, and genomics 

biomarkers. 

In this survey, we explored 24 papers from 2018 till 2021 based on machine learning and deep learning techniques to 

early predict AD. We gathered the latest AD prediction approaches and divided them into ML based and DL based 

approaches. We further classified them based on the type of medical data, and discussed their workflow and results to 

identify their advantages and disadvantages. The review summarized an overall knowledge about the recent ML and DL 

technologies and their findings in the context of AD early prediction. It provided researchers valuable insights into 

research gaps and future research.   

The rest of the paper is organized as follows: section 2 is for the review methodology; section 3 states some types of 

AD biomarkers; section 4 explores a number of recent machine learning and deep learning based approaches for detecting 

AD. This section is divided into two subdivisions: Machine learning based approaches, and deep learning based 

approaches. In each division, the approaches are separated into a number of categories based on the data type used in the 

method. Section 5 is for findings discussion and results comparison. Finally, a conclusion and future work are presented 

in section 6. 

MATERIALS AND METHODS 

The continuous advances in machine learning and deep learning technologies, and the large diversity of biological 

and medical data have opened the way for a large field of various research studies for AD classification and prediction. 

In this review, we focused on 24 papers published from 2018 and 2021. These papers were selected to explore the recent 

findings in AD prediction using machine learning and deep learning algorithms on various biomarkers. We firstly outlined 

some types of AD biomarkers, demonstrated in Fig 1. Then, we objectively summarized the selected papers by dividing 

them into two main categories based on the type of AI learning technique used: approaches using ML algorithms and 

approaches using DL algorithms, demonstrated in Fig 2. Each category was split based on the type of data exploited in 

the approach. In the first category, the approaches were split into six sub categories: images data, large scale health data, 

gene expression data, genetic variants data, mobility and cognitive data, audio data. In the second category, the approaches 

were split into four sub categories: images data, large scale health data, genetic variants data, and heterogeneous data. We 

explained each approach in terms of its workflow, algorithms, data type, and performance results. After that, we discussed 

all approaches from different perspectives, outlined their pros and cons, and briefly compared their findings using area 

under the curve (AUC) and accuracy (ACC) as the evaluation metrics since these two metrics were the common metrics 

used in all papers. Lastly, we summarized all of them in two tables based on the dataset name, data type, algorithm/s, 

evaluation technique, and testing results. 
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Figure 1. AD biomarkers categories. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

Figure 2. AD ML and DL categories. 

 

BIOMARKERS OF ALZHEIMER’S DISEASE DETECTION 

AD biomarkers have played an integral role in understanding its structure and monitoring its progression to help its 

early detection and treatment [29], [30]. This section summarizes some types of these biomarkers. 

Image biomarkers  

      Many imaging techniques have emerged for AD diagnosis such as structural magnetic resonance imaging (sMRI) 

scans, shown in Figure, which is one of neuroimaging techniques  used to support doctors’ diagnosis of AD and help 

measure the size of degeneration of some brain areas that can lead to early detection [31]. sMRI scans , shown in Fig 3, 

produce high contrast images used to measure the volume of  the grey and white matter of the patient's brain [32]. They 

can detect the atrophic alterations in the human brain that could lead to severe damages causing AD [33]. Another 

neuroimaging technique used for detecting AD is amyloid and tau positron emission tomography (PET).  It was proven 

that the accumulation of amyloid and tau, which are some types of proteins, in the brain can severely damage its cells and 
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lead to AD [34].  Amyloid and tau PET biomarkers have become increasingly important for studying the abnormal 

accumulation of these proteins and understanding disease pathology [35]. There are many open access databases for sMRI 

and PET such as Alzheimer’s Disease Neuroimaging Initiative (ADNI) datasets [36] and Open Access Series of Imaging 

Studies (OASIS) dataset [37]. Furthermore, as MRI and PET could be limited in accessibility and expensive [38], [39], a 

new non-invasive, inexpensive technique known as retinal imaging, shown in Fig 4, has recently been used as AD 

biomarkers. These biomarkers show the abnormal changes of retinal vascular that could be associated with AD [38]. An 

example of retinal images databases is UK biobank [40]. 

 

 Figure 3. 2D Structural MRI examples of AD patients [41]. 

 

Figure 4. Retinal image with different degree of quality [38]. 

Genomics biomarkers 

With the advance of DNA sequencing technologies and with the help of Genome wide association studies (GWAS), 

many disease-associated genes to AD have been discovered [21]. Next generation sequencing (NGS) is a DNA 

sequencing technology. It is a cost-effective, highly accurate deep sequencing technique that can sequence the whole 

human genome into millions of four-letters sequences within only one day [24]. Various platforms using NGS technology 

have paved the way for a wide range of studies to explore different regions of the human genome and discover many 

genetic variants contributing to complex diseases [42]. One of those studies is GWAS that concerns analysing human 

genetic variations to define the genetic risk factors of a complex disease [43]. Genetic variants can be a single alteration 

in DNA sequence known as single nucleotide polymorphism (SNPs) or longer alteration such as insertion and deletion 

variations (indels) and copy number variations (CNVs) [44] . Moreover, gene expression is another type of genomics 

biomarkers. Gene expression is the set of instructions encoded in DNA and used to build protein molecules (gene 

products) [45]. DNA microarray is one of many technologies used for gene expression profiling [25]. It is a powerful tool 

that can monitor the expression of thousands of genes at the same time and profile valuable information about the gene 

expression process. Gene expression profiles can help understand the basic genetic structure of a disease through 

discovering genes involved in its formation [46]. They have the ability to visualize the physiological changes of an AD 

patient and guide many researchers to understand the biological aspects of the disease pathology [47]. There are a wide 

range of genome datasets such as ADNI [36], and Dementia and Traumatic Brain Injury (TBI) Study. ADNI provides 

two resources of genetic variants: GWAS genetic variants and Whole genome sequencing (WGS) dataset. In the WGS 
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dataset, genetic variants are stored in a variant call format (VCF), as shown in Fig 5. VCF is a standard representation of 

genetic variants including SNPs, indels and other structural variants [48].  

 

Figure 5. An example of VCF file [48]. 

Vocal and Gait biomarkers 

Vocal biomarkers can be collected in non-invasive and inexpensive manner, and they can be used to analyse audio 

segments of subject’s speech and extract risk features associated to AD [49], whereas, gait or walking biomarkers can be 

used to monitor subject’s movements and reactions to extract risk features associated to AD [50], as shown in Fig 6. 

 

Figure 6. A proposed approach using gait data to diagnose AD [50]. 

ML AND DL-BASED APPROACHES FOR ALZHEIMER’S DISEASE DETECTION 

In this section, the latest approaches proposed to predict AD dementia at early stages are illustrated. They are divided 

into two main parts: approaches with machine learning techniques and approaches with deep learning techniques. For 

each part, the approaches are split based on the type of biomarkers used. 

 

Machine learning-based approaches 

This section delineates recent machine learning-based approaches based on the type of data used to predict AD. 

 

Medical imaging data 

There is a variety of imaging data used by machine learning algorithms such MRI scans data, PET scans data, and 

retinal images data. In the following, ML approaches using two types of imaging data: MRI and retinal images data were 

explored: 
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Magnetic resonance imaging (MRI) data 

In [51] longitudinal structural MRI (sMRI) data of 150 participants were used for AD classification through a 4-stage 

automated pipeline. The first stage was for data pre-processing. The second stage was for dividing data into two main 

sets: training set and test set. The main training set was also divided into three subsets: train, validate, and test sets. In the 

third stage, the three subsets were used by 17 supervised machine learning algorithms to build predictive models, and the 

best model resulting from this stage was tested in the final stage using the main test set. The best algorithm was Random 

forest (RF) with AUC of 0.8722. Another approach in [52] employed structural MRI for differentiating people with AD 

dementia from people with vascular dementia. Researchers used a collection of MRI scans for 58 subjects with AD and 

35 subjects with VD. The approach went through multiple steps of image pre-processing such as skull-stripping and 

alignment in order to select the appropriate features for the training stage. Four machine learning algorithms were applied: 

Support vector machine(SVM), K-nearest neighbours(KNN), RF, and Logistic regression (LR). The SVM with radial 

basis function (RBF) kernel attained the best outcomes with AUC of 0.861. Moreover, Researchers in [53] utilized 1,167 

sMRI scans to classify normal cognitive (NC) state and three different states of dementia: early MCI, late MCI, and 

probable AD. The approach trained six ML classifiers: KNN, Decision tree, RF, Naïve Bayes (NB), linear SVM and non-

linear SVM with RBF kernel. The testing results showed that non-linear SVM with RBF kernel accomplished the best 

classification performance for all stages with AUC of 0.76. 

Retinal vasculature imaging data 

A recent study in [38] exploited retinal biomarkers to predict AD through a machine learning pipeline. The pipeline 

consisted of three stages. The first stage was for selecting images with sufficient quality, the second stage was for 

generating vessel maps and using T-test for feature selection, and the final stage was for model building using SVM 

classifier. The classifier demonstrated an overall accuracy of 0.824. 

Large scale health data 

As machine learning algorithms have exhibited their superiority in big data, many approaches have used them to 

analyse a massive amount of health data and extract important features for predicting AD. The researchers in [54] 

developed a number of predictive models for predicting definite AD and probable AD within 4 years. They applied three 

machine learning algorithms, RF, SVM and LR on large-scale data including clinical tests, participants and family 

information, and prescribed medications. RF classifiers surpassed other classifiers in 1-year to 4-year prediction of 

definite AD in which results ranged from AUC of 0.775 to AUC of 0.677. In addition, in [55] researchers employed an 

extensive data collection of clinical tests, neuropsychological tests, social and demographic information to predict the 

conversion of a patient from mild cognitive impairment (MCI) to AD dementia within three years. By using weighted 

rank average ensemble technique, they built an ensemble ML model consisting of 13 supervised machine learning 

algorithms such as KNN, LR, RF and NB, and achieved a performance of AUROC 0.88. Another approach in [4] used a 

large scale of health data for early prediction of   AD. They collected multiple attributes from different tests such as Mini-

Mental state examination, clinical dementia rating, estimated total intracranial volume, and other information of 

participant’s socioeconomic status and education background. They utilized a number of machine learning classifiers to 

train and validate their models such as RF, LR, NB, SVM with linear kernels, in which the latter demonstrated best 

accuracy of 0.95. 

Gene expression profiles data 

In [46] gene expression data were exploited to classify AD and discover new genomics biomarkers associated with 

AD. The researchers at first ranked expressed genes with P-value by using T-test in order to remove genes with P-value 

less than 0.5 as they have significantly different expressed values than the two sample classes, AD, and NC.  After 

removing differentially expressed genes, 2000 genes were selected for training and testing, and five machine learning 

classifiers were employed. The best classifier was SVM with a linear kernel. On the other hand, three techniques were 

utilized for feature selection: Principal component analysis (PCA), RF, and Extra tree classifier. After analysing the 

extracted features or genes, the 9 genes selected by PCA were chosen and joined with the overlap set of genes selected 

by the three methods. The new set of 14 genes were tested by the SVM classifier, since it got the best classification results, 

and the results were better. The new set of genomics biomarkers was considered as an influential set associated with AD. 

In contrast, the approach in [56] used differentially expressed genes (DEGs) extracted from four regions of the human 

brain to study their connection with the disease as researchers believe that these kinds of genes coming from different 

regions are correlated to AD. They started by removing redundant data from each sample since gene expression data were 

taken for four regions of the same person. Then, the expressed genes were ranked with P-value by using linear mixed 

effect model (LMM) technique. After that, genes with minimum P-value that were differentially expressed were enriched 

by gene ontology to explain their biological implications. Lastly, all genes from both classes, AD and non-AD, were 

enriched by using a gene ontology database in order to find the functional connection or pathways between them and 

DEGs. Top ten and top six of DEGs were chosen and tested by four ML algorithms, in which RF algorithm achieved the 

best accuracy of 0.73 and 0.83 respectively. 
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Genetic variations 

In [57] researchers used SNPs data for classifying AD and extracting the genetic variants associated with AD. They 

suggested a new approach to improve the classification accuracy by using the misclassified samples. At the beginning, 

they trained three ML classifiers: BSWiMS, GALGO, LASSO, and from the best classifier, LASSO, they selected the 

misclassified testing samples. Then, they extracted the related SNPs of these samples and retrained the model with the 

LASSO classifier. After that, they merged the features extracted from all samples and the features extracted from the 

misclassified samples, and used them to train the model. The results achieved by using the last set of features demonstrated 

the best testing performance with AUC of 0.842. One more approach utilized SNPs data in [16]. The researchers designed 

an ensemble model to predict AD. They first pre-processed genetic variants by applying quality control procedures. Then, 

they picked the top 2,500 SNPs to build the ensemble model consisting of five ML classifiers by using a benchmarking 

tool called feature selection algorithm for computer aided diagnosis (FRESA.CAD). After validating and testing the 

models, the classifiers performance ranged from AUC of 0.6 to AUC of 0.7, whereas the ensemble model achieved a 

better output with AUC of 0.719. However, when the ensemble model was trained with the top 1000 SNPs, it attained a 

result with AUC of 0.554. Moreover, the ensemble model resulted in eight genes that were the most selected genes among 

all classifications, and these genes were known for their strong association to AD. Another approach suggested in [58] is 

to study and discover the effect of genetic mutations related to AD through extracting the most influential features and 

using them to segregate the harmful SNPS from harmless SNPs. In the suggested approach, a two-stage feature selection 

was applied to select the most important features. In the first stage, recursive feature elimination cross validation (RFECV) 

was used to select 39 features. In the second stage, forward feature selection was used to select the best feature 

combination. After selecting the best combination of 11 features, a model was trained on these properties using a random 

forest algorithm, and the achieved result was AUROC of 0.8949. 

Mobility and cognitive data 

Researchers in [50] used dual-task gait assessments data for classification AD, MCI, and NC. The gait features were 

extracted from a gait analysis software with a pressure sensitive carpet. The subjects underwent dual-task valuations 

through walking and testing their cognitive ability such as memory, language and attention at the same time. SVM 

classifier was trained on the data, and it achieved an average accuracy of 0.78  

Audio data 

A new approach was suggested in [49] to employ speech data for predicting AD at early stages. In the approach, the 

audio data were gathered and divided into 1-second segments. After that spectrogram features were extracted and used to 

train ML models using five ML algorithms. The classifier’s performance was tested on two data sets, in which logistic 

regression CV classifier achieved best results with accuracy of 0.833 and 0.844 in the two datasets. 

 

Deep learning-based approaches 

This section outlines recent deep learning-based approaches based on the type of data used to predict AD. 

 

Medical imaging data 
 

Magnetic resonance imaging (MRI) data 

Researchers in [41] employed a two dimensional convolutional neural network (2D CNN) to predict AD. They used 

MRI data to train their model in which they tried a number of inputs for the last hidden layer ranging from 120 inputs to 

130 inputs with a dropout rate ranging from 0.1 and 0.5 in order to get the best performance, which was found at 121 

units with a drop rate of 0.2. The model attained a testing accuracy of 99.30. Another approach exploited MRI data in 

[59] to predict AD. Researchers used structural MRI features extracted from the hippocampus area of 933 subjects. They 

designed a lightweight three dimensional CNN by using the deep visual attributes extracted from another model called 

3D Dense CNN and the global shape attributes extracted from hippocampus segmentations. The features then were 

combined in a fully connected layer followed by a softmax layer. The model accomplished an accuracy of 92.52. 

Positron emission tomography (PET) data 

Raeserchers in [60] used amyloid or tau PET features for AD classification. At first, they trained 3D CNN for 

classifying AD and NC. Then, they used the trained model to predict the conversion of MCI state to AD state, in which 

a subject with a probability close to 1 was classified as an AD conversion, whereas a subject with a probability close to 0 

was classified as nonAD conversion. After that, a layer wise relevance propagation (LRP) algorithm was used to extract 

features resulting from the model to be visualized in a heat map to show brain areas closely related to AD. The average 

accuracy of classifying AD and NC was 90.8. 

MRI data + PET data 

The approach in [61] employed two image modalities: MRI scans and amyloid PET scans to predict AD. After pre-

processing both modalities, two identical CNNs of the two modalities trained on the same time. The weights of both 
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networks were merged at the last hidden layer consisting 128 inputs to form a fused network with one output layer. The 

testing results of this network was with accuracy of 92.34.     

Large scale health data 

In [62] researchers used longitudinal electronic health records from 2007 to 2017 including many features such as 

subject’s age, background and clinical test results. Three models were trained on these data to predict MCI and AD within 

three to eight years using recurrent neural network (RNN), RNN with trained weights of another model, and a feed 

forward network. In the latter, researchers inserted three features, sex, age, days of collecting data, directly to the last 

hidden layer to ensure that all of their weights are included.  The best results ranged from 0.81 to 0.84.   

Genetic variations data 

In [63] researchers exploited SNPs data only to predict AD. They used whole genome sequencing data of 42,908,833 

SNPs. After applying a quality control pipeline to remove bad SNPs, they used 1,884 SNPs for building their predictive 

models. They suggested two neural network architectures, DNN and 1D CNN. For evaluating the performance, they 

divided the SNPs into a number of subsets based on their p-value that was copied from the international genomic of 

Alzheimer’s project (IGAP) report. The best performance was for DNN on a subset of 200 SNPs with AUC of ≈ 0.62.        

Heterogeneous data 

Some approaches have used different types of biomarkers in order to improve the prediction accuracy either by 

merging them into one unified form, or by using them separately and merging final results.  

Neuroimaging + Genetic variants data 

Researchers in [17] proposed to merge SNPs data with brain region of interests (ROIs) data. This is because they 

believe that this kind of data can directly describe the disease, whereas genetic biomarkers can describe its etiology, and 

as a result, the neural network could fail when dealing with these biomarkers only.  Thus, they assumed that the structural 

information of brain regions can help the network understand genome data and improve its accuracy. At first, SNPs and 

ROIs information were normalized and ranked based on their degree of importance by using random forest algorithms. 

After merging them, the total number of features was 542 features. After that, a deep learning model was trained and 

tested on these features, and the results showed an improvement in the network performance. The best result was for the 

top 10 SNPs and ROIs with AUC of 0.80. Another approach employing images data and SNPs data was suggested in 

[18]. The researchers suggested a method to improve the accuracy of a conventional neural network (CNN) used to predict 

AD by merging its predictions with another network’s predictions. In the approach, the two networks, CNN with MRI 

data and multilayer perceptron network (MLP) with SNPs data, were trained separately. After getting the output of both 

networks, an ensemble gate merged them to form the final prediction result if the prediction accuracy of CNN was low. 

Otherwise, the final result would be for CNN prediction only.  After the approach evaluation, the prediction accuracy for 

75 subjects improved from AUC of 0.9232 when using MRI scans only to AUC of 0.936 when using both MRI and SNPs 

data. Furthermore, in [19] researchers used MRI data and SNPs data of APOE ε4 allele and 19 SNPs known for their 

strong contribution to AD. They suggested merging MRI features and SNPs features and building predictive models to 

predict the conversion from MCI state to AD state. They trained 100 models using DNN and 100 models using logistic 

regression (LR). The models were trained to classify AD and NC states. Then, they were tested to predict MCI conversion. 

The DNN showed better performance than LR with AUC of 0.835. 

DNA methylation profiles + gene expression profile 

DNA methylation is a process involved in gene expression regulation [64]. Its potential effect is usually at DNA 

regions known as CpG islands. Some studies believe that there is a correlation between gene expression and DNA 

methylation. Hence, we found that researchers in [65] used both of them to predict AD. They used gene expression and 

DNA methylation profiles extracted from the prefrontal cortex. As both profiles cannot be merged directly because of 

their different behaviour and characteristics, the researchers proposed a feature selection method to extract features from 

both profiles into two features, one for genes and the other for CpG probes. The method had two steps. The first step was 

for filtering differentially expressed genes (DEGs) and differentially methylated positions (DMPs). As every DMP has 

its related genes, researchers in the second step merged both features by intersecting genes that were differentially 

expressed and differently methylated as they believe that these genes have a strong connection to the disease. After that, 

DNN was built and optimized with Bayesian hyper-parameter optimization, and the model achieved an accuracy of 82.3% 

and AUC of 0.797.  

DISCUSSION 

This section discusses all approaches from different perspectives to draw implications about their results, strengths 

and limitations, and make recommendations for future work.  

Few machine learning research studies have tried to use new types of data other than Neuroimaging and genetic 

variants, which are the most modalities used by ML methods, to predict AD. One recent study [50] that analysed gait 

movement and patient’s cognitive responses to extract features capable of classifying AD patients from a cognitively 

normal person. Analysing such data with machine learning technology could greatly contribute to discovering the subtle 
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cognitive or physical changes that a patient may exhibit long time before AD onset, and this will help doctors to discover 

the disease early enough. However, as the utility of these biomarkers is still limited by few research studies, further 

research might be needed to assure their significance. Another study used Audio data to predict AD [49]. These data are 

inexpensive and more accessible compared to other modalities such as Neuroimaging data. And same as physical and 

cognitive features, some Audio features could be an important indication of AD development in future, and they could 

help doctors and patient’s families to predict AD susceptibility from the way this patient talks or sounds. Nevertheless, 

further research might be also required to explore their relevance to AD early prediction.   

Moreover, although DL technologies have shown a higher precision performance than ML technologies [66], it was 

found that the number of ML based approaches employing genetic variants only to predict AD were more than DL based 

approaches. In fact, only one research was found using SNPs data as the only modality to classify the disease. This might 

be because of the complicated nature of these kind of features by which a neural network usually achieves poor classifying 

accuracy. This could also be due to the limited number of samples compared to the enormous number of features in most 

SNPs datasets that might affect the network performance because DL algorithms require huge amount of instances [33]. 

Therefore, most researchers have tended to use ML algorithms for feature selection and classification. Another reason 

could be due to the limited number of samples compared to the enormous number of features in most SNPs datasets. This 

may also affect the network performance because DL algorithms require a huge amount of instances. On the other hand, 

many DL based approaches have involved genetic variants with other modalities [17]–[19], mostly neuroimaging 

modalities, as a way to improve network performance. And in spite of adding more complexity to their approaches, most 

of them got only an accuracy improvement of 2% to 3%.  As genome biomarkers such as genetic variants play an 

inarguable role at understanding the disease’s underlying structure [26], and because of the promising capability of DL 

technology with genetic data [67], further research on employing this technology with genetic variants could help explore 

them more deeply and define the vital regions in human DNA that are strongly related to AD development. However, an 

effective pre-processing and quality control pipeline could be the decisive step for reducing the complexity and variety 

of SNPs data, and leading to a noticeable improvement in network performance.  

In addition, when the results of ML based approaches were compared in terms of genetic variants data and 

neuroimaging data, shown in Table 1 and Fig 7, it was noticed that they were relatively close with an average AUC of 

0.82. Nevertheless, the results were largely different in DL based approaches, shown in Table 2 and Fig 8, in which 

methods using neuroimaging data achieved an average ACC of 93.74, while the others using SNPs data achieved an 

average AUC of 0.67. 

 

Table 1.  ML approaches results with MRI and SNPs data. 
Ref No. Data type AUC 

[51]  sMRI 0.8722 

[52] sMRI 0.861 

[53] sMRI 0.76 

[57] SNPs (482) 0.842 

[16] SNPs (2500) 0.719 

[58] SNPs (11) 0.8949 

 

 
Table 2.  DL approaches results with MRI, PET and SNPs data. 

Ref No. Data type *ACC/AUC 

[41] MRI  0.993 

[59] sMRI  0.9252 

[60] amyloid PET 0.908 

[61] amyloid PET + MRI 0.9234 

[63] SNPs (200) 0.62 

[17] SNPs (20 & 50) 0.68 

[18] SNPs (41) 0.6807 

[19]  SNPs (20) 0.689 

*Note: images data results were measured by ACC  
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Figure 7. ML approaches results comparison in terms of MRI and SNPs data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. DL approaches results comparison in terms of MRI and SNPs data. 

 

Furthermore, when the results of ML and DL based approaches were compared in terms of genetic variants data and 

neuroimaging data, shown Table 3, it was found that DL based approaches had achieved better performance in 

Neuroimaging data compared to ML based approaches, while they were relatively poor with SNPs data. 

 

 

Table 3. ML & DL approaches average results. 

ML/DL Data type AUC/ACC 

ML Neuroimaging data  AUC= 0.825 

DL Neuroimaging data  ACC= 0.937 

ML Genetic variants data AUC= 0.818 

DL Genetic variants data AUC= 0.667 

 
 

Additionally, Table 4 demonstrates strengths and limitations of ML and DL based approaches in terms of data type, 

and Table 5 and 6 demonstrate a summary of all approaches mentioned in the survey in terms of the algorithms used, 

dataset name, modality type, evaluation technique, and results. They provide a comparative analysis that helps formulate 

a knowledge about the latest accuracy level of AD prediction, and the type of modalities and algorithms related to that 

accuracy.     
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Table 4.  ML & DL based approaches strengths and limitations. 

Technique Data type Strengths Limitations 

M
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h
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e 
le
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n
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g

 

Images data 

Some of open access datasets are 

freely available, and the 

technique achieves very good 

classification accuracy 

Data acquisition is difficult and expensive, 

and AD susceptibility prediction at early 

stages could be poor as genetic factors, 

which form 70% of the risk factors, are not 

considered. 

Large scale health 

data 

Data acquisition is cost effective, 

and a wide range of open access 

datasets are available. And the 

technique achieves an excellent 

accuracy 

AD susceptibility prediction at early stages 

could be poor as genetic factors are not 

considered 

Gene expression 

data 

Data acquisition is cost effective, 

and a wide range of open access 

datasets are available. Besides, 

70% of risk factors are 

considered, and the technique 

achieves very good classification 

accuracy 

The data requires a long pre-processing and 

preparation process. And the technique 

applies feature selection for only small 

subsets of genes to achieve higher accuracy 

Genetic variants 

(SNPs) data 

Data acquisition is cost effective, 

and a wide range of open access 

datasets are available. Besides, 

70% of risk factors are 

considered, and the technique 

achieves very good classification 

accuracy 

The data need an efficient quality control 

(QC) pipeline to extract good SNPs. And 

only small subsets of genetic variations are 

considered to achieve higher accuracy 

Mobility and 

cognitive data 

The technique achieves  good 

accuracy, and its extracted risk 

factors could help doctors and 

patient’s family to detect the 

diseases at early stages 

Although these data can be easily adapted in 

clinics, they are still limited and few research 

studies have explored them to predict AD. 

Therefore, the extracted risk features might 

be still indecisive for AD early detection 

especially that the brain and genetic 

variations are not considered 

Audio data 

Data acquisition is inexpensive, 

and non-invasive. The technique 

achieves  very good accuracy, 

and its extracted risk factors 

could help doctors and patient’s 

family to detect the diseases at 

early stages 

Although these data are non-invasive and 

easily collected, they are still limited and few 

research studies have explored them to 

predict AD. Therefore, the extracted risk 

features might be still indecisive for AD 

early detection especially that the brain and 

genetic variations are not considered 

D
ee

p
 l

ea
rn

in
g

 

Images data 

Some of open access datasets are 

freely available, and the 

technique has great ability to 

analyse raw data without prior 

feature selection and achieves  

excellent classification accuracy 

Data acquisition is difficult and expensive, 

and the technique is computationally 

expensive as it requires hardware with high 

computational capabilities to minimize 

training time. Besides, AD susceptibility 

prediction at early stages could be poor as 

genetic factors are not considered 

Large scale health 

data 

Data acquisition is cost 

effective, and a wide range of 

open access datasets are 

available. The technique can 

rapidly analyse huge amount of 

raw data and achieves very good 

accuracy 

AD susceptibility prediction at early stages 

could be poor as genetic factors are not 

considered. 

Gene expression & 

DNA methylation 

data 

Data acquisition is cost 

effective. Besides, 70% of risk 

factors are considered and the 

technique achieves very good 

classification accuracy 

These data are heterogeneous and require 

multiple steps to pre-process them and 

merge them. Very few studies have 

considered this combination. Therefore, its 

extracted risk features might be still 

uncertain, and further research is needed. 

Genetic variants 

data 

70% of risk factors are 

considered, and the technique 

It requires a huge amount of data and an 

efficient QC pipeline for extracting good 
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Lastly, as genomics biomarkers form 70% of risk features, using them for predicting AD would be essential. So far, 

there have been many approaches using ML algorithms with genetic data, and most of them achieved good classification 

accuracy. Nevertheless, few approaches have used genetic data such as SNPs data with DL algorithms, and have poor 

accuracy. In fact, it was found that neuroimaging data and genetic variants were the most utilized modalities by DL 

technology. However, using genetic variants only to predict AD is still limited, and further research is needed. 

 

can handle larger sets of genetic 

variants and automatically 

recognize related patterns 

without prior feature extraction 

SNPs to avoid overfitting and achieve high 

accuracy. However, most of the available 

datasets are highly complex and variance 

with a huge number of features and limited 

number of samples. Besides, very few 

studies have used this modality without 

merging it with other modalities and 

achieved a relatively poor accuracy. 

Therefore, further research is needed. 

Images & genetic 

variants data 

A wide range of research studies 

have used this combination and 

achieved an excellent accuracy 

The approach is highly complex and 

computationally expensive, and data 

acquisition is difficult and expensive 

Table 5.  A summary of Machine Learning approaches. 

Ref No Dataset/s Data type Algorithms 
Evaluation 

technique 

Best performance metrics 

Area Under the 

Curve (AUC) 

Accuracy 

(ACC) 

[51] 

Open Access Series 

of Imaging studies 

(OASIS) 

longitudinal sMRI 

scans 

17 SML such 

as SVM, RF, 

Decision tree 

(DT), 

Stochastic 

gradient 

Descent 

(SGD) 

10-fold CV 

with 10 

iterations 

0.8722 86.84 

[52]  
Structural magnetic 

resonance imaging 

(sMRI) 

K-nearest 

neighbours 

(KNN), LR, 

RF, SVM 

Dataset:70

% 

Training, 

30% 

testing/ 10-

fold CV 

0.861 84.35 

[53] ADNI sMRI 

DT, linear 

SVM, 

nonlinear 

SVM with 

RBF kernel 

KNN, NB, 

RF 

10-fold CV 0.76 75 

[38] 
open Access UK 

Biobank 

retinal vasculature 

imaging data 
SVM 5-fold CV  82.4 

[54] 

Korean National 

Health insurance 

service dataset 

large amount of 

administrative 

health information 

Logistic 

regression 

(LR), 

Random 

Forest (RF), 

Support 

vector 

machine 

(SVM) 

Nested 5-

fold 

stratified 

cross 

validation 

with five 

cycles 

1-year: Definite 

AD: 0.78, 

Probable AD: 

0.76 

 2-year: Definite 

AD: 0.73, 

Probable AD: 

0.69 

3-year: Definite 

AD: 0.68, 
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Probable AD: 

0.64 

4-year: Definite 

AD: 0.73, 

Probable AD: 

0.68 

[55] 

Alzheimer's Disease 

Neuroimaging 

initiative (ADNI) 

a collection of 

information of 

clinical and 

cognitive tests and 

subject's 

background 

13 

Supervised 

Machine 

learning 

(SML) such 

as LR, RF, 

SVM, Naïve 

Bayes (NB), 

Gradient tree 

boosting 

Stratified 

10-fold CV 
0.88  

[4]  

large-scale of 

health records 

including clinical, 

personal, and 

cognitive 

information 

DT, SVM, 

LR, NB, RF 
5-fold CV  95 

[46] GSE5281 brain DB 

Gene expression 

data of 24,438 

genes, 87 cases 

(AD) & 74 controls 

(NC) 

SVM with 

linear kernel, 

SVM with 

Gaussian 

kernel, NB, 

DT, RF 

2/3 of 

dataset for 

training & 

1/3 for 

testing 

 

2000 

genes: 

89.80 

14 genes: 

93.9 

9 genes: 

93.9 

[56] 

RNA sequencing 

data downloaded 

from TBI study 

Gene expression 

data of 50,281 

genes, 15 cases 

(AD) & 30 controls 

(NC) 

SVM with 

linear kernel, 

SVM with 

radial basis 

function 

(RBF) kernel, 

RF, Qbayes 

Dataset:70

% 

Training, 

30% 

 

top 10 

genes: 73 

top 6 

genes: 83 

[57] GWAS 
620,901 SNPs & 

5,220 subjects 

BSWiMS, 

GALGO, 

LASSO 

Dataset:80

% 

Training, 

20% 

testing/ 20 

repetitions 

of CV 

1,106 SNPs:   

0.801 

 
482 SNPs:      

0.842 

[16] ADNI 
8,239 SNPs $ 471 

subjects 

SVM with 

mRMR filter, 

LASSO, RF, 

BSWiMS, 

RPART, 

KNN 

CV 

2,500 SNPs:   

0.719 

 
1000 SNPs:    

0.554 

[58] 

Genotype tissue 

expression & 

GWAS 

57,853 Single 

nucleotide 

polymorphisms 

(SNPs) 

RF 

Dataset:90

% 

Training, 

10% 

testing/ 10-

fold CV 

5785 

SNPs(features):           

0.75 

70.63 

39 

SNPs(features):           

0.826 

75.22 
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Table 6.  A summary of Deep Learning approaches. 

Ref  

No 
Dataset/s Data type Algorithms 

Evaluation 

technique 

Best performance metrics 

Area Under the 

Curve (AUC) 

Accuracy 

(ACC) 

[41] OASIS 
15,200 MRI of 170 

AD & 70 NC 
2D CNN 

75% 

Training, 

25% 

validation 

 99.3 

[59] ADNI 
sMRI of 326 AD & 

607 NC 

lightweight 

3D CNN 

5-Fold 

Cross-

Validation 

0.9789 92.52 

[60] ADNI amyloid PET 3D CNN 

5-Fold 

Cross-

Validation 

 90.8 

[61] ADNI 
amyloid PET + 

MRI 

2 identical 

CNN 

5-Fold 

Cross-

Validation 

 92.34 

[62] 

OptumLabs Data 

Warehouse 

(OLDW) 

large amount of 

administrative 

health information 

Feed Forward 

Network & 

Recurrent 

Neural 

Network 

(RNN) 

 

MLP: 0.807 to 

0.844 

 
RNN: 0.77 to 

0.843 

RNN with pre-

trained weights: 

0.79 to 0.843 

[63] ADNI 

42,908,833 SNPs 

(from WGS) & 471 

subjects 

DNN & 1D 

CNN 

5-Fold 

Cross-

Validation 

1000 SNPs: 

DNN= ≈ 0.55, 

CNN= ≈ 0.56 

 
500 

SNPs: DNN= ≈ 

0.58, CNN= 0.57 

200 SNPs: 

DNN= ≈ 0.62, 

CNN= ≈ 0.56 

11 

SNPs(features):          

0.8949 

81.21 

[50]  
walking (gait) & 

cognitive tests data 
SVM 

Dataset:80

% 

Training, 

20% 

testing/ 5-

fold CV 

 78 

[49]  Audio(speech) data 

DT, bagging, 

MLP, 

LinearSVC, 

LRCV 

Split 

dataset to 

multiple 

sets and 

use K-fold 

CV method 

 

VBSD 

dataset: 

83.3 

Dem@Car

e dataset: 

84.4 

mailto:Dem@Care%20dataset:%2084.4
mailto:Dem@Care%20dataset:%2084.4
mailto:Dem@Care%20dataset:%2084.4
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100 SNPs: 

DNN= ≈ 0.59, 

CNN= ≈ 0.55 

[17] ADNI 

486 SNPs + 

structural features 

of 56 brain regions 

(ROIs) & 632 

subjects 

3-layer 

convolutional 

neural 

network 

(CNN) 

Dataset:80

% 

Training, 

20% testing 

(5-fold CV) 

Top 10: SNPs 

only= 0.65, 

SNPs +ROIs = 

0.80 

 

Top 20: SNPs 

only= 0.68, 

SNPs +ROIs = 

0.73 

Top 50: SNPs 

only= 0.68, 

SNPs +ROIs = 

0.60 

Top 100: SNPs 

only= 0.60, 

SNPs +ROIs = 

0.60 

[18] ADNI 

41 SNPs (from 

GWAS) + 100 

MRI scans 

2D CNN & 

Multilayer 

perceptron 

network 

(MLP) 

CNN: 5-

fold CV for 

100 scans, 

MLP: 300 

SNPs train 

& validate, 

75 SNPs 

test 

SNPs only for 75 

samples = 

0.6807 

 

MRI only for 

100 samples = 

0.8763 

Refined CNN 

with SNPs for 

100 samples= 

0.8831 

[19] ADNI 

19 SNPs + APOE 

ε4 allele & MRI 

scans of 138 AD, 

225 NC & 358 

MCI 

DNN 

Dataset:80

% 

Training, 

20% testing 

SNPs only: 

0.689 

 
MRI 

only: 0.820 

SNPs + 

MRI: 0.835 

[64] 

GSE33000 and 

GSE44770 DS for 

gene expression data 

& GSE80970 DS for 

DNA methylation 

data 

19,488 genes & 

485,577 probes of 

CpG islands 

DNN 

5-Fold 

Cross-

Validation 

0.797 82.3 

 

CONCLUSION 

This survey explored some of recent approaches employing machine learning and deep learning algorithms to early 

predict Alzheimer’s disease (AD) and contribute to its therapeutic development. These approaches were categorized in 

terms of learning technique and data modality used. In addition, they were discussed from different aspects, and their 

strengths, limitations and outcomes were compared. In spite of the great diversity of these approaches, almost all of them 

have endeavoured to offer the best model that could efficiently employ the medical dataset and successfully diagnose the 

disease. Nevertheless, some types of biomarkers such as genetic biomarkers were largely variant and complex. Therefore, 

this kind of data could dictate the type of algorithms used and the complexity level of the proposed model. It was noticed 

that most deep learning (DL) based approaches using genetic variants data tended to merge them with other modalities to 

improve the prediction accuracy, and this combination increased their complexity.  On the other side, the other DL based 

approaches that used only genetic variants data could not achieve higher accuracy. Improving the prediction accuracy for 

AD using deep learning techniques with genetic variants data is still challenging. In the near future, we will propose a 
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deep learning model for predicting AD using genetic variants data. We will offer a pre-processing pipeline that seeks to 

reduce the complexity of these data and improve the prediction precision. This survey can be a coherent and informative 

reference for many researchers without a solid background in the latest AI technologies used for AD early diagnosis. 
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