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INTRODUCTION 

Linked list is a basic and primitive data structure. It is widely used in computer programming. It consists of a sequence 

of nodes, where each node contains data and a link to the next node.  It is a sequential data structure in the sense that the 

data appear one after another in a sequence of nodes. Its data are accessed and traversed from the beginning to the end. 

Linked list can be doubled, meaning that each node has a second pointer which points to the previous node. A doubly 

linked list can be traversed in both directions following the two pointers. Standard textbooks on algorithms and data 

structures, such as (Cormen et al., 2009), (Weiss, 2011), (Skiena and Steven, 2020), (Goodrich and Tamassia, 2014), 

(Sedgewick and Wayne, 2011) contain this basic information about linked list. 

In a linked list, data can be added or deleted by adding or deleting nodes. There is no limit on how many data can be 

added to a linked list, as it depends upon the availability of the memory. As long as there is free space in memory, nodes 

can be added. This is an advantage of linked lists compared to arrays, where the number of elements that can be added is 

fixed beforehand. Again, standard textbooks, such as (Cormen et al., 2009), (Weiss, 2011), (Skiena and Steven, 2020), 

(Goodrich and Tamassia, 2014), (Sedgewick and Wayne, 2011), can be seen for differences between linked list and array.  

Adding and deleting data from a linked list can be in any sequence. For example, an element can be added at the 

beginning of the list, at the end of the list, or after a particular element in the list. Adding elements in a linked list without 

following any sequence results into an unsorted linked list.  

Linked list can also be maintained so that it contains the data in a sorted fashion. Such a linked list is called a sorted 

linked list. In such a sorted linked list each data is added by first searching the appropriate position of the new element in 

the list, and then inserting the new element so that after insertion the list remains sorted. See (Carraway, 1996), (Shene, 

1996), (Verma and Kumar, 2013), (Sanu, 2019), (Koganti and Yijie, 2018) for different approaches for maintaining sorted 

linked list (both single and doubly linked list.) 

Adding and deleting elements from a linked list is easier compared to an array. Because, in an array, in order to insert 

an element in a particular position, all elements in the right side should be shifted to make a space for the new element. 

Similarly, after deleting an element from an array, all elements in the right should be shifted left to fill out the space 

created after deletion. In contrast, addition and deletion are easier in linked lists, as only the pointers of a very few nodes 

need to be updated. See (Cormen et al., 2009), (Weiss, 2011), (Skiena and Steven, 2020), (Goodrich and Tamassia, 2014), 

(Sedgewick and Wayne, 2011) for comparisons between linked list and array. 

Sorted linked list can have many advantages over an unsorted linked list. From a sorted linked list, a sorted sequence 

can be printed simply by traversing the elements from the starting node to the end node, and without first doing an 

expensive sorting operation on the list. The time taken by this printing will be linearly proportional to the number of 

elements in the list. Searching an element in the list is also faster in a sorted linked list, as it is not necessary to go until 

the end of the list to search the element. Starting from the head, the search can continue as long as the elements are smaller 

than the target element. Consequently, the time required for such a search will be much smaller than searching in an 

unsorted list. Similarly, deleting an element will also be faster, as searching the element that is to be deleted will take 

much shorter time. 

There are several abstract data types (ADT) which are based on arrays or trees and can maintain sorted sequence of 

data. For example, sorted array (Snyder, 2006), (Hijazi and Qatawneh, 2017), binary search trees (Knuth, 1971), (Eberl 

et al., 2020), (Nipkow et al., 2020), heaps (Haiming et al., 2017), B-Trees (Cormen et al., 2009), (Jie and Pengfei, 2017), 

and AVL Trees (Cormen et al., 2009) are some of such data structures. In sorted array, search can be performed in O(log 
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n) time by binary search. Insert and delete can be performed in O(n) time. For the other data structures, all of search, 

insert and delete can be performed in O(log n) time (Cormen et al., 2009), (Weiss, 2011), (Skiena and Steven, 2020), 

(Goodrich and Tamassia, 2014), (Sedgewick and Wayne, 2011).  

In contrast, there are some ADT that are based on linked lists and that maintain a sorted sequence of data. Skip list 

(Goodrich and Tamassia, 2014) is such a data structure. Skip list can perform search, insert and delete in O(log n) time. 

However, skip list is comparatively more complicated to implement and needs a lot of extra space.  

Sanders et al. in their book (Sanders et al., 2019) have reviewed a collection of useful and efficient data structures that 

have their keys stored in the nodes, but the raw data stored in a sorted linked list. Such data structures include binary 

search trees, (a,b)-trees, and red-black trees. The use of such data structures is in implementation of breadth-first 

heuristics, database indexing, and sweep line algorithms, among others.  

There are also some approaches for sorting elements in a linked list. Carraway (Carraway, 1996) and Shene (Shene, 

1996) proposed different approaches to perform standard sorting algorithms on single and doubly linked lists. The 

standard sorting algorithms that they considered are bubble sort, selection sort, shell sort, merge sort, quick sort, and tree-

based sorting algorithms  (Cormen et al., 2009), (Weiss, 2011), (Skiena and Steven, 2020), (Goodrich and Tamassia, 

2014), (Sedgewick and Wayne, 2011), (Haiming et al., 2017), (Jie and Pengfei, 2017), (Zhi-Gang, 2020), (Srinivasan et 

al., 2017), (Kowalski et al., 2020), (Gautam, 2020), such as heap sort (Cormen et al., 2009), (Weiss, 2011), (Skiena and 

Steven, 2020), (Goodrich and Tamassia, 2014), (Sedgewick and Wayne, 2011). Carraway (Carraway, 1996) also proposed 

a new sorting algorithm, called sediment sort, that he claims to perform better than the standard sorting algorithms on 

linked lists. Both Carraway (Carraway, 1996) and Shene (Shene, 1996) provided several experimental results on 

comparison of these sorting algorithms while implemented on linked lists. 

In an unpublished work, Verma and Kumar (Verma and Kumar, 2013) presented a sorting algorithm, called list sort, 

that works on linked lists. Their idea is to maintain several smaller linked lists of size small (say, 10 nodes) to high (say, 

10000 nodes). Each list is sorted. The lists themselves are also sorted by their first values and their last values. Elements 

are inserted into the smaller lists first if they have empty spaces. Occasionally lists are merged to get a bigger single linked 

list. The authors claim that their sorting algorithm can perform better than the standard sorting algorithms, such as quick 

sort and merge sort. 

(Sanu, 2019) presented a technique for implementing binary search in linked lists. Recall that binary search is 

performed in a sorted array (Cormen et al., 2009), (Weiss, 2011), (Skiena and Steven, 2020), (Goodrich and Tamassia, 

2014), (Sedgewick and Wayne, 2011), (Kleinberg and Tardos, 2005). Because a binary search needs to access the array 

elements by indices, it is not possible to implement binary search in a linked list in a straightforward way. In (Sanu, 2019), 

the author maintained an extra array of pointers to each node of a linked list. Thus, for finding the middle element in a 

binary search, the middle index of the extra array is used to find the middle node in the linked list. This technique is 

continued for the left and right half of the linked list as the binary search moves on. Some other works on searching in 

the linked list can be found in (Koganti, 2019). 

 

PROBLEM STATEMENT, CONTRIBUTION, AND METHODOLOGY  

All the previous works on the sorted linked list can be broadly categorized into two types. First, the works that deal 

with maintaining a sorted sequence of data. They additionally maintain data structures (such as binary search tree or an 

extra array) on top of a sorted linked list. Second, the works that sort the linked list itself. They also maintain additional 

data structures (such as layers of linked lists) on top of the original sorted link list. Therefore, both the types can be 

considered as complicated to implement and analyze.  

Based on the above observation, in this paper, the following problem is considered: Design and implement a simple 

version of single linked that can maintain a sorted sequence of data without incorporating any additional data structures. 

Moreover, analyze and compare the outcome of this new implementation with the most basic form of the single linked 

list both theoretically and experimentally. 

In order to achieve the above goal, in this paper, a simple approach is followed. The most basic form of a single linked 

list has been modified to work efficiently for maintaining a sorted sequence of data. The structure of the proposed linked 

list, called balanced linked list (BaLL for short), is little different than a sorted single linked list (also called SoLL for 

short). It has a middle node that contains the median of all data. It has two pointers: upper and lower. Upper pointer points 

to a sorted linked list and works as a head for that linked list. The data in that linked list are sorted from high to low. 

Similarly, the lower pointer points to and works as a head of another single linked list, which is sorted from low to high. 

Most common parameters for measuring the performance of a data structure like arrays and linked lists are measuring 

the running time of the basic operations. The most basic operations in this type of data structures are search, insert and 

delete (Cormen et al., 2009), (Sanders et al., 2019), (Malik, 2017), (Imran, 2020), (Wengrow, 2020). There are other 

operations such as finding maximum and minimum, merging two lists, range queries, initial building of the data structure, 

etc. In another way to say, scientists see how quickly these three operations can be performed in those data structures. In 

this paper, in order to measure the performance of BaLL and to compare with SoLL, the three operation searches, insert, 

and delete have been considered. Their running time has been measured by counting the total time taken by each of those 

operations running a large number of times with random input. 

In this paper, it has been shown that theoretically BaLL performs 50% better than SoLL while maintaining a sorted 

sequence of data and performing search, insert and delete on them. Both BaLL and SoLL have been implemented with 
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search, insert and delete, and have been compared for a variety of data. Experimental results show that the performance 

of BaLL is better than SoLL by an amount that varies from 20% to 60% and remains mostly around 50%. 

The rest of the paper is organized as follows. In the Preliminaries section, we provide some preliminaries related to 

computing the running time of algorithms that are performed on data structures. Section SoLL and BaLL reviews SoLL 

and describes BaLL in detail, and describes how search, insert and delete are performed on them. Theoretical Performance 

of BaLL section shows why theoretically BaLL can perform 50% better than SoLL. The Experimental Performance of 

BaLL section presents the experimental results. The Conclusion section concludes the paper with some future works. 

PRELIMINARIES 

It is well known that the running time of an algorithm is measured as the number of main steps that are executed in 

the worst case when the algorithm runs. The definition of “main steps” can vary for different types of algorithms. For 

algorithms such as search, insert and delete in data structures such as in linked lists and arrays, the main steps are the 

number of comparisons. In these algorithms, there are other operations, such as assignment and pointer updates. But the 

number of those operations are constant and are very small compared to the number of comparisons. Therefore, the 

number of comparisons works as a dominating factor for determining the running time of those algorithms and are 

ultimately considered as the only measure of the running time (Cormen et al., 2009), (Weiss, 2011), (Skiena and Steven, 

2020), (Goodrich and Tamassia, 2014), (Sedgewick and Wayne, 2011), (Kleinberg and Tardos, 2005). 

For such algorithms, the number of comparisons is denoted as O(f(n)). It means that the number of comparisons is no 

more than cf(n), where c is a positive constant and n is the number of elements in the data structures.  

While O(f(n)) captures the performance of almost all the common algorithms, a more precise analysis can be done by 

looking into the constant c inside O(f(n)). For example, two algorithms may have the same running time of O(f(n)), say 

O(n), but the constant inside O(n) may vary. One algorithm may have an actual running time which is no more than 2n, 

while the other algorithm may have the running time that is no more than 4n. Then by the O() notation, both algorithms 

have the same running time of O(n), but in reality the first algorithm is twice faster than the second algorithm.  

With the above observation as the main focus, recently, Hasan et al. (Hasan et al., 2020) have proposed an extended 

O() notation, where they bring forward the hidden constant c and write the running time as O(cf(n)). By their proposal, 

running time of 2n and 4n for two different algorithms will be represented as O(2n) and O(4n), so that their difference is 

easily visible by looking into the O(cf(n)) notation. The authors also supported their proposal with examples from some 

analysis of some famous algorithms such as quick sort and median finding (Hasan et al., 2020). 

The above concept will be useful in our results in this paper too for analyzing SoLL and BaLL. For all operations that 

we perform on SoLL and BaLL, the worst-case running time is the same as O(n). However, a closer look into the constant 

c inside the O(n) will reveal that the actual running time of those operations in SoLL are about n/2, whereas those for 

BaLL are about n/4. That means, theoretically BaLL is about 50% faster than SoLL. See Theoretical Performance of 

BaLL Section for details. 

SOLL AND BALL 

In this section, SoLL and BaLL will be explained in detail along with their operations search, insert and delete. Note 

that SoLL is the most basic form of a single linked list where elements can be searched, inserted, and deleted by 

maintaining the sorted sequence. (Only the name “SoLL” has been given anew in this paper.) The necessary algorithms 

for these operations in SoLL can be found in any standard textbook, such as in (Cormen et al., 2009), (Weiss, 2011), 

(Skiena and Steven, 2020), (Goodrich and Tamassia, 2014), (Sedgewick and Wayne, 2011), (Sanders et al., 2019) in 

chapters related to linked list. In particular, the book by Sanders et al. (Sanders et al., 2019) provides an entire chapter 

(Chapter 7) on data structures and algorithms that are used based on linked lists for maintaining a sorted sequence of data 

in the linked list. The basic idea is to use an additional data structure, which they call navigation data structure, for 

facilitating the search, insert and delete so that after any operation the list remains sorted. The navigation data structure 

can be a binary search tree, an (a,b)-tree, a red-black tree, etc. See Figure 1.  

 

 

 

Figure 1. Additional data structures used to maintain sorted sequence in linked list (Sanders et al., 2019). 

Sorted Linked List 

Navigation Data Structures 
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There are other approaches too to maintain a sorted sequence in SoLL. The approach followed by Carraway 

(Carraway, 1996) is to use the new sorting algorithm sediment sort in the linked list for maintaining the sorted sequence. 

He presented his algorithm for doubly linked lists. Similarly, Verma et. al. (Verma and Kumar, 2013) used the new sorting 

algorithm list sort for maintaining a sorted sequence. Shene in his paper (Shene, 1996) mentioned that other well-known 

sorting algorithms can also work for maintaining a sorted sequence in linked lists. He compared the traditional sorting 

algorithms such as selection sort, merge sort, quick sort, bubble sort, and tree-based sorting algorithms along with the 

sediment sort.  

 In either of the above-mentioned approaches, there are additional complexities of work for arranging additional data 

structures and their algorithms. Because of that, the simplicity of the standard linked list is lost. This leads to one of the 

motivations of this paper, which is to follow a simplistic approach and to work on a standard single linked list. The 

description of SoLL and its algorithms provided below can be achieved from the standard textbooks that have been 

mentioned before. However, their descriptions are precisely presented here for the completeness of the paper.  

BaLL in this paper is a new concept. Unlike SoLL, there is no previous literature to the knowledge of the author that 

explicitly works on BaLL, especially on the operations search, insert and delete in BaLL. Therefore, the description of 

BaLL as well as its algorithms as provided below will be new and have almost no scope to be analyzed with respect to 

previous work at this time.  

SOLL 

Please refer to Figure 2 and Algorithm 1. Each node in a SoLL has two fields: the data and the next pointer. Next 

points to the next node in the list. For the last node, the next points to null. There is a pointer called head that points to 

the first node of the list. Initially the list is empty and the head points to null. When SoLL is not empty, its nodes are 

sorted from low to high by their data. 

For searching an element x in a SoLL, it starts from the head and gradually moves to the next nodes by following the 

next pointers one after another until x is found (for a successful search) or there is no more node in the list (for an 

unsuccessful search). 

For inserting a new element x into the list, a new node is created with its data as x and with its next pointer as null. If 

x is the very first element of the list, then the head is made to point to this new node. Otherwise, a correct position is 

searched for x so that after the insertion the SoLL remains sorted. Then the new node is inserted in that position by 

updating the next pointer of the new node as well as the next pointer of the node after which the new node will be inserted. 

For the deletion of an element x from a SoLL, first x is searched within the SoLL. If x is found in the list, then the 

node is deleted by changing the next pointer of the previous node of x (saved during the search) to point to the node after 

x (which may be null). See Figure 2 for an illustration and Algorithm 1 for the pseudo code of search, insert, and delete 

in SoLL. 

BALL 

Please refer to Figure 3 and Algorithm 2. Each node in a BaLL, except the middle node, has two fields: the data and 

the next pointer. The middle node has three fields: the data, the upper pointer, and the lower pointer. There is a pointer 

called mid that points to the middle node. Initially, the list is empty and the mid points to null. When BaLL is not empty 

and has n elements, it consists of three parts: (1) the middle node, (2) upper sorted linked list (upper SoLL), (3) lower 

sorted linked list (lower SoLL). The middle node contains the data that is the median of the n elements. The upper SoLL 

contains the first ⎣n/2⎦ elements in a sorted sequence from high to low. The lower SoLL contains the remaining data in a 

sorted sequence from low to high. In addition, sizes of the upper and lower SoLLs are saved into two variables. These 

two variables will help maintain the size of the two SoLLs almost equal (differ by at most one.) 

For searching an element x in BaLL, it is first compared with the middle node. If it is found there, then the search 

returns mid. Otherwise, if x is smaller than the middle node, then x is searched in the upper SoLL. It starts from the first 

node of the upper SoLL and keeps going until x is found or the end of the list is reached. During this search the previous 

(denoted as prev) of the current node is recorded. This prev node will be helpful during insertion and deletion. If x is 

larger than the middle node, then it is searched similarly in the lower SoLL. 

For insertion, when the very first element is inserted into the BaLL, the middle node is created with its data as x and 

the left and right pointers as null. For each subsequent insertion of an element x, it is compared with the middle node. If 

x is the same as the middle data, then x is inserted as the first node of lower SoLL. If x is smaller than the middle data, 

then the upper SoLL is searched for an appropriate position of x by using a similar method that was used for searching 

x. By an appropriate position of x, it means that we continue going in the upper SoLL as long as the elements are bigger 

than x. During this move, the previous node (denoted as prev) of the current node is saved. When stopped, x is inserted 

as a new node after the prev. This insertion can be done by assigning the next pointer of prev to the next pointer of current 

node and by assigning the next pointer of x to the current. Similarly, if x is bigger than the middle node, then in a similar 

way it is inserted in an appropriate position in the lower SoLL. After the insertion, the upper and lower SoLLs remain 

sorted. 
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Figure 2. SoLL with search, insert and delete. The inserted elements are (shown as shaded) 1, 7, 4, 9, 5, 3, 2 and 6 in 

sequence. A searching step before inserting 9 is shown by arrows. The last three lines show the delete of 1 and 9 in 

sequence. 

 

Search in SoLL (x) 

1. Start from head 

2. While x (or null) not found 

3.        keep going by following the next node 

4.        keep track of the previous (prev) of the current node x 

5. Return the node if x found, otherwise return null 

 

Sorted Insert in SoLL (x) 

1. Search for an appropriate position of x by Search in SoLL (x) 

2. Insert x there by manipulating the next pointers of x and prev 

 

 

Delete from SoLL (x) 

1. Search for x by Search in SoLL (x) 

2. Delete x by manipulating the next pointer of prev 

Algorithm 1. Pseudo code for SoLL. 
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Figure 3. BaLL with search, insert and delete. A sequence of insertion (shown shaded) of 1, 7, 4, 9, 5, 3, 2, and 6. For 

inserting 5, it is first inserted in the lower SoLL, then it is moved to the middle node. A sequence of delete for 4, 5, 3 and 

2 is shown in the last three blocks of the picture. After deleting 4, node 5 was moved to the middle node. After deleting 

5, node 6 was moved to the middle node. 

 

For deleting an element x from BaLL, first, x is searched in the BaLL starting from the mid. If x is in the middle node, 

then it checks the upper and lower SoLLs for which one has a bigger size. The first element from that SoLL is brought at 

the middle node and that node is deleted. If they have the same size, then the first node from the lower SoLL is brought 

at the middle node. In the second case, if x is not the same as the middle node, then if it is smaller than the middle node, 

then x is searched in the upper SoLL. Otherwise, it is searched in the lower SoLL. During this search, the node previous 

to the current node is preserved. When x is found, the node containing x is deleted by changing the next pointer of the 

prev node to the next pointer of the current node.  

After each insertion or deletion, the size of the upper and lower SoLLs are updated accordingly. Moreover, if these 

two sizes differ by more than one, then the middle element is shifted to the SoLL that has smaller size and the first element 
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from the other SoLL is brought into the middle element. These can all be done by manipulating the pointers of the middle 

node as well as the first nodes of the two SoLLs. This will keep the middle node as the median of the entire BaLL after 

an insertion or a deletion. 

 

Search in BaLL (x) 

1. Compare x with mid.data. If x is same as the mid.data, then return mid 

2. If x is smaller than mid. data then 

3.           follow mid.upper pointer in upper SoLL 

4.           keep going until x (or null) is found 

5.           keep track of the previous node (prev) of the current node 

6. Else if x is or bigger than mid.data, then 

7.           follow mid.lower pointer in lower SoLL 

8.           keep going until x (or null) is found 

9.           keep track of the previous node (prev) of the current node 

10. Return the node if x found, otherwise return null 

 

Sorted Insert in BaLL (x) 

1. Search for a node that is bigger or same as x (similar to Search in BaLL(x)) 

2. Keep track of the previous (prev) of the current node 

3. Insert x after prev by manipulating the next pointers of x and prev 

4. Adjust the middle node if the size of the upper and lower SoLL differ by more than one 

 

 

Delete from BaLL (x) 

1. Search for an appropriate position of x by Search in BaLL(x) 

2. If x is in the mid node, then 

3.           delete mid 

4.           bring the first node from the upper SoLL or lower SoLL whichever has bigger size 

5.           If they have same size, then bring from the lower SoLL 

6. Else 

7.           delete x from upper or lower SoLL by manipulating the next pointer of prev 

8.           Adjust the middle node if the size of the upper and lower SoLL differ by more than one 

Algorithm 2. Pseudo code for BaLL. 

THEORETICAL PERFORMANCE OF BALL 

In this section, it has been shown that theoretically BaLL performs 50% better than SoLL. First, we prove this for 

search. Then the result will follow for insertion and deletion. 

 

Theorem 1: 

In the worst case and average case, searching an element in a BaLL takes 50% less steps than SoLL. 

Proof: 

For a SoLL, in the worst case, finding x can take n comparisons, as x may be the very last element or x may not be 

present in the SoLL. On the other hand, for a BaLL, one comparison is needed to check x to be in the middle node. Then 

the search can continue until the end of either the upper SoLL or the lower SoLL. As the size of these two SoLLs is ⎣n/2⎦, 
it will take another ⎣n/2⎦ comparisons to find x in one of those two SoLLs. So, the total number of comparisons for 

searching x is ⎣n/2⎦+1. This gives that the improvement of BaLL over SoLL is 
⌊n/2⌋  + 1 

n
× 100% 

= 50% for large values of n. 

 

 

For average cases, in the SoLL, x can be searched at any of the n positions starting from head. Assuming that the 

value x can be completely random, all positions of x, where x can be found, are equally likely. So, the average number of 

comparisons required to find x is 
1

n
(1+2+3+…+n) 

= 
n(n+1)

2n
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= 
n+1

2
 

For a BaLL, after comparing with the middle node, the search can continue until the end of the upper or lower SoLL. 

On average, x can be found anywhere from the first to the last position of that SoLL. As the size of the upper and lower 

SoLLs is ⎣n/2⎦ and each position in a SoLL is equally likely for x, the average number of comparisons required is 

1+
1

⌊𝑛/2⌋
(1+2+3+…+⌊n/2⌋) 

= 
⌊n/2⌋+3

2
 

This gives that the improvement of BaLL over SoLL for searching x is 
⌊n/2⌋  + 3 

n + 1
× 100% 

= 50%, as n gets bigger. 

This ends the proof of the theorem. 

 

Corollary 1: 

In the worst case and average case, inserting and deleting an element in a BaLL takes 50% less steps than SoLL. 

Proof: 

Once an element x is searched, insertion or deletion of x takes in addition some constant number of pointer updates 

for both SoLL and BaLL (please see the pseudo code in Figure. 3 and 5 respectively). This constant amount of extra work 

has no effect as n grows higher and higher. Therefore, as a whole, the performance of insertion or deletion of an element 

x in BaLL remains the same as that for searching, which is 50% better than in SoLL.  

This ends the proof of the corollary. 

EXPERIMENTAL PERFORMANCE OF BALL 

Both SoLL and BaLL have been implemented in C++ and run with the three operations search, insert and delete. 

Searches are done after the SoLL and BaLL are filled with elements by insert. A variety of input sizes has been taken 

with different ranges of input values. The following notations are used for explaining the experimental results below. 

I: Input size (total number of integers taken randomly one by one for search, insert, and delete) 

R: Range of input values (all I inputs have values within this range) 

TS: Time in ms taken by SoLL for doing an operation (search, insert or delete) for all I inputs 

TB: Time in ms taken by BaLL for doing an operation (search, insert or delete) for all I inputs 

M: Improvement of BaLL over SoLL, which is computed as:  

 

M =  
TS−TB

TS
× 100%. 

 

Four different values of R have been considered, which are 0 to 10, 0 to 100, 0 to 1000, and the entire range of integers 

(that means an open range). For each range R, inputs are taken for thirteen different sets with size I as 27, 28, 29, 210, 211, 

212, 213, 214, 215, 216, 217, 218 and 219. In each set, all the I number of inputs are taken randomly from R. For example, for 

I = 27 and R = 0 to 10, we have taken 27 random integers whose values are within 0 to 10. In this way, for each of the 

operations search, insert and delete, there are fifty-two input settings. See Table 1. 

In most settings, especially for the larger I, BaLL substantially outperforms SoLL for all three operations. For each 

input size, the corresponding table entry shows the total time taken by SoLL and BaLL in ms to perform that many 

operations in the list with input values taken randomly from the range. See Table 1. 

In few cases, mostly for lower values of I, BaLL does not perform better than SoLL. In those cases, the improvement 

M is negative. We do not show, and skip, those negative values in the table. 

Figure 4 shows graphically the performance of BaLL over SoLL. In each of the graphs in this figure, X-axis represents 

the higher values of input size, namely from 216 to 219. Y-axis represents the time taken by the operations in ms. From the 

graphs in this figure it is evident that as the input size I gets bigger, the performance of BaLL is increased for all value 

ranges R of the inputs. Moreover, for a higher range of R the performance of BaLL is better. This indicates that as the 

input gets more random the BaLL performs better.  

As a whole, for higher input size and large range of input values, BaLL performs better than SoLL. This indicates that 

in real life input, where the data can be completely random and can have any values, BaLL can be a suitable data structure 

for maintaining a sorted sequence of data. 
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Table 1. Experimental results of search, insert and delete in SoLL and BaLL. 

I R 
Search Insert Delete 

TS TB M TS TB M TS TB M 

27 

0-10 

0.001 0 100% 0.004 0.001 75% 0 0.001 - 

28 0 0.001 - 0.006 0.002 67% 0 0.001 - 

29 0.002 0.002 0% 0.01 0.003 70% 0.002 0.001 50% 

210 0.011 0.005 55% 0.015 0.03 - 0.006 0.004 33% 

211 0.047 0.03 36% 0.044 0.035 20% 0.027 0.013 52% 

212 0.223 0.102 54% 0.185 0.073 61% 0.117 0.05 57% 

213 0.783 0.42 46% 0.523 0.282 46% 0.446 0.182 59% 

214 2.343 1.478 37% 2.654 1.2 55% 1.285 0.678 47% 

215 6.032 3.182 47% 8.267 4.941 40% 6.501 2.297 65% 

216 59.06 25.653 57% 26.387 15.768 40% 35.134 8.154 77% 

217 456.259 200.427 56% 211.705 128.755 39% 184.006 70.315 62% 

218 3301.93 1592.32 52% 1272.31 817.431 36% 1100.45 673.198 39% 

219 14486.6 6343.68 56% 5363.31 3625.19 32% 5075.28 3209.79 37% 

27 

0-102 

0 0 - 0.002 0.009 - 0 0.001 - 

28 0 0 - 0.01 0.011 - 0 0 - 

29 0.001 0 100% 0.01 0.012 - 0.001 0 100% 

210 0.003 0.002 33% 0.018 0.012 33% 0.005 0.002 60% 

211 0.014 0.008 43% 0.04 0.019 53% 0.018 0.005 72% 

212 0.052 0.033 37% 0.138 0.064 54% 0.07 0.017 76% 

213 0.337 0.202 40% 0.515 0.356 31% 0.357 0.08 78% 

214 1.679 0.876 48% 2.177 1.549 29% 1.455 0.377 74% 

215 10.462 4.417 58% 7.774 4.536 42% 6.552 1.867 72% 

216 85.622 38.233 55% 28.113 24.2 14% 23.994 12.729 47% 

217 598.799 298.47 50% 224.464 139.593 38% 283.718 129.33 54% 

218 4016.57 2246.04 44% 1307.42 767.282 41% 1418.58 963.62 32% 

219 17324.4 8919.71 49% 5702.76 3433.34 40% 6440.65 4351.47 32% 

27 

0-103 

0 0 - 0.005 0.005 0% 0 0 - 

28 0 0.001 - 0.009 0.011 - 0 0 - 

29 0.001 0.001 0% 0.007 0.009 - 0.001 0.001 0% 

210 0.004 0.004 0% 0.009 0.008 11% 0.004 0.002 50% 

211 0.014 0.014 0% 0.013 0.012 8% 0.013 0.007 46% 

212 0.214 0.134 37% 0.036 0.029 19% 0.043 0.023 47% 

213 1.001 0.749 25% 0.159 0.3 - 0.193 0.393 - 

214 2.63 2.472 6% 0.826 1.325 - 0.91 1.084 - 

215 7.848 7.592 3% 3.997 4.254 - 4.008 2.385 40% 

216 82.647 49.903 40% 25.79 16.276 37% 24.992 18.054 28% 

217 642.513 323.513 50% 235.616 132.649 44% 290.901 138.527 52% 

218 4411.88 2379.55 46% 1314.32 746.572 43% 1532.23 1109.35 28% 

219 19027.1 8936.06 53% 5929.24 3603.88 39% 6821.12 4791.97 30% 

27 

- 

0 0 - 0.001 0.002 - 0 0 - 

28 0.001 0.001 0% 0.001 0.002 - 0.001 0 100% 

29 0.003 0.003 0% 0.002 0.004 - 0.005 0.003 40% 

210 0.013 0.01 23% 0.004 0.007 - 0.028 0.016 43% 

211 0.058 0.056 3% 0.025 0.017 32% 0.117 0.005 96% 

212 0.265 0.215 19% 0.123 0.155 - 0.416 0.32 23% 

213 1.138 0.824 28% 0.355 0.231 35% 1.728 1.006 42% 

214 7.731 2.556 67% 1.908 0.848 56% 4.367 2.672 39% 

215 12.864 7.006 46% 3.961 2.783 30% 15.353 5.267 66% 

216 139.32 50.753 64% 34.478 13.205 62% 64.993 28.515 56% 

217 694.367 357.735 48% 266.506 114.277 57% 556.135 180.845 67% 

218 3022.93 1533.62 49% 1349.03 663.232 51% 2146.6 1174.2 45% 

219 15253.2 8156.11 47% 6207.32 3124.55 50% 8465.57 4995.52 41% 
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Figure 4. Comparison of SoLL and BaLL for higher input size. 
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CONCLUSION 

In this paper, a modified version of linked list, called BaLL, has been presented for maintaining a sorted sequence of 

data. The modification is to maintain a mid-pointer instead of a head pointer of a single linked list. The two sides of the 

mid pointer are sorted from low to high and from high to low respectively. Three standard operations, search, insert and 

delete, have been considered in BaLL. Algorithms for these operations have been presented. The performance of BaLL 

has been compared with standard sorted linked list (SoLL) both theoretically and experimentally. Search, insert and delete 

operations in BaLL have been compared with similar operations in SoLL. It has been shown that theoretically BaLL 

performs 50% better than SoLL. Experimentally the performance of BaLL is better than SoLL by around 50%. 

There can be several future works possibly related to BaLL. In this paper, BaLL has been considered only for a single 

linked list. It would be interesting to see how this concept can be implemented with a doubly linked list. The experimental 

results compare BaLL with SoLL. It would be interesting to see if BaLL can be compared to other ADT that maintain 

sorted data, such as B-tree, heap, and binary search trees. The experiment in this paper has been done with computer 

generated random values. It would also be interesting to do the experiment with some real-life input data. 
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