
INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING & COMPUTER SYSTEMS (IJSECS) 
ISSN: 2289-8522     e-ISSN: 2180-0650 
VOL. 7, ISSUE 1, 57 – 66 
DOI: https://doi.org/10.15282/ijsecs.7.1.2021.6.0082 

57 *CORRESPONDING AUTHOR  |    |   taiwo774@gmail.com
© The Author(s) 2021. Published by Universiti Malaysia Pahang Al-Sultan Abdullah Publishing. This is an open access article under the CC BY-NC 4.0 International license.

ORIGINAL ARTICLE 

Improving the Accuracy of Static Source Code Based Software Change Impact 
Analysis Through Hybrid Techniques: A Review 

S.R. Yusuff1, A.O. Bajeh2, T.O. Aro3, K.S. Adewole4 

1Department of Computer Sciece, Kwara State University, Malete, Kwara State, Nigeria. 
2,4Department of Computer Science,University of Ilorin, Ilorin, Nigeria. 
3Department of Mathematical and Computing Sciences,KolaDaisi University, Ibadan, Oyo State, Nigeria 

ARTICLE HISTORY 
Revised: 02 Jan 2021 
Accepted: 07 Apr 2021 

KEYWORDS 
Software change, Software 
maintenance, Software 
evolution, Hybrid Change 
Impact Analysis, IR 
models, Topic model 

INTRODUCTION 

Change is inevitable in software engineering and maintenance [1][2]. A majority of modern day software systems are 

models of the real world which is continually changing. As a result, software systems must continuously evolve with the 

changing reality being modeled or risk becoming less useful and obsolete [3]. Typically, software systems evolve to adapt 

to new user requirements, enhance functionality and performance, changing technology and business models, fix existing 

faults amongst others [4]. Hence, software change has been identified as an indispensable characteristic and a fundamental 

element of software maintenance and evolution [5] The task of implementing changes in evolving software systems is 

non-trivial due to the size and complexity of software systems [6]. Therefore, it becomes necessary to effectively make 

an assessment of proposed changes before carrying out such changes, so as to prevent undesirable and erratic behavior of 

the system that can be caused by unidentified ripple effects of changes. Software Change Impact analysis (CIA) is the 

approach used to address this problem of change implementation [7].  A number of definitions for CIA has been given in 

ABSTRACT – Change is an inevitable phenomenon of life. This inevitability of change in the real 
world has made software change an indispensable characteristic of software systems and a 
fundamental task of software maintenance and evolution. Changes to software may arise as a 
result of feature enhancement requests, bug fixes, technological advancements amongst others. 
The continuous evolution process of software systems can greatly affect the quality and reliability 
of such systems, if proper mechanisms to manage them are not adequately provided. 
Consequently, Software change Impact Analysis (CIA) has been identified as an approach to help 
address the problem. CIA is an essential activity for comprehending and identifying the impacts of 
potential software as a way of preventing the system from entering into an erroneous state. A good 
CIA technique, is one which helps to reduce maintenance costs. Hybrid CIA technique is a blend 
of multiple CIA techniques. A number of hybrid CIA techniques have been proposed by researchers 
in the literature. However, there has been no study that reviewed Hybrid CIA techniques holistically. 
The paper tries to fill this gap by presenting a summary of the methods and techniques so far 
adopted in code based Hybrid CIA techniques with a view to suggesting possible future directions. 
A number of literature including journal articles, conference proceedings, and workshop papers 
published between 2009 and 2019 related to the topic were reviewed. The following themes were 
employed in the analysis of the review based on their mention in most of the reviewed literature: 
size and type of subject software systems; level of granularity; CIA techniques and methods; and 
evaluation metrics. The results from the review, reveals that a combination of a minimum of two 
CIA techniques is sufficient to gain improved performance.  Likewise, hybrid CIA techniques have 
always shown significant improvement in performance, over baseline technique. However, 
comparison of existing hybrid CIA techniques, in terms of performance, is yet to be carried out. In 
addition, findings from the paper, isolated Latent Semantic Indexing (LSI) as the main method 
utilized for analyzing textual source code data despite advancement in the field of Information 
Retrieval (IR). The paper further highlights areas for future research to include a performance 
evaluation of existing hybrid CIA techniques. To achieve this, it is proposed to have a universal 
benchmark source code dataset of different programming languages, size and scope. Furthermore, 
it is necessary to try out other categories of IR models such as Latent Dirichlet Allocation (LDA) 
topic model and those based on deep learning techniques like doc2vec. It would also be a good 
way forward, if other possible CIA combinations can be implemented, particularly in the aspect of 
utilizing the syntactic and semantic information inherent in source code to achieve a holistic source 
code CIA.  



S. R. Yusuff et al. │ International Journal of Software Engineering and Computer Systems │ Vol. 7, Issue 1 (2021) 

 

58   journal.ump.edu.my/ijsecs ◄ 

the literature. Noteworthy of mention, is a widely used definition of CIA defined as “ the process of identifying the 

potential consequences of a change, or estimates what needs to be modified to accomplish a change” [8]. 

    The CIA process is an iterative one that begins by identifying the initial location in the software components that 

implements some functionality in the software based on a change request [9]. This initial step can be done through some 

feature location techniques. A comprehensive survey of feature location techniques on source code data can be found in 

[10]. The result of the initial step is the identification of direct impacts due to software change, known as the change set 

or the Starting Impact Set (SIS) [9][11].  Consequently, indirect impacts that are probably affected by the components in 

the SIS are further estimated by the CIA technique. The resulting impact set is called the Estimated Impact Set (EIS) or 

Candidate Impact Set (CIS). However, not all components in the EIS are actually modified as a result of a proposed 

change; thus, the false set of components in the EIS is called the False Positive Impact Set (FPIS). The FPIS represents 

an over-estimate of impacts. Also, not all truly affected software components (called the Actual Impact Set (AIS)) are 

included in the EIS. This underestimate of impacts not reflected in the EIS is called the False Negative Impact Set (FNIS).  

The relationships between all the sets identified above are given in equations 1, 2 and 3 while a summary of the CIA 

process is depicted in Figure 1.  

 

𝐴𝐼𝑆 = 𝐸𝐼𝑆 ∪ 𝐹𝑁𝐼𝑆 – 𝐹𝑃𝐼𝑆                                                                                           (1) 

𝐹𝑃𝐼𝑆 = 𝐸𝐼𝑆 – (𝐴𝐼𝑆 ∩  𝐸𝐼𝑆)                                                                                          (2) 

𝐹𝑁𝐼𝑆 = 𝐴𝐼𝑆 – (𝐴𝐼𝑆 ∩  𝐸𝐼𝑆)                                                                                         (3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The Change Impact Analysis Process  [9][11] 

 

CIA techniques have been classified based on underlying analysis [8][9][11] and scope [12] which refers to the type 

of software artifact utilized. CIA classification based on underlying analysis is identified as traceability; dependency and 

experiential analysis while CIA techniques based on scope is given as source code; formal models; miscellaneous artifacts 

and combined scope [11] [12] 

 Traceability analysis, seeks to identify relationships between software artifacts at different scopes such as tracing the 

implementation of a source code component to its underlying design or requirement model.  Dependency analysis on the 

other hand, identifies the relationship between various components of a single software artifact. For example, dependency 

analysis can be used to identify the relationship between a method A and other methods in a source code [9]. Experiential 

Analyze change 

request and the 

software 

                                    

Estimate change 

effects 

                 

Change set 

(SIS) 

Estimated 

impact set 

(EIS) 

                         

Implement change 

request 

Actual 

impact set 

(AIS) 

False 

positive 

impact set 

(FPIS) 

False 

negative 

impact set 

(FNIS) 



S. R. Yusuff et al. │ International Journal of Software Engineering and Computer Systems │ Vol. 7, Issue 1 (2021) 

 

59   journal.ump.edu.my/ijsecs ◄ 

analysis relies on informal methods such as the expertise of project team members, discussions and meetings [11]. For a 

comprehensive review of existing CIA techniques in each classification, the reader is referred to [11][12]. 

[12] reveals that about 65% of CIA techniques are based on analysing source code for identifying change impacts. 

Source code artifact, when compared to other artifacts like formal models, documentation and configuration files, is 

available, reliable and complete, since it analyzes implementation details [9][11]. As such, a number of dependency 

analysis techniques based on analyzing source code have continued to emerge in the field.  Dependency analysis 

approaches are further classified as dynamic or static analysis based on the method utilized for obtaining the information 

needed to identify change impacts [13][14][15]. Dynamic analysis requires that program information be collected during 

runtime for estimating change impacts and as such, incurs a high overhead cost. Also, their impact set often misses a lot 

of truly affected entities, since not all program inputs are considered during analysis [9][11][12][16]. Furthermore, 

dynamic analysis can be carried out offline or online depending on whether the analysis is performed after or during the 

program execution respectively [11] [12]. On the contrary, static analysis is carried out on the program when it is not in 

execution and thus, considers all possible program behaviors. Consequently, the resulting change impacts often include 

too many false positives [9][11][12][16]. Static CIA techniques are further classified as structural, textual or evolutionary 

analysis depending on whether they analyze the structural, textual or historical information residing in software 

repositories respectively [14][17][18]. 

Structural analysis has been identified as the origin of a vast number of static CIA techniques [19]. They analyze the 

interactions and relationships among source code components such as classes and methods in software systems. Existing 

structural analysis techniques have utilized concepts like call graphs, program slicing and structural coupling metrics to 

capture relationships between software components [20][21][22][23][24]. 

 Textual analysis serves as a good complement to structural analysis by providing a way to identify conceptual 

dependencies in software. They utilize the textual source code information such as comments and identifier names which 

reflect the problem solution of the software [6 ]. CIA techniques utilizing textual source code information have relied on 

the use of Natural Language Processing (NLP) and Information Retrieval (IR) techniques such as Latent Semantic 

Indexing (LSI) [16][25][26] and Relational Topic Models (RTM) [27] for identifying the conceptual dependencies or 

couplings in software. 

Evolutionary analysis identifies co-change couplings in software repositories such as version control systems, bug 

repositories, mailing lists to mention a few [28]. The premise for this is that software entities that have frequently changed 

together in the past are likely candidates for sharing a relationship. Evolutionary analysis is carried out by mining 

information from multiple versions of the software in software repositories hence, the name Mining software Repositories 

(MSR) [29]. Data mining techniques such as Association rule and item set mining have been employed for identifying 

co-changing components in software [28][29][30]. A taxonomy of existing CIA techniques derived from the CIA 

classification in [8][9][11] is depicted in Figure 2.  

 

 

 

Figure 2. A Taxonomy of CIA Techniques 

CIA

Combined ScopeAnalysis

Traceability
Experimental 

Analysis
Source Code Formal Models

Miscellaneous 
Artifacts

Dependency 
Analysis

Dynamic 
Analysis

Static 
Analysis

Informal 
Methods

Dynamic 
Analysis

Online Offline

Textual 
Analysis

Structural 
Analysis

Historical 
Analysis

Static 
Analysis

Architectural
Model

Requirement
Model

Documentation Configuration



S. R. Yusuff et al. │ International Journal of Software Engineering and Computer Systems │ Vol. 7, Issue 1 (2021) 

 

60   journal.ump.edu.my/ijsecs ◄ 

Regardless of the underlying analysis and scope of the CIA, the overarching goal of the CIA is to achieve an EIS that 

is as close as possible to the AIS. The precision and recall metrics from the Information retrieval domain have been used 

extensively for evaluating the performance of CIA techniques [9][11][21][26]. In the context of software CIA, the 

precision metric measures how much of the EIS correlates with the AIS while the recall metric is a measure of how 

complete the EIS is.  The precision and recall metrics are given in equations 4 and 5. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
AIS ∩  EIS

EIS
                                                                                        (4) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =    
AIS ∩  EIS

AIS
                                                                                              (5) 

 

While some CIA techniques overestimate the level of change impact thereby producing false positives, others 

underestimate them thereby producing false negatives. Thus, achieving a good balance between precision and recall is 

highly desired of any valuable CIA technique in order to reduce the efforts of software maintainers as well as to ensure 

that all impacts are considered. As such, the F-measure metric is also employed to avoid optimizing for either precision 

or recall [18]. This is defined as the harmonic mean of precision and recall and is given as:  

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =    
2 × Precision × Recall

Precion + Recall
                                                        (6) 

 

Accordingly, studies have proposed hybrid CIA techniques which are a blend of two or more CIA techniques utilizing 

the same or different analysis approach. Results from these studies have shown that a combination of multiple CIA 

techniques can improve performance by complementing one another [16][19] [28][29][31]. These promising results are 

the motivation for the current paper on hybrid CIA techniques with a view to not only discussing the state of art in code 

based hybrid CIA techniques but also identifying areas for future studies that could bring about further improvement. 

This will go a long way in ensuring that efforts spent on maintaining software is significantly reduced while ensuring that 

all impacts of a proposed change are considered.  

The rest of the paper is organized as follows: Section 2 presents the methodology adopted for the review. Section 3 

explores existing hybrid CIA techniques with emphasis on static source code techniques while section 4 presents 

discussion on the findings of the paper. Finally, the conclusion and future direction is given in section 5.  

 

RESEARCH METHOD  

This section describes the research methodology and the review process of the paper. The following research questions 

were formulated for the review with a view to summarizing the state of art in static code based hybrid CIA and also give 

recommendations for future research. 

 

RQ1 What number of techniques have been combined for code based hybrid CIA? 

RQ2 What types of techniques and combination strategies have been utilized thus far for code based Hybrid CIA? 

RQ3 What metrics have been used to evaluate the performance of code based hybrid techniques? 

RQ4 What is the future direction for code based hybrid CIA? 

To address the research questions listed above, the study adopted a three-stage process proposed in [9]. The steps are 

given as follows: 

1. Literature Search: The literature search was carried out on the following electronic databases and search engine with 

an extensive reportage on the topic: 

• IEEE Computer Society Digital Library (http://ieeexplore.ieee.org/) 

• Elsevier (http://www.sciencedirect.com/ ) 

• ACM Digital Library (http://portal.acm.org/ ) 

• Academia.com 

• GoogleScholar 

The following keywords were employed in the initial search: ‘impact analysis’ OR ‘static based impact analysis’ OR 

‘source code impact analysis’ OR ‘hybrid impact analysis’.  A total of 654 papers were found from the initial search 

which was indexed using the title, abstract and keywords.  

 

2.  Selection of relevant study: Next, the search result from the first step was refined based on the specified exclusion 

and inclusion criteria. The following exclusion criteria were utilized on the search result: 

http://ieeexplore.ieee.org/
http://www.sciencedirect.com/
http://portal.acm.org/


S. R. Yusuff et al. │ International Journal of Software Engineering and Computer Systems │ Vol. 7, Issue 1 (2021) 

 

61   journal.ump.edu.my/ijsecs ◄ 

1. The research utilized only a single technique 

2. The research combined other CIA techniques that excluded source code 

3. The research did not include any static analysis. 

At the end of this step, only about 48 papers were left in the selection process. A further refinement was carried out 

using the following inclusion criteria: 

1. The research utilized more than one technique. 

2. The research included at least one static source code analysis technique 

3. The research carried out empirical evaluation of the CIA technique. 

A total of 6 studies were found to meet the criteria and were selected for the review.  

 

3. Extraction of relevant information:  Detailed study of the selected papers was carried out and relevant information 

was extracted. Table 1 gives a summary of the selected papers classified based on the literature type. 

 

Table 1. Summary of selected papers. 

Paper type Description Author/Year Type of Analysis Techniques used Empirical 

evaluation 

Conference 

proceedings 

 

 

Working 

Conference on 

Reverse 

Engineering 

(WCRE) 

[28] Textual and Historical Latent Semantic 

Analysis (LSI) 

and item set 

mining were used. 

Precision and 

Recall metric 

European 

Conference on 

software 

maintenance and 

Reengineering 

(CSMR) 

[19] Structural and dynamic Program Graph 

and Execute After 

Sequence (EAS) 

Precision and 

Recall 

International 

Conference on 

software 

Engineering 

(ICSE) 

[29] Textual, dynamic and 

historical  

LSI, Execution 

traces and item 

set mining 

Precision and 

Recall 

Journal 

Advances in 

Engineering 

Software 

[20] Structural  Concept lattice 

and call graph 

Precision and 

Recall 

Journal of 

computers and 

application 

[25] Structural and textual  LSI and method 

dependencies 

Precision and 

Recall 

Scientific 

programming 

[16] Textual    LSI and doc2vec Precision, 

Recall and F-

measure 

  

RELATED WORK 

This section presents a review of code based hybrid CIA techniques. However, it is imperative to mention previous 

reviews on CIA to have an understanding of what has been done on the topic. 

[12] presented a comprehensive investigation of the CIA based on a literature review and taxonomy for CIA. A 

summary and classification of about 150 CIA approaches was presented based on the taxonomy. The CIA techniques 

were analyzed based on the scope of the artifact. Findings from the study revealed that about 65% of the reviewed papers 

were based on analyzing source code changes, 11% analyzed change impacts on software architectures, 7% analyzed 

requirement documents, 4% analyzed miscellaneous artifacts such as  documentation and configuration files while 13% 

combined two or more software artifacts in their analysis. The study also showed that about 33% of all approaches were 

not empirically validated. The study however included only those techniques that existed before the year 2012. With 

advancement in the field, there is a need for more studies to be carried out.  In another study, [9] presented a review of 

23 code based change impact analysis techniques. A comparative framework based on seven properties was proposed for 

characterizing CIA techniques and areas of further research was suggested. Although the study is closely related to the 

current paper, it did not extend beyond the year 2010 with no emphasis on hybrid techniques. 

More recently, [11] presented a systematic review of the recent development, techniques and tools for the CIA. A 

total of 33 papers were considered which cut across traceability analysis, dependency analysis and dynamic analysis. 

Results from the study revealed that traceability and dependency analysis were the most worked on approaches. However, 

the focus of the paper was not on source code or hybrid CIAtechniques.  



S. R. Yusuff et al. │ International Journal of Software Engineering and Computer Systems │ Vol. 7, Issue 1 (2021) 

 

62   journal.ump.edu.my/ijsecs ◄ 

The current paper differs from previous reviews in that  it focuses on CIA techniques that have combined two or more 

techniques, particularly those having at least one static source code analysis in them. Moreso, recent CIA techniques not 

covered in some of the previous preview are considered.  

An early attempt at combining multiple CIA techniques is found in the study by [28] which combined textual and 

evolutionary approaches for CIA. Their approach utilized an Information retrieval technique known as Latent Semantic 

Indexing on textual source code data to derive conceptual coupling from a single version of the source code while 

evolutionary couplings were derived from source code commits in multiple versions of the software using item set mining. 

Results of their experiment on five open source software systems showed better performance over the baseline techniques 

particularly when disjunctive combination was used. An improvement of up to 20% and 45% in recall was reported over 

baseline IR and evolutionary techniques respectively. 

[19] also proposed a hybrid CIA technique based on a combination of static and dynamic analysis. The technique 

utilized program graphs extracted from the source code in identifying structural dependencies and Execute After sequence 

(EAS) from software traces to identify dynamic dependencies between source code entities. The final change impacts 

were ranked based on dynamic dependencies. Evaluation of the technique was carried out on five software systems at the 

method and class level of granularity. Results of their experiment were compared with baseline static and dynamic 

analysis techniques using the precision and recall metrics. An improvement in recall values of between 90 and 115% over 

baseline static structural technique and between 21.2% and 39% over baseline dynamic technique was observed. 

However, precision scores did not match up to that of baseline structural analysis technique although not worse than that 

of dynamic analysis. It was also observed that the use of dynamic analysis incurred additional time overhead resulting 

from collecting run- time information.  

Another study in this direction is found in [29] which proposed a scenario-driven CIA approach based on a 

combination of IR, dynamic analysis and evolutionary analysis. Their technique utilized LSI on a single version of textual 

source code data based on some change request. The technique configured the best-fit combination should additional 

sources of information such as execution traces and source code commits be available. Results of their experiments on 

four open source systems showed that a combination of all three CIA approaches yielded the best result when compared 

to a combination of any two techniques. Nonetheless, all forms of combination performed better than the individual 

techniques with improvements in precision and recall values of about 17% and 41% respectively.  

The study [20] combined concept lattice and call graph at the class and method level of granularity to obtain a ranked 

list of change impacts. Concept lattice was used to predict class level changes and call graph was then applied on method 

level changes obtained thereafter. A disjunctive combination method was used to obtain the final change impacts. Results 

of the experiments carried out on four real-world programs showed an improvement of between 18 and 20% in precision 

when compared with results from either concept lattice or call graph without severely decreasing recall. However, more 

time overhead was incurred. 

[25] proposed a new conceptual coupling metric based on the analysis of structural and semantic relationships between 

methods and classes of object-oriented systems. The technique augmented the conceptual coupling metric based on LSI 

presented in [26] with method dependencies and their direct dependencies along with the cosine similarity of their LSI 

representation. Results from experiments on six subject systems showed that the metric was able to capture aspects of 

coupling among classes not captured by existing structural and conceptual coupling metrics. Also, the new metric also 

showed a better performance on average in ranking classes required to effect a change as well as in tasks of fault proneness 

and software maintainability. 

In [16], an approach to support the CIA that integrates multiple IR techniques was proposed. A combination of LSI 

and doc2vec was used to derive conceptual couplings from the textual source code data. They also proposed an algorithm 

for directly computing Cosine and Euclidean similarity functions and performed experiments on three open source 

software systems. Experimental results based on precision, recall and F-score measures indicated a significant 

improvement of between 7.3% and 17.3% in F-score values over the baseline techniques. 

DISCUSSION  

This section presents insights gained from the study in a bid to summarize the state of art in code based hybrid CIA 

techniques and also provide recommendations for further research. The discussion is centered around the research 

questions formulated in section 2 and provided the findings of the review. For clarity purposes the discussion has been 

classified viz-a-viz the following points based on the formulated research questions: subject systems; combination 

strategy and method; level of granularity of software; and evaluation metrics. This is presented as follows: 

SUBJECT SOFTWARE SYSTEMS  

      A good number of the software systems utilized for evaluating the CIA techniques presented are open source systems 

written in Java with only a few of the systems written in C/C++. The reason for this may not be unrelated to the advantages 

offered by java such as ease, platform independent, ability to handle large high level software systems amongst others 

which has made it a first choice in many enterprise software solutions in the market. Also, it was observed that the sizes 

of the software systems utilized have varied between 678 and 367KLOC. It was also identified that three subjects systems 

have been used for evaluating the techniques on an average.  

Nonetheless, there is a need to evaluate CIA techniques across a variety of software written in different programming 

languages and having different features, functionalities and sizes. A comparison of the hybrid CIA techniques surveyed 

based on the subject systems utilized is summarized in Table 2. 



S. R. Yusuff et al. │ International Journal of Software Engineering and Computer Systems │ Vol. 7, Issue 1 (2021) 

 

63   journal.ump.edu.my/ijsecs ◄ 

 

Table 2. Comparison of Hybrid Techniques Based on Subject Software Systems 

 

 

 

 
 
 
 
 
 
 
 
 
 

 
 
COMBINATION METHODS AND STRATEGIES  

 All hybrid CIA techniques surveyed except one combined two CIA techniques.  This shows that a combination of two 

techniques is sufficient to bring about an improvement in the accuracy of estimated impacts without incurring too much 

time overhead. Also, all hybrid techniques analyzing textual source code data have utilized Latent Semantic Indexing 

(LSI) for computing conceptual dependencies. However, LSI has been found not to have some shortcomings such as the 

inability to effectively resolve polysemy problems and also difficulty in interpretation of results thereby affecting its 

performance [32][33]. Since  the choice of Information Retrieval (IR) model employed for textual analysis is crucial to 

getting best results for analyzing textual information and overall best results for estimating source code change  impacts 
[34][35] , there is a need to utilize other categories of  IR models, particularly topic models like Latent Dirichlet Allocation 

(LDA) and its extensions as well as those based on deep learning techniques. Another point worthy of mention is the fact 

that hybrid techniques which rely on run time or evolutionary information may not always be applicable since such 

information may not be available. It is therefore necessary to come up with hybrid techniques that depend on sources of 

information like the structured and textual information found in source code data which will always be available. A 

comparison of the hybrid CIA techniques surveyed based on the types of CIA techniques utilized is given in Table 3.  

 

Table 3. Comparison of Hybrid Techniques Based on Type of CIA Techniques Utilized 

 

Author, year                                                        Combination Techniques                        

                                                 CIA approaches                                                     Number of techniques     

                              Structural          Textual         Evolutionary         Dynamic      

[28]                                -                      LSI                 Itemset                      -                                    2 

                                                                                   mining 

[19]                          Program                  -                       -                     Execution                             2 

                                graph                                                                    traces 

[29]                                -                      LSI                 Itemset              Execution                             3 

                                                                                     mining               analysis 

[20]                           Formal                                                                                 

                                  Concept                 -                       -                            -                                     2 

                                  Lattice &                                              

                                  Call graph 

[25]                           Structural             LSI                     -                           -                                     2 

                                  Coupling                                                

[16]                                 -                     LSI &                  -                          -                                     2 

                                                             doc2vec 

 
LEVEL OF GRANULARITY 

 Granularity levels adopted by the surveyed techniques have varied between methods, classes and file levels of 

granularity with a majority of the techniques utilizing the method level granularity. This may be as a result of the fine 

Author, year                                                                Subject systems                        

                                         Programming Languages      Size of system       number of systems     

                                            Java     C++        C 

[28]                                       √           √            √                70-367KLOC                         4 

[19]                                       √           √            √                678-5969LOC                       5 

[29]                                       √            -             -                74-148KLOC                        4 

[20]                                       √            -             -                10-149KLOC                        4 

[25]                                       √           -             -                          -                                    6 

[16]                                       √           -            -                  74-103KLOC                        3 



S. R. Yusuff et al. │ International Journal of Software Engineering and Computer Systems │ Vol. 7, Issue 1 (2021) 

 

64   journal.ump.edu.my/ijsecs ◄ 

grained details provided by method level granularity as compared to the coarse details provided by file granularity level. 

Still, a few studies have combined two granularity levels. Nevertheless, there is a need to incorporate a variable granularity 

level in hybrid CIA techniques, such that the software maintainers can decide on the level of granularity to work on. [22] 

proposed a CIA technique which allowed software maintainers to select a variable granularity level when performing 

CIA. Table 4 denotes the granularity levels adopted in the hybrid CIA techniques. 

     

   Table 4. Comparison of Hybrid CIA Techniques Based on Level of Granularity 

Author, year                                                        Level of Granularity                        

                                         Method     Class       File        Change Request      Variable granularity   

[28]                                       √                -              √                 -                                - 

[19]                                       √               √              -                  -                                - 

[29]                                       √                -               -                 √                               - 

[20]                                       √               √               -                  -                               - 

[25]                                       √               √               -                  -                               - 

[16]                                       √                -               -                  -                               - 

 
EVALUATION METRICS 

 Precision and recall are two widely used metrics for evaluating CIA techniques. However, these metrics are reciprocal 

and so, may not be able to give adequate insight into the performance of the CIA technique. Thus, the need to utilize the 

F-score measure to reflect the true performance of the technique. Unfortunately, only two of the surveyed techniques 

made use of the F-score measure for evaluating their technique, others relied solely on the precision and recall metrics. 

Additionally, it was observed that evaluation in all surveyed techniques was based on comparison with the baseline 

techniques. While this has revealed the strength of combining multiple CIA techniques, it however fails to evaluate the 

performance of the techniques against other hybrid techniques. To effectively carry out such evaluations, there is a need 

for a benchmark dataset which will include all information sources such as source code, run time and evolutionary 

information. Table 5 presents the evaluation parameters used in the studies. 

 

Table 5. Evaluation of Hybrid CIA Techniques 

Author, year                                                        Evaluation Techniques                        

                                                      Accuracy Metrics                                         Mode of Comparison     

                                                   Precision         Recall       F-Measure             Baseline                Hybrid 

[28]                                                √                      √                 -                              √                          - 

[19]                                                √                      √                 -                               √                         - 

[29]                                                √                      √                 -                               √                         - 

[20]                                                √                      √                 -                               √                         - 

[25]                                                √                      √                 -                                √                       - 

[16]                                                √                      √                 √                               √                       - 

 

CONCLUSION 

This paper reviewed studies that have combined at least one static code CIA approach for predicting impacts of 

proposed software changes. Results from the review revealed that code based hybrid CIA techniques have consistently 

shown the capability of improving the accuracy of estimated impacts when compared to the baseline techniques. The 

paper juxtaposed the different hybrid CIA techniques based on the software systems used in the studies, the combination 

techniques used, the level of granularity of the analysis and evaluation metrics. Predominantly, Java-based software 

systems have been used followed by C/C++ software. All the studies, except [29] combined only two techniques which 

indicated that a minimum of two techniques is enough to achieve improvement in code based hybrid techniques. 



S. R. Yusuff et al. │ International Journal of Software Engineering and Computer Systems │ Vol. 7, Issue 1 (2021) 

 

65   journal.ump.edu.my/ijsecs ◄ 

Furthermore, method-level granularity has been the most considered level of granularity in the studies while the precision 

and recall metrics have mostly been employed for evaluating Code based CIA techniques. Consequently, the following 

are recommendations from the review: More studies need to be carried out to not only validate the results achieved so far 

but also to explore other possible combinations that have not been studied. These studies should include a combination 

of structural, textual, evolutionary and dynamic CIA approaches that need to be considered. In doing so, several 

techniques under each approach can be explored. Also, there is a need to consider variable granularity levels in a single 

technique in order to give room for options for the maintainers. Most of the techniques involving textual analysis have 

utilized the LSI model as such, there is a need to consider other models such as Latent Dirichlet Allocation (LDA) and 

those based on deep learning in order to compare performance. In addition, there is a need to carry out a comparative 

analysis on the performance of existing code based hybrid CIA techniques in order to shed more light on further research. 

This however may require the need for a benchmark source code dataset to allow for a fair comparison as well as the need 

to include additional evaluation criteria such as time taken for analysis.  

 

REFERENCES  
 

[1] A. O. Bajeh, B. Shuib, and T. . Low, “Empirical Validation of Object-Oriented Inheritance Hierarchy 

Modifiability Metrics,” in Proceedings of the 6th International Conference on Information Technology and 

Multimedia (ICIMU), 2014, pp. 189–194. 

[2] A. O. Bajeh, M. A. Olatunji, and R. O. Oladele, “Investigating Self-Regulation Property of Evolving Open Source 

Systems: An Empirical Study,” J. Sustain. Technol., vol. 10, no. 1, pp. 68–76, 2019. 

[3] M. W. Godfrey and D. M. German, “The Past , Present and Future of Software Evolution,” in 2008 Frontiers of 

Software Maintenance (FoSM), 2008, pp. 129–138. 

[4] G. Canfora et al., “In Memory of Manny Lehman, ‘Father of Software Evolution,’” J. Softw. Maint. Evol. Res. 

Pract., vol. 23, no. 3, pp. 137–144, 2011, doi: 10.1002/smr.537. 

[5] V. Rajlich, “Software Evolution and Maintenance,” in Proceedings of the Future of Software Engineering - FOSE 

2014, 2014, pp. 133–144, doi: 10.1145/2593882.2593893. 

[6] M. Alenezi, “Extracting High-Level Concepts from Open-Source Systems,” Int. J. Softw. Eng. its Appl., vol. 9, 

no. 1, pp. 183–190, 2015, doi: 10.14257/ijseia.2015.9.1.16. 

[7] W. Chen, “A Hybrid Software Change Impact Analysis for Large-scale Enterprise Systems,” Mcmaster 

University, School of Graduate Studies, 2015. 

[8] S. Bohner and S. A. Arnold, “An Introduction to Software Change Impact Analysis,” in Software Change Impact 

Analysis, Los Alamitos, CA, USA: IEEE Computer Society Press, 1996, pp. 1–26. 

[9] B. Li, X. Sun, H. Leung, and S. Zhang, “A Survey of Code-Based Change Impact Analysis Techniques,” J. Softw. 

Testing, Verif. Reliab., vol. 23, no. 8, pp. 613–646, 2012, doi: 10.1002/stvr. 

[10] A. Dhamija and S. Sikka, “A Systematic Review of Feature Location Techniques Under Software Change Impact 

Analysis,” Int. J. Comput. Sci. Eng., vol. 7, no. 3, pp. 184–192, 2019. 

[11] A. Dhamija and S. Sikka, “A Systematic Study of Advancements in Change Impact Analysis Techniques,” Int. 

J. Innov. Technol. Explor. Eng., vol. 8, no. 8, pp. 435–443, 2019, [Online]. Available: http://ieeexplore.ieee.org. 

[12] S. Lehnert, “A Review of Software Change Impact Analysis,” Ilmenau, Germany, 2011. [Online]. Available: 

http://www.db-thueringen.de/servlets/DocumentServlet?id=19544. 

[13] N. Ajienka, A. Capiluppi, and S. Counsell, “Managing Hidden Dependencies in OO Software : A Study based on 

Open Source Projects,” in In Proceedings of the 11th ACM/IEEE International Symposium on Empirical Software 

Engineering and Measurement (ESEM), 2017, pp. 141–150, doi: 10.1109/ESEM.2017.21. 

[14] X. Sun, B. Li, H. Leung, B. Li, and J. Zhu, “Static Change Impact Analysis Techniques: A Comparative Study,” 

J. Syst. Softw., vol. 109, pp. 137–149, 2015, doi: 10.1016/j.jss.2015.07.047. 

[15] S. Basri, N. Kama, R. Ibrahim, and S. A. Ismail, “A Change Impact Analysis Tool for Software Development 

Phase,” Int. J. Softw. Eng. its Appl., vol. 9, no. 9, pp. 245–256, 2015, doi: 10.14257/ijseia.2015.9.9.21. 

[16] W. Wang, Y. He, T. Li, J. Zhu, and J. Liu, “An Integrated Model for Information Retrieval Based Change Impact 

Analysis,” Sci. Program., vol. 2018, pp. 1–21, 2018, doi: 10.1155/2018/5913634. 

[17] X. Sun, X. Liu, J. Hu, and J. Zhu, “Empirical studies on the NLP techniques for source code data preprocessing,” 

in ACM International Conference Proceeding Series, 2014, no. May, pp. 32–39, doi: 10.1145/2627508.2627514. 

[18] X. Sun, B. Li, B. Li, and W. Wen, “A comparative study of static CIA techniques,” in 4th Asia-Pacific Symposium 

on Internetware, Internetware 2012, 2012, pp. 1–8, doi: 10.1145/2430475.2430498. 

[19] M. C. O. Maia, R. A. Bittencourt, J. C. A. De Figueiredo, and D. D. S. Guerrero, “The Hybrid Technique for 

Object-Oriented Software Change Impact Analysis,” in 2010 14th European Conference on Software 

Maintenance and Reengineering, 2010, pp. 252–255, doi: 10.1109/CSMR.2010.48. 

[20] B. Li, X. Sun, and H. Leung, “Combining Concept Lattice with Call Graph for Impact Analysis,” Adv. Eng. 

Softw., vol. 53, pp. 1–13, 2012, doi: 10.1016/j.advengsoft.2012.07.001. 

[21] X. Sun, B. Li, C. Tao, W. Wen, and S. Zhang, “Change Impact Analysis based on a Taxonomy of Change Types,” 

in Proceedings - International Computer Software and Applications Conference, 2010, pp. 373–382, doi: 

10.1109/COMPSAC.2010.45. 

[22] M. Petrenko and V. Rajlich, “Variable Granularity for Improving Precision of Impact Analysis,” in 17th IEEE 



S. R. Yusuff et al. │ International Journal of Software Engineering and Computer Systems │ Vol. 7, Issue 1 (2021) 

 

66   journal.ump.edu.my/ijsecs ◄ 

International Conference on Program Comprehension (ICPC’09), 2009, pp. 10–19. 

[23] X. Li and Y. Yin, “A Unified Framework for Software Coupling Measurement,” in In Proceedings of 2nd 

International Conference on Software Engineering, Knowledge Engineering and Information Engineering 

(SEKEIE 2014), 2014, no. January 2014, pp. 156–161, doi: 10.2991/sekeie-14.2014.37. 

[24] L. C. Briand, J. Wuest, and H. Lounis, “Using coupling measurement for impact analysis in object-oriented 

systems,” in Conference on Software Maintenance, 1999, pp. 475–482, doi: 10.1109/icsm.1999.792645. 

[25] M. Alenezi and K. Magel, “Empirical Evaluation of a New Coupling Metric: Combining Structural and Semantic 

Coupling,” Int. J. Comput. Appl., vol. 36, no. 1, pp. 34–44, 2014, doi: 10.2316/Journal.202.2014.1.202-3902. 

[26] D. Poshyvanyk, A. Marcus, R. Ferenc, and T. Gyimóthy, “Using Information Retrieval Based Coupling Measures 

for Impact Analysis,” Empir. Softw. Eng., vol. 14, no. 1, pp. 5–32, 2009, doi: 10.1007/s10664-008-9088-2. 

[27] M. Gethers and D. Poshyvanyk, “Using Relational Topic Models to Capture Coupling among Classes in Object-

Oriented Software Systems,” in In 2010 IEEE International Conference on Software Maintenance, 2010, pp. 1–

10, doi: 10.1109/ICSM.2010.5609687. 

[28] H. Kagdi, M. Gethers, D. Poshyvanyk, and M. L. Collard, “Blending conceptual and evolutionary couplings to 

support change impact analysis in source code,” in Proceedings - Working Conference on Reverse Engineering, 

WCRE, 2010, pp. 119–128, doi: 10.1109/WCRE.2010.21. 

[29] M. Gethers, B. Dit, H. Kagdi, and D. Poshyvanyk, “Integrated impact analysis for managing software changes,” 

in Proceedings - International Conference on Software Engineering, 2012, pp. 430–440, doi: 

10.1109/ICSE.2012.6227172. 

[30] H. Kagdi, M. Gethers, and D. Poshyvanyk, “Integrating conceptual and logical couplings for change impact 

analysis in software,” Empir. Softw. Eng., vol. 18, no. 5, pp. 933–969, 2013, doi: 10.1007/s10664-012-9233-9. 

[31] H. Cai, R. Santelices, and S. Jiang, “Prioritizing Change-Impact Analysis via Semantic Program-Dependence 

Quantification,” in IEEE Transactions on Reliability, 2016, vol. 65, no. 3, pp. 1114–1132, doi: 

10.1109/TR.2015.2481000. 

[32] L. H. Anaya, “Comparing Latent Dirichlet Allocation and Latent Semantic Analysis as Classifiers,” University 

of North Texas, 2011. 

[33] S. K. Lukins, N. A. Kraft, and L. H. Etzkorn, “Bug Localization using Latent Dirichlet Allocation,” Inf. Softw. 

Technol., vol. 52, no. 9, pp. 972–990, 2010, doi: 10.1016/j.infsof.2010.04.002. 

[34] M. Belford, B. Mac Namee, and D. Greene, “Stability of topic modeling via matrix factorization,” Expert Syst. 

Appl., vol. 91, pp. 159–169, 2018, doi: 10.1016/j.eswa.2017.08.047. 

[35] A. Agrawal, W. Fu, and T. Menzies, “What is Wrong with Topic Modeling?( and How to Fix it Using Search-

based Software Engineering),” in Information and Software Technology, 2018, vol. 98, pp. 74–88, doi: 

10.1016/j.infsof.2018.02.005. 

 

 

 

 

 

 

 

 

 


