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ABSTRACT 

Merge sort is one of the asymptotically optimal sorting algorithms that is used in many 

places including programming language library functions and operating systems. In this 

paper, an enhanced merge sort algorithm (EMS) has been presented, which in practice 

shows substantial improvement in running time than the top-down and bottom-up 

implementations of the classical merge sort. EMS works as a bottom-up manner and the 

modifications happen in three places: (a) given n elements in an array, first, the 

algorithm considers the array as n/2 consecutive pairs and sorts each pair in-place by 

one comparison; (b) in subsequent steps, during the ”merge” process of two subarrays, 

if the last element in the left subarray is smaller than the first element in the right 

subarray, the algorithm simply returns; and (c) if the last element in the right subarray is 

smaller than the first element in the left subarray, then the algorithm swaps the elements 

in the two subarrays by their entirety. Steps (b) and (c) happen in-place. For the case not 

in (b) or (c), the algorithm follows the classical merge technique with an extra array. 

Experimental results show that case (b) and (c) happen a good amount of time in 

practice and that is the reason that EMS gives better running time than the classical 

merge sort. 
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Experimental results 

INTRODUCTION  

Merge sort is a comparison-based sorting algorithm. It has asymptotically optimal 

running time of O(n log n) in worst case and average case. Quick sort and heap sort are 

the two other comparison-based sorting algorithms that have similar optimal running 

time. Quick sort’s average case running time is O(n log n) and worst case running time is 

O(n
2
). Whereas, heap sort has running time O(n log n) in both worst case and average 

case (Cormen, 2009), (Knuth, 1998). 
Although asymptotically (by the order notation (O)), the above three sorting 

algorithms are almost similar, user preferences are quite different from the practical point 
of views. In practice, on average, quick sort is faster than merge sort when the data are 
stored in an array. However, for a linked list, where the data can be efficiently accessed 
sequentially, merge sort performs better than quick sort. Merge sort also performs better 
than quick sort for O(nlog2n)  groups (Zeyad, 2016). 

Merge sort is popular in some programming languages, such as in Lisp (whose 

name stands for list processing). Some versions of Perl use merge sort as their default 

sorting function. In Java’s Array.sort() methods, merge sort is used along with quick sort 

depending on the data types. Linux kernel uses merge sort for sorting linked list. A 
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comparative discussion on the places where merge sort is popular can be found in this 

reference (Zeyad, 2016). 

There are several variations of merge sort (Knuth, 1998), (Abhyankar, 2011), 

(Mergen, 2017), (Kim, 2007), (Buss, 2019), (Kim, 2008), (Kim, 2006), (Kim, 2004), 

(Katajainen, 1996), (Jafarlou, 2011), (Paira, 2016), (Katajainen, 1997) including several 

implementations (Katajainen, 1997). Two basic implementations of merge sort are top-

down and bottom-up. In a top-down implementation, the input array is divided into two 

subarrays of equal size recursively until each subarray contains a single element. Then 

the subarrays are iteratively merged back in opposite order into the original array, but in 

sorted order. Algorithm 1 below provides the pseudo code of the divide and merge 

procedures of the top-down merge sort. In all pseudo codes, we assume that the input 

size (i.e., the number of elements in the input array) is power of two. 

In a bottom-up implementation, the input array is considered to be already 

divided into n subarrays of one element each. Then it merges the subarrays iteratively to 

produce the sorted array. The merge procedure used in a bottom-up merge sort is the 

same as the one used in the top-down merge sort. (Also see Section 2.) In the merge 

procedure that is used in both the top-down and the bottom-up merge sort, each time an 

extra array is used for merging process. First, the elements of the two subarrays that are 

to be merged are copied into the extra array. Then the elements are merged back into the 

original array in sorted order. See Algorithm 2 for the pseudo code of the merge 

procedure. 

The use of an extra array puts merge sort in a little disadvantageous position, as it 

takes some extra time to copy the elements to and from the extra array. Quick sort, on the 

other hand, does not use any extra storage, and that is why, it is an in-place sorting 

algorithm. There are many attempts (Kim, 2008) (Kim, 2006), (Katajainen, 1996) to 

implement merge sort in-place, without much success in improving running time. 
 

Algorithm 1 Pseudo code of top-down merge sort 

procedure TOP DOWN MERGESORT(A, L, R) 

if L < R then 

M = (L + R)/2 

end if 

MERGESORT(A, L, M) 

MERGESORT(A, M + 1, R) 

MERGE(A, L, M, M + 1, R) 
end procedure 

 

Contribution in this paper 

 

In this paper, an enhanced version of the merge sort, called EMS, is presented. The 

algorithm works as a bottom-up manner. Given n elements in an array A, EMS modifies 

the bottom-up merge sort algorithm in three ways. First, the algorithm considers A as n/2 

consecutive pairs. Each pair is sorted within A by one comparison. The next steps are 

“merge” process similar to the classical merge sort. However, before the two subarrays 

are merged into a bigger one, EMS checks whether the subarrays are in complete or 

partial sorted order. Based on that, it skips the merge process and thus saves some 

running time. 
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We have implemented EMS and have compared with the top-down and the 

bottom-up implementations of the classical merge sort. We considered different input 

settings based on the input size and the value range of the input elements. In all settings, 

EMS shows substantial improvement in running time than the top-down and the bottom-

up implementations of the classical merge sort. 

Experimental results also show that the early checking of the subarrays to see 

whether they are already sorted (completely or partially) happens many times in practice. 

This is the reason for EMS performing better that the classical merge sort. 

The rest of the paper is organized as follows. As EMS will work same as the 

bottom-up merge sort, we shall first review the bottom-up merge sort in Section 2. Then 

in Section 3, we shall describe EMS, its correctness and complexity, and how it achieves 

the improvement in the running time. Then in Section 4, we shall present the 

experimental results that have been achieved on comparing EMS with the top-down and 

the bottom-up merge sort. Finally, we shall conclude the paper in Section 5 with some 

future work. 

BOTTOM-UP MERGE SORT 

Let A be the given array of n elements. We assume that n = 2
k
, for some integer k ≥ 0. 

(For n ≠ 2
k
, integers with maximum value can be added at the end of A to make n = 2

k
.) 

 

Algorithm 2 Pseudo code of merge function 

procedure MERGE(A, L1, R1, L2, R2) // Regular Merge 

len = R2 − L1 + 1 

Array temp[len] = A[L1 . . .L1 + len] 

k = L1 

while L1 ≤ R1 AND L2 ≤ R2 do 

if temp[L1] ≤ temp[L2] then 

A[k] = temp[L1] 

L1 = L1 + 1 

else 

A[k] = temp[L2] 

L2 = L2 + 1 

end if 

k = k + 1 

end while 

while L1 ≤ R1 do // Copy remaining elements of left side of temp[] if any 

A[k] = temp[L1] 

L1 = L1 + 1 

k = k + 1 

end while 

while L2 ≤ R2 do // Copy remaining elements of right side of temp[] if any 

A[k] = temp[L2] 

L2 = L2 + 1 

k = k + 1 

end while 

end procedure 
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Algorithm 3 shows the pseudo code of the bottom-up merge sort. The bottom-up 

merge sort works in rounds. There are k = log n rounds. At each round i from 0 to log n 

−1, the input array A is considered to be divided into subarrays of equal size of 2
i
. 

Therefore, there are 
𝑛

2𝑖
  subarrays in round i. These subarrays are considered as 

consecutive pairs from left to right. Each consecutive pair is merged by the regular 

merge function. After all pairs of subarrays in a round are finished, it moves to the next 

round. After all rounds are finished, the array becomes sorted and the algorithm 

terminates. An example with n = 8 elements is shown in Figure 1. 
 

 

Figure 1. Time Savings by EMS Compared to Bottom-Up Merge Sort. 

EMS: ENHANCED MERGE SORT ALGORITHM 

EMS works in a way that is similar to the bottom-up merge sort (Algorithm 3). Readers 

are requested to refer to Algorithm 4 and Figure 1. There are log n rounds from 0 to log n 

− 1. At the first round, EMS sorts by one comparison each pair of elements (A[i], A[i + 

1]), for i = 0, 2, 4, . . . , n − 2. 
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For the remaining rounds from 1 to log n − 1, the algorithm sorts pairs of 

consecutive subarrays individually, one after another from left to right, according to the 

following three cases. For each pair of consecutive subarrays, it considers three cases. 

Case A: It compares the last element of the left subarray to the first elements of the right 

subarray. If the former is smaller than or equal to the latter, then this pair of subarrays are 

already in sorted order and the algorithm moves to the next pair of consecutive 

subarrays. Otherwise, the algorithm moves to Case B. Case B: It compares the first 

element of the left subarray to the last element of the right subarray. If the latter is 

smaller than or equal to the former, then the entire right subarray is exchanged with the 

entire left subarray and the algorithm moves to the next pair of consecutive subarrays. 

Otherwise, it moves to Case C. Case C: This case is same as the regular merge procedure 

of the classic merge sort algorithm. It uses a temporary array temp having the size of the 

total size of the current pair of subarrays. Then it copies all the elements of the current 

subarray to temp. Then it merges them back into A by the regular merge (Algorithm 2.) 

 

Algorithm 3 Pseudo code of bottom-up merge sort 

procedure BOTTOM UP MERGESORT(A) 

for round = 0 to log n − 1 do // log n rounds 

subarray size = 2
round

 

subarray count = n/subarray size 

     for subarray number = 0 to 
𝑠𝑢𝑏𝑎𝑟𝑟𝑎𝑦 𝑐𝑜𝑢𝑛𝑡

2
 − 1 do  

     // Merge each of 
𝑛

2𝑟𝑜𝑢𝑛𝑑+1 pairs of subarrays 

    L1 = subarray number ∗ 2 ∗ subarray size    

    R1 = L1 + subarray size – 1  

    L2 = R1 + 1 

    R2 = R2 + subarray size − 1 

    MERGE(A, L1, R1, L2, R2) 

end for 

end for 

end procedure 

 

 

Correctness and complexity 

 

The correctness of EMS follows from the description of the algorithm. EMS only 

replaces Case C by Case A or B from the bottom-up merge sort. At any round, for a pair 

of subarrays, the left subarray is sorted. The right subarray is sorted from the previous 

round. By Case A, B or C, the pair become sorted in a merged subarray. Therefore, for 

the next round (if rounds are not finished), this merged subarray remains as a sorted left 

or right subarray for a consecutive pair. If rounds are finished, then it becomes the sorted 

final array. 

The running time of EMS is same as the classical merge sort, which is O(n log n) 

is worst case. A quick analysis of this running time for the classical merge sort is the 

following. The cost of a regular merge of a pair of consecutive subarrays is the total size 

of the two subarrays. Over all pairs of subarrays in a round, the total cost of the merging 

is thus the total size of all subarrays in that round, which is same as the size of A, which 

in turn is n. Therefore, the cost of all the merging in each round is O(n). Over all O(logn) 
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rounds, the total cost becomes O(n) × O(log n) = O(n log n). A detail analysis can be 

found in (Cormen, 2009), (Knuth, 1998). 

EMS has a similar analysis, which is as follows. The pairwise sorting in the first 

step takes O(n/2) comparisons in total—one for each of O(n/2) pairs. In a subsequent 

round, if Case A happens, then no comparison is done. If Case B happens, then the cost 

of swapping of two subarrays by their entirety (“while” loop in Case B in Algorithm 4) is 

the total size of the two subarrays. Over all subarrays in a single round, this amount is the 

sum of the size of all subarrays, which is n. Therefore, in each round, cost of Case B is at 

most O(n). As Case C is same as the regular merge sort, the worst case running time is 

O(n) for the merge operation in Case C in each round as we have seen in the previous 

paragraph. Therefore, over all log n rounds, total running time of EMS is O(n log n). 

Time savings 

EMS saves the execution time compared to the regular merge sort in both the number of 

comparisons and the number of copies performed among the elements. For example, in 

the first round of a bottom-up merge sort, each pair of elements will be copied to an extra 

array and will be copied back to the original array. Therefore, for a pair of elements, 

number of copy required to and from the extra array is four. Whereas, EMS only swaps 

two elements, which can be done by using an extra variable with three copies only. Thus, 

it saves one copy. See Figure 1 for an illustration. 

In Case A, EMS performs only one comparison and no copy. Whereas, in a 

bottom-up merge sort, for two subarrays of size k each, there will be 2k − 1 comparisons 

in worst case, because each element moves from the temporary array to the original array 

after one comparison, except for the last element, which moves without any comparison. 

Moreover, a bottom-up merge sort will perform as many as 4k copies to copy the total 2k 

elements to and from the temporary array. See Figure 1 for an illustration. 

In Case B, for two subarrays of size k each, EMS performs only one comparison. 

Then it performs k swaps among k pairs of elements, where each swap can be done by 

three copies by using an extra variable. So, total number of copy is 3k. Whereas, in a 

bottom-up merge sort, as usual, there will be 2k – 1 comparisons in worst case and 4k 

copies. See Figure 1 for an illustration. 

 

Algorithm 4 Pseudo code of EMS 

 procedure ENHANCED MERGESORT(A) 

    for i = 0 to n − 2 do // Pairwise sort for n/2 pairs 

         if A[i] > A[i + 1] then 

            swap(A[i], A[i + 1]) 

         end if 

         i = i + 2 

     end for 

     for round = 1 to log n − 1 do // log n − 1 rounds 

         subarray size = 2
round

 

         subarray count =  
𝑛

𝑠𝑢𝑏𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒
 

         for subarray number = 0 to 
𝑠𝑢𝑏𝑎𝑟𝑟𝑎𝑦 𝑐𝑜𝑢𝑛𝑡

2
 − 1  do  

          // Merge each of  
𝑛

2round+1 pairs of subarrays 

               L1 = subarray number ∗ 2 ∗ subarray size 

               R1 = L1 + subarray size − 1 
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               L2 = R1 + 1 

               R2 = L2 + subarray size – 1 

               if A[R1] ≤ A[L2] then // Case A 

                   return 

              end if 

             if A[R2] ≤ A[L1] then // Case B 

                  while L1 ≤ R1 do 

                          swap(A[L1], A[L2]) 

                          L1 = L1 + 1 

                          L2 = L2 + 1 

                 end while 

                 return 

              end if 

             MERGE(A, L1, R1, L2, R2) // Case C 

         end for 

      end for 

  end procedure 

 

Note that, in EMS, Case A is least expensive and Case C is most expensive. 

Therefore, if Case A and B happen more and more, EMS runs faster. On the other hand, 

the classical merge sort, whether it is implemented in top-down or bottom-up manner, 

does not have Case A or B, and has only Case C. Moreover, in our experiment we have 

found that when EMS runs, Case A and B happen considerable number of times. This 

gives EMS better running time than the classical algorithm. See Section 4. 

EXPERIMENTAL RESULTS 

We have implemented in Java EMS as well as the classical merge sort algorithm in top-

down and bottom-up manner. We have compared the three implementations. The 

experimental results show that EMS outperforms both the implementations of the 

classical merge sort. The improvement by EMS is more when compared with the top-

down implementation of the classical merge sort. In our experiment, we have also 

counted the number of times Case A and Case B happen instead of Case C. From these 

counts, it shows that the more Case A or Case B happens the more EMS performs better. 

We have considered six different input settings. For the first setting, the input size 

is fixed to 2
24

. The value range of the input elements are taken as [0, 10], [0, 10
2
], [0, 

10
3
], [0, 10

4
], [0, 10

5
] and [0, 10

6
]. Therefore, in the lower ranges, the elements are 

repeated much. In this setting, EMS outperforms the top-down implementation of the 

classical merge sort by at least 15.41% and as much as 17.65%. The improvement of 

EMS over the bottom-up implementation of the classical merge sort is about 2% at least 

and as much as 7.02%. The improvement is smaller while compared to the bottom-up 

implementation, because EMS also work as a bottom-up manner. Moreover, in this 

setting, each of Case A and B happens about 8% to 10%. See Table 1. 

In the next three settings, the input size ranges from 2
4
 to 2

24
. In the second 

setting, the elements are taken randomly from numbers within [0 − 1000]. Therefore, the 

numbers may be repeated. The experimental results show that EMS can outperform the 

top-down implementation of the merge sort by an amount as much as 19.14% and the 

bottom-up implementation by an amount as much as 6.25%. See Table 2. 
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In the third setting, the input array is sorted in ascending order. As the elements 

are already sorted, for EMS, at each round and for each subarray, only Case A happens. 

On the other hand, the classical merge sort does not use the benefit of already sorted 

elements, and therefore, it performs more comparisons. As a result, EMS substantially 

outperforms the two implementations of the classical merge sort, namely by an amount 

of 50% to 95% for higher input size. See Table 3. 

In the next setting, the input array is sorted in descending order. Similar to the 

previous setting, as the elements are already sorted, for EMS at each round and for each 

subarray, Case A happens when all the elements in left and right subarray are the same. 

(If the elements are unique, then Case A will not happen. See the last input setting in an 

upcoming paragraph.)  Otherwise, the entire right subarray will be smaller than the entire 

left subarray. Therefore, Case B will happen. This will make the subarray sorted and 

there will be no Case C for EMS. On the other hand, the classical merge sort does not 

use the benefit of already sorted elements, and therefore, it performs more comparisons. 

As a result, EMS outperforms the two implementations of the classical merge sort by an 

amount 50% to 88% for higher input size. See Table 4. 

In the fifth setting, the input values are taken randomly from 0 − 2
k
 and are all 

distinct. In this case, EMS outperforms the top-down implementation of the classical 

merge sort by about 11% for higher input size. See Table 5.  

In the last setting, the input values are taken randomly from 0 − 2
k
 and are all 

distinct. However, the elements are sorted in the array in descending order. As discussed 

in the third and fourth settings, only Case B happens in this case and EMS outperforms 

the two implementations of the classical merge sort by an amount of 50% to 81% for 

higher input size. See Table 6. 

CONCLUSION 

In this paper, an enhanced version of the merge sort, called EMS, is presented, which in 

practice shows much improvement in running time than the top-down and the bottom-up 

implementations of the classical merge sort. EMS works as a bottom-up manner and the 

modifications are mostly for checking already sorted parts in the array. 

In future, we would like to compare EMS with other versions of merge sort. It 

would also be interesting to implement EMS in parallel fashion and then to compare with 

the parallel implementations of the other versions of merge sort.  
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Table 1. Comparison of EMS with Merge Sort for Variable Values Domain and 

Fixed Set Size. 
Input 

Size 

Value 

Domain 

Top-Down 

Merge Sort 

(TDMS) 

(ms) 

 

Bottom-

Up 

Merge 

Sort 

(BUMS) 

(ms) 

 

EMS 

(ms) 

 

Case Count (%) Improve-

ment 

over 

TDMS 

(%) 

Improve-

m-ent 

over 

BUMS 

(%) 
Case A Case B Case C 

224 

[0 – 10] 
3580 3164 2948 899898 

(10.72%) 
893700 

(10.65%) 
6595009 
(78.63%) 

17.65% 6.82% 

[0 –102] 
3850 3319 3226 744369 

(8.87%) 

745438 

(8.88%) 

6898800 

(82.25%) 

16.20% 2.80% 

[0 –103] 
4073 3644 3388 731234 

(8.70%) 
729936 
(8.70%) 

6927437 
(82.60%) 

16.81% 7.02% 

[0 –104] 
4269 3765 3611 729300 

(8.69%) 

730055 

(8.70%) 

6929252 

(82.60%) 

15.41% 4.09% 

[0 –105] 
4602 4062 3844 729257 

(8.69%) 
729013 
(8.69%) 

6930337 
(82.62%) 

16.47% 5.36% 

[0 –106] 
4871 4091 4011 727238 

(8.66%) 

728961 

(8.68%) 

6932408 

(82.66%) 

17.65% 1.95% 

 

 

Table 2. Comparison of EMS with Merge Sort for Random Unsorted Values and 

Variable Set Size. 
Input 

Size 

Value 

Domain 

Top-Down 

Merge Sort 

(TDMS) 

(ms) 

 

Bottom-

Up 

Merge 

Sort 

(BUMS) 

(ms) 

 

EMS 

(ms) 

 

Case Count (%) Improvem-

ent 

over 

TDMS 

(%) 

Improvem-

ent 

over 

BUMS 

(%) 
Case A Case B Case C 

24 

[0–1000] 

0 0 1 2 

(28.57%) 

1 

(14.28%) 

4 

(83.15%) 

- - 

28 1 1 1 6 

(4.72%) 

12 

(9.44%) 

109 

(85.84%) 

0% 0% 

212 2 2 2 173 

(8.45%) 

170 

(8.30%) 

1704 

(83.25%) 

0% 0% 

216 15 16 15 2864 
(8.74%) 

2909 
(8.87%) 

26994 
(73.55%) 

0% 6.25% 

220 226 194 191 45601 

(8.69%) 

45828 

(8.74%) 

432858 

(82.57%) 

15.41% 1.54% 

224 4183 3542 3382 731234 
(9.07%) 

729936 
(8.70%) 

6927437 
(82.23%) 

19.14% 4.51% 

 

 

Table 3. Comparison of EMS with Merge Sort for Random Values Sorted in 

Ascending Order and Variable Set Size. 
Input 

Size 

Value 

Domain 

Top-Down 

Merge Sort 

(TDMS) 

(ms) 

 

Bottom-

Up 

Merge 

Sort 

(BUMS) 

(ms) 

 

EMS 

(ms) 

 

Case Count (%) Improvem-

ent 

over 

TDMS 

(%) 

Improvem-

ent 

over 

BUMS 

(%) Case A Case 

B 

Case C 

24 

[0– 1000] 

0 1 0 7 

(100%) 

0 

(0%) 

0 (0%) 0% 100% 

28 1 1 1 127 
(100%) 

0 
(0%) 

0 (0%) 0% 0% 

212 2 2 1 2047 

(100%) 

0 

(0%) 

0 (0%) 50% 50% 

216 10 10 4 32767 
(100%) 

0 
(0%) 

0 (0%) 60% 60% 

220 142 110 9 524287 

(100%) 

0 

(0%) 

0 (0%) 93.66% 91.81% 

224 2523 2080 127 8388670 
(100%) 

0 
(0%) 

0 (0%) 94.96% 93.89% 
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Table 4. Comparison of EMS with Merge Sort for Random Values Sorted in 

Descending Order and Variable Set Size. 
Input 

Size 

Value 

Domain 

Top-

Down 

Merge 

Sort 

(TDMS) 

(ms) 

 

Bottom-

Up 

Merge 

Sort 

(BUMS) 

(ms) 

 

EMS 

(ms) 

 

Case Count (%) Improvem-

ent 

over 

TDMS 

(%) 

Improvem-

ent 

over 

BUMS 

(%) Case A Case B Case 

C 

24 

[0–1000] 

1 0 0 0  
(0%) 

7 
(100%) 

0  
(0%) 

100% 0% 

28 1 1 1 0 

 (0%) 

127 

(100%) 

0  

(0%) 

0% 0% 

212 2 2 1 371 
(18.12%) 

1676 
(91.82%) 

0  
(0%) 

50% 50% 

216 11 11 4 27236 

(83.12%) 

5531 

(16.88%) 

0 

(0%) 

63.63% 63.63% 

220 154 112 19 514795 
(98.19%) 

9492 
(1.81%) 

0  
(0%) 

87.66% 83.03% 

224 2689 2068 306 8375090 

(99.83%) 

13517 

(0.17%) 

0 

(0%) 

88.62% 85.20% 

 

 

Table 5. Comparison of EMS with Merge Sort for Random Unordered Unique 

Values and Variable Set Size. 
Input 

Size 

Value 

Domain 

Top-

Down 

Merge 

Sort 

(TDMS) 

(ms) 

 

Bottom-

Up 

Merge 

Sort 

(BUMS) 

(ms) 

 

EMS 

(ms) 

 

Case Count (%) Improvem-

ent 

over 

TDMS 

(%) 

Improvem-

ent 

over 

BUMS 

(%) Case A Case B Case C 

24 

[0– 2k] 

1 0 1 1 
(14.29%) 

1 
(14.29%) 

5 
(71.42%) 

0% - 

28 1 1 1 16 

(12.6%) 

14 

(11.02%) 

97 

(76.38%) 

0% 0% 

212 2 2 2 176 
(8.59%) 

176 
(8.59%) 

1695 
(82.82%) 

0% 0% 

216 17 17 16 2837 

(8.65%) 

2885 

(8.80%) 

27045 

(82.55%) 

5.88% 5.88% 

220 258 229 229 45626 

(8.70%) 

45340 

(8.64%) 

433321 

(82.66%) 

11.24% 0% 

224 4840 4319 4302 729540 

(8.69%) 

729202 

(8.69%) 

6929865 

(82.62%) 

11.11% 0.39% 

 

 

Table 6. Comparison of EMS with Merge Sort for Random Unique Values in 

Descending Order and Variable Set Size. 
Input 

Size 

Value 

Domain 

Top-Down 

Merge Sort 

(TDMS) (ms) 

 

Bottom-

Up 

Merge 

Sort 

(BUMS) 

(ms) 

 

EMS 

(ms) 

 

Case Count (%) Improvem-

ent 

over 

TDMS 

(%) 

Improvem-

ent 

over 

BUMS 

(%) Case 

A 

Case B Case 

C 

24 

[0– 2k] 

1 1 1 0  

(0%) 

7 

(100%) 

0  

(0%) 

0% 0% 

28 1 1 1 0  

(0%) 

127 

(100%) 

0  

(0%) 

0% 0% 

212 2 1 2 0  

(0%) 

2047 

(100%) 

0  

(0%) 

0% 0% 

216 15 10 5 0 
(0%) 

32767 
(100%) 

0 
(0%) 

66.66% 50% 

220 155 113 29 0  

(0%) 

524287 

(100%) 

0  

(0%) 

81.29% 74.33% 

224 2575 2102 534 0 
(0%) 

8388607 
(100%) 

0 
(0%) 

79.26% 74.59% 
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