
International Journal of Software Engineering and Computer Systems (IJSECS)

ISSN: 2289-8522, Volume 5 Issue 2, pp. 15-25, August 2019

©Universiti Malaysia Pahang

https://doi.org/10.15282/ijsecs.5.2.2019.2.0058

 15

EMS: AN ENHANCED MERGE SORT ALGORITHM BY EARLY CHECKING

OF ALREADY SORTED PARTS

Mutaz Rasmi Abu Sara, Mohammad F. J. Klaib, and Masud Hasan

Department of Computer Science, Taibah University, Al-Medina, Saudi Arabia

{mabusara, mklaib, hmasud}@taibahu.edu.sa

ABSTRACT

Merge sort is one of the asymptotically optimal sorting algorithms that is used in many

places including programming language library functions and operating systems. In this

paper, an enhanced merge sort algorithm (EMS) has been presented, which in practice

shows substantial improvement in running time than the top-down and bottom-up

implementations of the classical merge sort. EMS works as a bottom-up manner and the

modifications happen in three places: (a) given n elements in an array, first, the

algorithm considers the array as n/2 consecutive pairs and sorts each pair in-place by

one comparison; (b) in subsequent steps, during the ”merge” process of two subarrays,

if the last element in the left subarray is smaller than the first element in the right

subarray, the algorithm simply returns; and (c) if the last element in the right subarray is

smaller than the first element in the left subarray, then the algorithm swaps the elements

in the two subarrays by their entirety. Steps (b) and (c) happen in-place. For the case not

in (b) or (c), the algorithm follows the classical merge technique with an extra array.

Experimental results show that case (b) and (c) happen a good amount of time in

practice and that is the reason that EMS gives better running time than the classical

merge sort.

Keywords: Sorting, Merge sort, Merging, Top-down and bottom-up Merging,

Experimental results

INTRODUCTION

Merge sort is a comparison-based sorting algorithm. It has asymptotically optimal

running time of O(n log n) in worst case and average case. Quick sort and heap sort are

the two other comparison-based sorting algorithms that have similar optimal running

time. Quick sort’s average case running time is O(n log n) and worst case running time is

O(n
2
). Whereas, heap sort has running time O(n log n) in both worst case and average

case (Cormen, 2009), (Knuth, 1998).
Although asymptotically (by the order notation (O)), the above three sorting

algorithms are almost similar, user preferences are quite different from the practical point
of views. In practice, on average, quick sort is faster than merge sort when the data are
stored in an array. However, for a linked list, where the data can be efficiently accessed
sequentially, merge sort performs better than quick sort. Merge sort also performs better
than quick sort for O(nlog2n) groups (Zeyad, 2016).

Merge sort is popular in some programming languages, such as in Lisp (whose

name stands for list processing). Some versions of Perl use merge sort as their default

sorting function. In Java’s Array.sort() methods, merge sort is used along with quick sort

depending on the data types. Linux kernel uses merge sort for sorting linked list. A

mailto:mabusara,%20mklaib,%20hmasud%7d@taibahu.edu.sa

Mutaz Rasmi et al/International Journal of Software Engineering and Computer Systems 5(2) 2019 15-25

16

comparative discussion on the places where merge sort is popular can be found in this

reference (Zeyad, 2016).

There are several variations of merge sort (Knuth, 1998), (Abhyankar, 2011),

(Mergen, 2017), (Kim, 2007), (Buss, 2019), (Kim, 2008), (Kim, 2006), (Kim, 2004),

(Katajainen, 1996), (Jafarlou, 2011), (Paira, 2016), (Katajainen, 1997) including several

implementations (Katajainen, 1997). Two basic implementations of merge sort are top-

down and bottom-up. In a top-down implementation, the input array is divided into two

subarrays of equal size recursively until each subarray contains a single element. Then

the subarrays are iteratively merged back in opposite order into the original array, but in

sorted order. Algorithm 1 below provides the pseudo code of the divide and merge

procedures of the top-down merge sort. In all pseudo codes, we assume that the input

size (i.e., the number of elements in the input array) is power of two.

In a bottom-up implementation, the input array is considered to be already

divided into n subarrays of one element each. Then it merges the subarrays iteratively to

produce the sorted array. The merge procedure used in a bottom-up merge sort is the

same as the one used in the top-down merge sort. (Also see Section 2.) In the merge

procedure that is used in both the top-down and the bottom-up merge sort, each time an

extra array is used for merging process. First, the elements of the two subarrays that are

to be merged are copied into the extra array. Then the elements are merged back into the

original array in sorted order. See Algorithm 2 for the pseudo code of the merge

procedure.

The use of an extra array puts merge sort in a little disadvantageous position, as it

takes some extra time to copy the elements to and from the extra array. Quick sort, on the

other hand, does not use any extra storage, and that is why, it is an in-place sorting

algorithm. There are many attempts (Kim, 2008) (Kim, 2006), (Katajainen, 1996) to

implement merge sort in-place, without much success in improving running time.

Algorithm 1 Pseudo code of top-down merge sort

procedure TOP DOWN MERGESORT(A, L, R)

if L < R then

M = (L + R)/2

end if

MERGESORT(A, L, M)

MERGESORT(A, M + 1, R)

MERGE(A, L, M, M + 1, R)
end procedure

Contribution in this paper

In this paper, an enhanced version of the merge sort, called EMS, is presented. The

algorithm works as a bottom-up manner. Given n elements in an array A, EMS modifies

the bottom-up merge sort algorithm in three ways. First, the algorithm considers A as n/2

consecutive pairs. Each pair is sorted within A by one comparison. The next steps are

“merge” process similar to the classical merge sort. However, before the two subarrays

are merged into a bigger one, EMS checks whether the subarrays are in complete or

partial sorted order. Based on that, it skips the merge process and thus saves some

running time.

EMS: An enhanced merge sort algorithm by early checking of already sorted parts, Saudi Arabia

17

We have implemented EMS and have compared with the top-down and the

bottom-up implementations of the classical merge sort. We considered different input

settings based on the input size and the value range of the input elements. In all settings,

EMS shows substantial improvement in running time than the top-down and the bottom-

up implementations of the classical merge sort.

Experimental results also show that the early checking of the subarrays to see

whether they are already sorted (completely or partially) happens many times in practice.

This is the reason for EMS performing better that the classical merge sort.

The rest of the paper is organized as follows. As EMS will work same as the

bottom-up merge sort, we shall first review the bottom-up merge sort in Section 2. Then

in Section 3, we shall describe EMS, its correctness and complexity, and how it achieves

the improvement in the running time. Then in Section 4, we shall present the

experimental results that have been achieved on comparing EMS with the top-down and

the bottom-up merge sort. Finally, we shall conclude the paper in Section 5 with some

future work.

BOTTOM-UP MERGE SORT

Let A be the given array of n elements. We assume that n = 2
k
, for some integer k ≥ 0.

(For n ≠ 2
k
, integers with maximum value can be added at the end of A to make n = 2

k
.)

Algorithm 2 Pseudo code of merge function

procedure MERGE(A, L1, R1, L2, R2) // Regular Merge

len = R2 − L1 + 1

Array temp[len] = A[L1 . . .L1 + len]

k = L1

while L1 ≤ R1 AND L2 ≤ R2 do

if temp[L1] ≤ temp[L2] then

A[k] = temp[L1]

L1 = L1 + 1

else

A[k] = temp[L2]

L2 = L2 + 1

end if

k = k + 1

end while

while L1 ≤ R1 do // Copy remaining elements of left side of temp[] if any

A[k] = temp[L1]

L1 = L1 + 1

k = k + 1

end while

while L2 ≤ R2 do // Copy remaining elements of right side of temp[] if any

A[k] = temp[L2]

L2 = L2 + 1

k = k + 1

end while

end procedure

Mutaz Rasmi et al/International Journal of Software Engineering and Computer Systems 5(2) 2019 15-25

18

Algorithm 3 shows the pseudo code of the bottom-up merge sort. The bottom-up

merge sort works in rounds. There are k = log n rounds. At each round i from 0 to log n

−1, the input array A is considered to be divided into subarrays of equal size of 2
i
.

Therefore, there are
𝑛

2𝑖
 subarrays in round i. These subarrays are considered as

consecutive pairs from left to right. Each consecutive pair is merged by the regular

merge function. After all pairs of subarrays in a round are finished, it moves to the next

round. After all rounds are finished, the array becomes sorted and the algorithm

terminates. An example with n = 8 elements is shown in Figure 1.

Figure 1. Time Savings by EMS Compared to Bottom-Up Merge Sort.

EMS: ENHANCED MERGE SORT ALGORITHM

EMS works in a way that is similar to the bottom-up merge sort (Algorithm 3). Readers

are requested to refer to Algorithm 4 and Figure 1. There are log n rounds from 0 to log n

− 1. At the first round, EMS sorts by one comparison each pair of elements (A[i], A[i +

1]), for i = 0, 2, 4, . . . , n − 2.

EMS: An enhanced merge sort algorithm by early checking of already sorted parts, Saudi Arabia

19

For the remaining rounds from 1 to log n − 1, the algorithm sorts pairs of

consecutive subarrays individually, one after another from left to right, according to the

following three cases. For each pair of consecutive subarrays, it considers three cases.

Case A: It compares the last element of the left subarray to the first elements of the right

subarray. If the former is smaller than or equal to the latter, then this pair of subarrays are

already in sorted order and the algorithm moves to the next pair of consecutive

subarrays. Otherwise, the algorithm moves to Case B. Case B: It compares the first

element of the left subarray to the last element of the right subarray. If the latter is

smaller than or equal to the former, then the entire right subarray is exchanged with the

entire left subarray and the algorithm moves to the next pair of consecutive subarrays.

Otherwise, it moves to Case C. Case C: This case is same as the regular merge procedure

of the classic merge sort algorithm. It uses a temporary array temp having the size of the

total size of the current pair of subarrays. Then it copies all the elements of the current

subarray to temp. Then it merges them back into A by the regular merge (Algorithm 2.)

Algorithm 3 Pseudo code of bottom-up merge sort

procedure BOTTOM UP MERGESORT(A)

for round = 0 to log n − 1 do // log n rounds

subarray size = 2
round

subarray count = n/subarray size

 for subarray number = 0 to
𝑠𝑢𝑏𝑎𝑟𝑟𝑎𝑦 𝑐𝑜𝑢𝑛𝑡

2
 − 1 do

 // Merge each of
𝑛

2𝑟𝑜𝑢𝑛𝑑+1 pairs of subarrays

 L1 = subarray number ∗ 2 ∗ subarray size

 R1 = L1 + subarray size – 1

 L2 = R1 + 1

 R2 = R2 + subarray size − 1

 MERGE(A, L1, R1, L2, R2)

end for

end for

end procedure

Correctness and complexity

The correctness of EMS follows from the description of the algorithm. EMS only

replaces Case C by Case A or B from the bottom-up merge sort. At any round, for a pair

of subarrays, the left subarray is sorted. The right subarray is sorted from the previous

round. By Case A, B or C, the pair become sorted in a merged subarray. Therefore, for

the next round (if rounds are not finished), this merged subarray remains as a sorted left

or right subarray for a consecutive pair. If rounds are finished, then it becomes the sorted

final array.

The running time of EMS is same as the classical merge sort, which is O(n log n)

is worst case. A quick analysis of this running time for the classical merge sort is the

following. The cost of a regular merge of a pair of consecutive subarrays is the total size

of the two subarrays. Over all pairs of subarrays in a round, the total cost of the merging

is thus the total size of all subarrays in that round, which is same as the size of A, which

in turn is n. Therefore, the cost of all the merging in each round is O(n). Over all O(logn)

Mutaz Rasmi et al/International Journal of Software Engineering and Computer Systems 5(2) 2019 15-25

20

rounds, the total cost becomes O(n) × O(log n) = O(n log n). A detail analysis can be

found in (Cormen, 2009), (Knuth, 1998).

EMS has a similar analysis, which is as follows. The pairwise sorting in the first

step takes O(n/2) comparisons in total—one for each of O(n/2) pairs. In a subsequent

round, if Case A happens, then no comparison is done. If Case B happens, then the cost

of swapping of two subarrays by their entirety (“while” loop in Case B in Algorithm 4) is

the total size of the two subarrays. Over all subarrays in a single round, this amount is the

sum of the size of all subarrays, which is n. Therefore, in each round, cost of Case B is at

most O(n). As Case C is same as the regular merge sort, the worst case running time is

O(n) for the merge operation in Case C in each round as we have seen in the previous

paragraph. Therefore, over all log n rounds, total running time of EMS is O(n log n).

Time savings

EMS saves the execution time compared to the regular merge sort in both the number of

comparisons and the number of copies performed among the elements. For example, in

the first round of a bottom-up merge sort, each pair of elements will be copied to an extra

array and will be copied back to the original array. Therefore, for a pair of elements,

number of copy required to and from the extra array is four. Whereas, EMS only swaps

two elements, which can be done by using an extra variable with three copies only. Thus,

it saves one copy. See Figure 1 for an illustration.

In Case A, EMS performs only one comparison and no copy. Whereas, in a

bottom-up merge sort, for two subarrays of size k each, there will be 2k − 1 comparisons

in worst case, because each element moves from the temporary array to the original array

after one comparison, except for the last element, which moves without any comparison.

Moreover, a bottom-up merge sort will perform as many as 4k copies to copy the total 2k

elements to and from the temporary array. See Figure 1 for an illustration.

In Case B, for two subarrays of size k each, EMS performs only one comparison.

Then it performs k swaps among k pairs of elements, where each swap can be done by

three copies by using an extra variable. So, total number of copy is 3k. Whereas, in a

bottom-up merge sort, as usual, there will be 2k – 1 comparisons in worst case and 4k

copies. See Figure 1 for an illustration.

Algorithm 4 Pseudo code of EMS

 procedure ENHANCED MERGESORT(A)

 for i = 0 to n − 2 do // Pairwise sort for n/2 pairs

 if A[i] > A[i + 1] then

 swap(A[i], A[i + 1])

 end if

 i = i + 2

 end for

 for round = 1 to log n − 1 do // log n − 1 rounds

 subarray size = 2
round

 subarray count =
𝑛

𝑠𝑢𝑏𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒

 for subarray number = 0 to
𝑠𝑢𝑏𝑎𝑟𝑟𝑎𝑦 𝑐𝑜𝑢𝑛𝑡

2
 − 1 do

 // Merge each of
𝑛

2round+1 pairs of subarrays

 L1 = subarray number ∗ 2 ∗ subarray size

 R1 = L1 + subarray size − 1

EMS: An enhanced merge sort algorithm by early checking of already sorted parts, Saudi Arabia

21

 L2 = R1 + 1

 R2 = L2 + subarray size – 1

 if A[R1] ≤ A[L2] then // Case A

 return

 end if

 if A[R2] ≤ A[L1] then // Case B

 while L1 ≤ R1 do

 swap(A[L1], A[L2])

 L1 = L1 + 1

 L2 = L2 + 1

 end while

 return

 end if

 MERGE(A, L1, R1, L2, R2) // Case C

 end for

 end for

 end procedure

Note that, in EMS, Case A is least expensive and Case C is most expensive.

Therefore, if Case A and B happen more and more, EMS runs faster. On the other hand,

the classical merge sort, whether it is implemented in top-down or bottom-up manner,

does not have Case A or B, and has only Case C. Moreover, in our experiment we have

found that when EMS runs, Case A and B happen considerable number of times. This

gives EMS better running time than the classical algorithm. See Section 4.

EXPERIMENTAL RESULTS

We have implemented in Java EMS as well as the classical merge sort algorithm in top-

down and bottom-up manner. We have compared the three implementations. The

experimental results show that EMS outperforms both the implementations of the

classical merge sort. The improvement by EMS is more when compared with the top-

down implementation of the classical merge sort. In our experiment, we have also

counted the number of times Case A and Case B happen instead of Case C. From these

counts, it shows that the more Case A or Case B happens the more EMS performs better.

We have considered six different input settings. For the first setting, the input size

is fixed to 2
24

. The value range of the input elements are taken as [0, 10], [0, 10
2
], [0,

10
3
], [0, 10

4
], [0, 10

5
] and [0, 10

6
]. Therefore, in the lower ranges, the elements are

repeated much. In this setting, EMS outperforms the top-down implementation of the

classical merge sort by at least 15.41% and as much as 17.65%. The improvement of

EMS over the bottom-up implementation of the classical merge sort is about 2% at least

and as much as 7.02%. The improvement is smaller while compared to the bottom-up

implementation, because EMS also work as a bottom-up manner. Moreover, in this

setting, each of Case A and B happens about 8% to 10%. See Table 1.

In the next three settings, the input size ranges from 2
4
 to 2

24
. In the second

setting, the elements are taken randomly from numbers within [0 − 1000]. Therefore, the

numbers may be repeated. The experimental results show that EMS can outperform the

top-down implementation of the merge sort by an amount as much as 19.14% and the

bottom-up implementation by an amount as much as 6.25%. See Table 2.

Mutaz Rasmi et al/International Journal of Software Engineering and Computer Systems 5(2) 2019 15-25

22

In the third setting, the input array is sorted in ascending order. As the elements

are already sorted, for EMS, at each round and for each subarray, only Case A happens.

On the other hand, the classical merge sort does not use the benefit of already sorted

elements, and therefore, it performs more comparisons. As a result, EMS substantially

outperforms the two implementations of the classical merge sort, namely by an amount

of 50% to 95% for higher input size. See Table 3.

In the next setting, the input array is sorted in descending order. Similar to the

previous setting, as the elements are already sorted, for EMS at each round and for each

subarray, Case A happens when all the elements in left and right subarray are the same.

(If the elements are unique, then Case A will not happen. See the last input setting in an

upcoming paragraph.) Otherwise, the entire right subarray will be smaller than the entire

left subarray. Therefore, Case B will happen. This will make the subarray sorted and

there will be no Case C for EMS. On the other hand, the classical merge sort does not

use the benefit of already sorted elements, and therefore, it performs more comparisons.

As a result, EMS outperforms the two implementations of the classical merge sort by an

amount 50% to 88% for higher input size. See Table 4.

In the fifth setting, the input values are taken randomly from 0 − 2
k
 and are all

distinct. In this case, EMS outperforms the top-down implementation of the classical

merge sort by about 11% for higher input size. See Table 5.

In the last setting, the input values are taken randomly from 0 − 2
k
 and are all

distinct. However, the elements are sorted in the array in descending order. As discussed

in the third and fourth settings, only Case B happens in this case and EMS outperforms

the two implementations of the classical merge sort by an amount of 50% to 81% for

higher input size. See Table 6.

CONCLUSION

In this paper, an enhanced version of the merge sort, called EMS, is presented, which in

practice shows much improvement in running time than the top-down and the bottom-up

implementations of the classical merge sort. EMS works as a bottom-up manner and the

modifications are mostly for checking already sorted parts in the array.

In future, we would like to compare EMS with other versions of merge sort. It

would also be interesting to implement EMS in parallel fashion and then to compare with

the parallel implementations of the other versions of merge sort.

ACKNOWLEDGEMENT

We acknowledge the valuable suggestions provided by the anonymous reviewers to
improve the quality of the paper.

EMS: An enhanced merge sort algorithm by early checking of already sorted parts, Saudi Arabia

23

Table 1. Comparison of EMS with Merge Sort for Variable Values Domain and

Fixed Set Size.
Input

Size

Value

Domain

Top-Down

Merge Sort

(TDMS)

(ms)

Bottom-

Up

Merge

Sort

(BUMS)

(ms)

EMS

(ms)

Case Count (%) Improve-

ment

over

TDMS

(%)

Improve-

m-ent

over

BUMS

(%)
Case A Case B Case C

224

[0 – 10]
3580 3164 2948 899898

(10.72%)
893700

(10.65%)
6595009
(78.63%)

17.65% 6.82%

[0 –102]
3850 3319 3226 744369

(8.87%)

745438

(8.88%)

6898800

(82.25%)

16.20% 2.80%

[0 –103]
4073 3644 3388 731234

(8.70%)
729936
(8.70%)

6927437
(82.60%)

16.81% 7.02%

[0 –104]
4269 3765 3611 729300

(8.69%)

730055

(8.70%)

6929252

(82.60%)

15.41% 4.09%

[0 –105]
4602 4062 3844 729257

(8.69%)
729013
(8.69%)

6930337
(82.62%)

16.47% 5.36%

[0 –106]
4871 4091 4011 727238

(8.66%)

728961

(8.68%)

6932408

(82.66%)

17.65% 1.95%

Table 2. Comparison of EMS with Merge Sort for Random Unsorted Values and

Variable Set Size.
Input

Size

Value

Domain

Top-Down

Merge Sort

(TDMS)

(ms)

Bottom-

Up

Merge

Sort

(BUMS)

(ms)

EMS

(ms)

Case Count (%) Improvem-

ent

over

TDMS

(%)

Improvem-

ent

over

BUMS

(%)
Case A Case B Case C

24

[0–1000]

0 0 1 2

(28.57%)

1

(14.28%)

4

(83.15%)

- -

28 1 1 1 6

(4.72%)

12

(9.44%)

109

(85.84%)

0% 0%

212 2 2 2 173

(8.45%)

170

(8.30%)

1704

(83.25%)

0% 0%

216 15 16 15 2864
(8.74%)

2909
(8.87%)

26994
(73.55%)

0% 6.25%

220 226 194 191 45601

(8.69%)

45828

(8.74%)

432858

(82.57%)

15.41% 1.54%

224 4183 3542 3382 731234
(9.07%)

729936
(8.70%)

6927437
(82.23%)

19.14% 4.51%

Table 3. Comparison of EMS with Merge Sort for Random Values Sorted in

Ascending Order and Variable Set Size.
Input

Size

Value

Domain

Top-Down

Merge Sort

(TDMS)

(ms)

Bottom-

Up

Merge

Sort

(BUMS)

(ms)

EMS

(ms)

Case Count (%) Improvem-

ent

over

TDMS

(%)

Improvem-

ent

over

BUMS

(%) Case A Case

B

Case C

24

[0– 1000]

0 1 0 7

(100%)

0

(0%)

0 (0%) 0% 100%

28 1 1 1 127
(100%)

0
(0%)

0 (0%) 0% 0%

212 2 2 1 2047

(100%)

0

(0%)

0 (0%) 50% 50%

216 10 10 4 32767
(100%)

0
(0%)

0 (0%) 60% 60%

220 142 110 9 524287

(100%)

0

(0%)

0 (0%) 93.66% 91.81%

224 2523 2080 127 8388670
(100%)

0
(0%)

0 (0%) 94.96% 93.89%

Mutaz Rasmi et al/International Journal of Software Engineering and Computer Systems 5(2) 2019 15-25

24

Table 4. Comparison of EMS with Merge Sort for Random Values Sorted in

Descending Order and Variable Set Size.
Input

Size

Value

Domain

Top-

Down

Merge

Sort

(TDMS)

(ms)

Bottom-

Up

Merge

Sort

(BUMS)

(ms)

EMS

(ms)

Case Count (%) Improvem-

ent

over

TDMS

(%)

Improvem-

ent

over

BUMS

(%) Case A Case B Case

C

24

[0–1000]

1 0 0 0
(0%)

7
(100%)

0
(0%)

100% 0%

28 1 1 1 0

 (0%)

127

(100%)

0

(0%)

0% 0%

212 2 2 1 371
(18.12%)

1676
(91.82%)

0
(0%)

50% 50%

216 11 11 4 27236

(83.12%)

5531

(16.88%)

0

(0%)

63.63% 63.63%

220 154 112 19 514795
(98.19%)

9492
(1.81%)

0
(0%)

87.66% 83.03%

224 2689 2068 306 8375090

(99.83%)

13517

(0.17%)

0

(0%)

88.62% 85.20%

Table 5. Comparison of EMS with Merge Sort for Random Unordered Unique

Values and Variable Set Size.
Input

Size

Value

Domain

Top-

Down

Merge

Sort

(TDMS)

(ms)

Bottom-

Up

Merge

Sort

(BUMS)

(ms)

EMS

(ms)

Case Count (%) Improvem-

ent

over

TDMS

(%)

Improvem-

ent

over

BUMS

(%) Case A Case B Case C

24

[0– 2k]

1 0 1 1
(14.29%)

1
(14.29%)

5
(71.42%)

0% -

28 1 1 1 16

(12.6%)

14

(11.02%)

97

(76.38%)

0% 0%

212 2 2 2 176
(8.59%)

176
(8.59%)

1695
(82.82%)

0% 0%

216 17 17 16 2837

(8.65%)

2885

(8.80%)

27045

(82.55%)

5.88% 5.88%

220 258 229 229 45626

(8.70%)

45340

(8.64%)

433321

(82.66%)

11.24% 0%

224 4840 4319 4302 729540

(8.69%)

729202

(8.69%)

6929865

(82.62%)

11.11% 0.39%

Table 6. Comparison of EMS with Merge Sort for Random Unique Values in

Descending Order and Variable Set Size.
Input

Size

Value

Domain

Top-Down

Merge Sort

(TDMS) (ms)

Bottom-

Up

Merge

Sort

(BUMS)

(ms)

EMS

(ms)

Case Count (%) Improvem-

ent

over

TDMS

(%)

Improvem-

ent

over

BUMS

(%) Case

A

Case B Case

C

24

[0– 2k]

1 1 1 0

(0%)

7

(100%)

0

(0%)

0% 0%

28 1 1 1 0

(0%)

127

(100%)

0

(0%)

0% 0%

212 2 1 2 0

(0%)

2047

(100%)

0

(0%)

0% 0%

216 15 10 5 0
(0%)

32767
(100%)

0
(0%)

66.66% 50%

220 155 113 29 0

(0%)

524287

(100%)

0

(0%)

81.29% 74.33%

224 2575 2102 534 0
(0%)

8388607
(100%)

0
(0%)

79.26% 74.59%

EMS: An enhanced merge sort algorithm by early checking of already sorted parts, Saudi Arabia

25

REFERENCES

Cormen T. H., Leiserson C. E., Rivest R. L. (2009), and Stein C., Introduction to

algorithms, 3rd ed. Cambridge, Massachusetts, USA: MIT Press.

Zeyad A. A. (2016). Comparison study of sorting techniques in dynamic data structure.

Master Thesis.Computer Science, Faculty of Computer Science and Information

Technology University Tun Hussein, Malaysia.

Abhyankar D. and Ingle M.(2011) A Novel Mergesort. IJCES International Journal of

Computer Engineering Science.1(3), 17-22.

Knuth D. E. (1998). The art of computer programming, volume 3: sorting and

searching, 2nd ed. Addison-Wesley.

Mergen S. L. S. and Moreira V. (2017). DuelMerge: Merging with fewer moves. The

Computer Journal, 60(9), 1271–1278.

Kim P. and Kutzner A. (2007). A simple algorithm for stable minimum storage merging

in SOFSEM. Theory and Practice of Computer Science, 33rd Conference on

Current Trends in Theory and Practice of Computer Science, 347–356.

Buss S. and Knop A. (2019). Strategies for stable merge sorting. Proceedings of the

Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, 1272–1290.

Kim P. and Kutzner A. (2008). Ratio based stable in-place merging. In Theory and

Applications of Models of Computation 5th International Conference, 246–257.

Kim P. and Kutzner A. (2006). On optimal and efficient in place merging. In Theory

and Practice of Computer Science, 32nd Conference on Current Trends in Theory

and Practice of Computer Science, 350–359.

Kim P. and Kutzner A. (2004). Stable minimum storage merging by symmetric

comparisons. In Algorithms – ESA, 12th Annual European Symposium, 714–723.

Katajainen J., Pasanen T. and Teuhola J. (1996). Practical in-place mergesort. Nordic

Journal of Computing, 3(1), 27–40.

Jafarlou M. Z. and Fard P. Y. (2011). Heuristic and pattern based merge sort. Procedia

Computer Science. 322–324.

Paira S., Chandra S. and Alam S. S. (2016). Enhanced merge sort- a new approach to

the merging process. Procedia Computer Science. 982–987.

Katajainen J. and Tr¨aff J. L. (1997). A meticulous analysis of mergesort programs. In

Algorithms and Complexity, Third Italian Conference, 217–228.

