
International Journal of Software Engineering and Computer Systems (IJSECS)

ISSN: 2289-8522, Volume 4 Issue 2, pp. 1-18, August 2018

©Universiti Malaysia Pahang

DOI: https://doi.org/10.15282/ijsecs.4.2.2018.1.0045

1

GUESSING, MODEL CHECKING AND THEOREM PROVING OF STATE

MACHINE PROPERTIES – A CASE STUDY ON QLOCK

May Thu Aung
1
, Tam Thi Thanh Nguyen

2
, Kazuhiro Ogata

2

1
Faculty of Information Science,

University of Information Technology, Parami Road, Hlaing Campus, Yangon,

Myanmar.
2
School of Information Science,

Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa

923-1292, Japan.

ABSTRACT

It is worth understanding state machines better because various kinds of systems can be

formalized as state machines and therefore understanding state machines has something

to do with comprehension of systems. Understanding state machines can be interpreted

as knowing properties they enjoy and comprehension of systems is interpreted as

knowing whether they satisfy requirements. We (mainly the second author) have

developed a tool called SMGA that basically takes a finite sequence of states from a

state machine and generates a graphical animation of the finite sequence or the state

machine. Observing such a graphical animation helps us guess properties of the state

machine. We should confirm whether the state machine enjoys the guessed properties

because such guessed properties may not be true properties of the state machine. Model

checking is one possible technique to do so. If the state machine has a fixed small

number of reachable states, model checking is enough. Otherwise, however, it is not. If

that is the case, we should use some other techniques to make sure that the system

enjoys the guessed properties. Interactive theorem proving is one such technique. The

paper reports on a case study in which a mutual exclusion protocol called Qlock is used

as an example to exemplify the abovementioned idea or methodology.

Keywords: graphical animations of state machines, model checking, theorem proving,

invariant properties

INTRODUCTION

A state machine is a mathematical structure, which can be used to formalize

various kinds of systems, such as concurrent systems, distributed systems and real-time

systems. It is worth comprehending a system under development better, which could be

reduced to understanding a state machine that formalizes the system. Understanding a

state machine could be interpreted as knowing properties the state machine enjoys. The

more state machine properties we know, the better we understand the state machine. We

(mainly the second author) have developed a tool called SMGA (Nguyen & Ogata,

2017a) that basically takes a finite sequence of states from a state machine and

generates a graphical animation of the finite sequence or the state machine, where

SMGA stands for State Machine Graphical Animation. Observing such a graphical

animation helps us guess properties of the state machine. We should confirm whether

the state machine enjoys the guessed properties because such guessed properties may

Guessing, model checking and theorem proving of state machine properties – a case study on qlock

2

not be true properties of the state machine. Model checking is one possible technique to

do so. If the state machine has a fixed small number of reachable states, model checking

is enough. Otherwise, however, it is not. If that is the case, we should use some other

techniques to make sure that the system enjoys the guessed properties. Interactive

theorem proving is one such technique.

 This paper reports on a case study in which Qlock, a mutual exclusion protocol,

is used to exemplify the abovementioned idea or methodology. The paper is an

extended and revised version of the paper (Aung et al. 2018) presented and published at

ICSCA 2018. Qlock can be regarded as an abstract version of the Dijkstra Binary

Semaphore. Qlock is first formalized as a state machine, which is specified in Maude

(Clavel et al., 2007), a rewriting logic-based computer language and tool. Finite

sequences of states can be generated from the Maude specification of Qlock. From finite

sequence of states, SMGA produces graphical animations of the state machine

formalizing Qlock. The graphical animations help humans guess interesting

characteristics occurring in the graphical animations. Maude is equipped with model

checking facilities, one of which is the search command that can be used as an invariant

model checker. This paper only focuses on invariant properties of state machines

because invariant properties are the most fundamental and often used as lemmas to

prove other classes of properties, such as leads-to properties. Guessed characteristics are

formalized as invariant properties so that the search command can be used to check if

the state machine enjoys them. We then use theorem proving to formally verify that the

state machine surely enjoys the invariant properties by writing what are called proof

scores (Goguen, 1990; Ogata & Futatsugi, 2003) in CafeOBJ (Diaconescu & Futatsugi,

1998), an algebraic specification language and tool. Note that both Maude and CafeOBJ

are direct successor of OBJ3 (Goguen, et al., 2000), the most famous algebraic

specification language and tool, and then are sibling languages and tools.

 The rest of the paper is organized as follows: RELATED WORK in which some

related work is mentioned; PRELIMINARIES in which some preliminaries, such as

state machines, are mentioned; METHODOLOGY in which we report on the case study

where Qlock is used to exemplify the methodology; CONCLUSION in which we

conclude the paper.

All files, such as specification of Qlock in Maude, used in the paper are

available on the webpage:

http://www.jaist.ac.jp/~ogata/code/gmctp-qlock/

The files are (1) a template picture of Mod3 (an example used in PRELIMINARIES)

for SMGA, (2) a template picture of Qlock for SMGA, (3) an/ input file to SMGA for

Mod3, (4) an input file to SMGA for Qlock, (5) specification of Mod3 in Maude, (6)

specification of Mod3 in CafeOBJ (including proof score), (7) specification of Qlock

in Maude, (8) specification of Qlock in CafeOBJ, and (9) seven files of proof scores for

seven Qlock properties. On the website, you can find the link to SMGA.

RELATED WORK

Qlock has been used as one example to demonstrate how to prove that systems

formalized as state machines enjoy properties by writing proof scores in CafeOBJ. How

to write proof scores in CafeOBJ showing that Qlock enjoys the mutual exclusion

property (referred as Prop. 1 later in this paper) and a lemma needed (referred as Prop. 2

later in this paper) is described in (Ogata & Futatsugi, 2008, 2013). Liveness properties

http://www.jaist.ac.jp/~ogata/code/gmctp-qlock/

May Thu Aung et.al /International Journal of Software Engineering and Computer Systems 4(2) 2018 1-18

3

as well as invariant properties can be formally verified by writing proof scores in

CafeOBJ (Ogata & Futatsugi, 2013; Preining, 2014; Yoshida, 2015).

A graphical user interface for Maude-NPA has been developed (Santiago, 2009).

Maude-NPA is a high-level security protocol analysis language and system

implemented on the top of Maude. The graphical user interface is dedicated to Maude-

NPA and then cannot be used for our purpose, namely that graphical animations of state

machines can be displayed, helping humans guess properties of the state machines

based on the graphical animations.

Specification animation has been actively studied. Specification animation

means making formal specification executable by translating formal specifications into

executable programs because most formal specification languages are not executable.

Specification animations have been used to inspect formal specifications (Li & Liu,

2016), to monitor software through formal specification animation (Liang, et al., 2016),

to validate formal models by refinement animation (Hallerstede, et al., 2016) and to

make a specification-based testing better (Nagoya & Liu, 2017). Maude is inherently

executable and then it is unnecessary to translate Maude specifications into executable

programs.

Some model checkers, such as Alloy (Jackson, 2012) and PAT (Sun, 2009), are

equipped with some graphical facilities such that counterexamples are graphically

displayed. Human users are allowed to interact with such graphically displayed

counterexamples, such as forward and backward step execution and investigating each

state. Their graphical animations of counterexamples, however, have not been used to

help humans guess properties of state machines.

Few researches have been conducted in which graphical animations of state

machines are used to help human users guess or conjecture lemmas needed to complete

formal proofs. The case study reported in this paper exhibits a positive potential that

graphical animations of state machines could be used for that purpose. There are,

however, a lot to do left so as to make sure that our claim that graphical animations of

state machines can help human users conjecture useful lemmas for theorem proving

would be true. One of them is to conduct more case studies. We (mainly the second

author) have been conducting a case study in which it is theorem proved that MCS

(Mellor-Crummey & Scott, 1991), a list-based queuing mutual exclusion protocol,

enjoys the mutual exclusion property (that corresponds to Prop. 1 of Qlock). The proof

requires many lemmas. As a preliminary research, the second and third authors guessed

and confirmed some MCS properties with SMGA and Maude (Nguyen & Ogata, 2017b).

MCS is not just a laboratory-level mutual exclusion protocol but has been really used in

many Java virtual machines. This is why Mellor-Crummey & Scott were awarded the

2006 Edsger W. Dijkstra Prize in Distributed Computing.

PRELIMINARIES

 A state machine consists of a set of states, the set of initial

states and a binary relation over states. An element is called a

(state) transition and may be written as , where is called a successor state of

with respect to (wrt) . The set R of reachable states wrt is inductively defined as

follows: and if and , then . A state predicate is called an

invariant property wrt if and only if (iff) holds in all reachable states wrt , namely
 . States can be expressed in various ways. States are characterized by

some values and then it suffices to observe those values in a way to express states. We

Guessing, model checking and theorem proving of state machine properties – a case study on qlock

4

use two ways to express states. The first way to do so in to record those values in name-

value pairs called observable components, which are similar to entries of maps or

dictionaries and states are expressed as associative-commutative collections (called

soups) of observable components. For example,

is a soup of observable components used for Qlock, in which there are six observable

components. For example, is an observable component where is

the name and is the value, meaning that the process is at label . The second way

to do so is to use functions (called observers) that take states and some other parameters

and return values that characterize states. For example, we can use an observer that

takes a state and a process ID and returns the label at which the process is.

Let us consider a simple system called Mod3, which will be formalized as a state

machine . Mod3 has one value referred as that is a natural number and whose

initial value is . Each state of Mod3 can be expressed as one observable component

 , where is the name and is the value. is ,
where is the set of natural numbers. is , where there is one initial

state . is . Note

that is not finite, while is . We suppose that the

function takes and returns and we can guess that
 is an invariant property wrt .

Maude makes it possible to use any user’s preferred notation to express states.

For example, we can use exactly the same notation to express states of as we

used in the last paragraph: . As described, generally, soups of observable

components are used to express states. Note that a single observable component is a

singleton soup that only consists of the observable component. Transitions are specified

in terms of rewrite rules. For example, is specified as the following rewrite rule:

where is a Maude variable of natural numbers. Given a state s, {s} obtained by

enclosing s with { and } is called a configuration. Rewrite rules specifying transitions

are written as those from configurations to configurations so as to avoid some subtle

issues. The rule says that if , then is incremented. Otherwise, the value of

the observable component is . The Maude search command can be used to model

check invariant properties wrt a state machine. It is in the form:

where is a Maude specification of a state machine under model checking, is a

given state (typically an initial state of the state machine), is a pattern and is a

condition. The search command searches the reachable states from for at most states

that can match and make true. Typically, is and the nagation of the state

predicate used to express the invariant property concerned is expressed as and . The

condition part “ ” can be omitted. The invariant property
 wrt can be model checked with the search command as follows:

where equals . Maude does not find any counterexamples, and then because

there are only three reachable states from , which is the only initial state of ,

we have formally verified that enjoys the invariant property.

 From the Maude specification of , a finite sequence of states can be

generated. For example, the following is an example:

May Thu Aung et.al /International Journal of Software Engineering and Computer Systems 4(2) 2018 1-18

5

where the sequence consists of seven states, the leftmost one is the first (initial) state

and the rightmost is the final one. For each state, a picture could be designed and drawn.

For , and , for example, the following three pictures are

designed and drawn, respectively:

Let sp0, sp1 and sp2 be the three pictures, respectively. From the finite sequence of

states, then, we can generate the finite sequence of pictures:

Such a finite sequence of pictures can be regarded as a movie film. Playing such a

movie film, we can watch a graphical animation of state machines. This is the basic idea

on which SMGA, a state machine graphical animation tool, produces graphical

animations of state machines. Note that we do not need to draw all pictures for all

possible states but it suffices to design and draw one template picture, for example, for

 , and then SMGA automatically produces each concrete state picture. Once a

template picture is designed and drawn, basically feeding a finite sequence of states,

SMGA produces a graphical animation of the finite sequence. For example, from the

finite sequence of states, the graphical animation in which the following seven pictures

appear sequentially in the order is produced:

Observing the animation, we can guess that the value never becomes three or greater,

namely that the value is always less than three, although we have already confirmed

(and actually verified) this with Maude.

 CafeOBJ can be used to theorem prove that a state machine enjoys an invariant

property by writing what are called proof scores. To this end, it is necessary to specify a

state machine in CafeOBJ as what is called an observational transition system (OTS)

style. As briefly mentioned, in the OTS style, each value that characterizes states is

observed by applying a function called an observer to the states, a set of transitions is

represented by a function called an action (or a transition), and how to change each

value that characterizes states by applying an action to the states is specified in terms of

equations. is specified in CafeOBJ as an OTS style as follows:

Guessing, model checking and theorem proving of state machine properties – a case study on qlock

6

 is the sort (or type) representing the set of reachable states that are constructed from

the constant and the function as indicated by that stands for constructor.

The constant represents an arbitrary initial state. is the sort representing the set

of natural numbers. In this paper, a sort and the set denoted by the sort are

interchangeably used. In this example, there is one initial state. The function is an

action, which is the only one in this example. The function is an observer, which is

the only one in this example. The first equation says that the value observed by the

observer in the initial state is 0. is a variable of . The second equation says that

in the successor state obtained by applying the action to S, the value

observed by the observer becomes if is less than , and it

becomes otherwise.

 Let us define the following state predicate:

We can theorem prove that inv1 is an invariant property wrt by structural

induction of the reachable state. The proof is first divided into the base case and the

induction case. For the base case, we write the following program in CafeOBJ that is

called (a fragment of) proof score:

where is the CafeOBJ specification of , the command makes a given

specification available, the command indicates the end of the use of the module

and the command reduces (or simplifies) a given expression (term) by

using equations as left-to-right rewrite rules. CafeOBJ returns for this proof score,

meaning that the base case has been successfully proved. For the induction case, we

write the following proof score in CafeOBJ:

where the constant of Sys represents an arbitrary state. The equation is the induction

hypothesis but is not used as a left-to-right rewrite rules as indicated by the

 attribute. Instead, the induction hypothesis is used as in

“ .” CafeOBJ does not return true for this proof score,

meaning that we need to do some more to complete the proof. Typically, there are two

kinds of things to do: (1) case splitting and (2) lemma conjecture and use. For this

specific example, the induction case is split into three sub-cases based on

and , which correspond to the following three fragments of proof score:

May Thu Aung et.al /International Journal of Software Engineering and Computer Systems 4(2) 2018 1-18

7

CafeOBJ returns true for each of the three fragments, but the first sub-case needs one

lemma about natural numbers, which is as follows:

where is a CafeOBJ variable of natural numbers. The lemma is written as a

conditional equation, which says that if is true, then is true.

Accordingly, we have successfully proved that inv1 is an invariant property wrt .

METHODOLOGY

Qlock is a mutual exclusion protocol and can be regarded as an abstract version

of the Dijkstra Binary Semaphore. The pseudo-code for each process as follows:

where is a queue of process IDs shared by all processes participating in Qlock

and is atomic in that the functions , and for queues are atomic. We suppose

Guessing, model checking and theorem proving of state machine properties – a case study on qlock

8

that queue is used in neither “Remainder Section” and “Critical Section.” Each process

is located at (remainder section), (waiting section) or (critical section). Initially,

each process is located at and queue is empty. When a process wants to enter

“Critical Section,” first enqueues its ID into queue, next waits at until the top of

 is , then enters “Critical Section” if the top of is , and finally goes back

to “Remainder Section,” which is repeated.

 One desired property Qlock should enjoy is what is called the mutual exclusion

property, which is that there is always at most one process in “Critical Section.” Some

properties of a state machine formalizing Qlock including the mutual exclusion

property will be guessed based on graphical animations of , confirmed by model

checking and theorem proved.

Specification of Qlock in Maude

The values that characterize states of are the value (a queue of process

IDs) stored in and the each process location (, or). When there are five

processes , , , and , each state is expressed as

where and each are names, and each are values, is a queue of

process IDs, and each is , or . Initially, is empty and each is . Let
be the expression (term) denoting the initial state.

 is specified as the following rewrite rules:

where Q is a Maude variable of process ID queues, I is a Maude variable of process IDs

and S is a Maude variable of states (or state fragments). denotes a queue such that I

is the top element and Q is deq(I Q). For example, is the queue such

that , and are the first, second and third elements and is the empty

queue. Let refer to the Maude specification of .

Guessing and Confirmation of some Qlock Properties

The picture of the initial state used by SMGA is shown in Fig. 1. There are three

rectangles that correspond to , and , respectively. The picture allows us to

immediately recognize that there are five processes in and no process in both and

 . Because a process moves to , and from , and , respectively, there are

three arrows from the former to the latter, respectively. is represented as a long

pentagon laid down such that its head faces right. In the initial state, is empty

and then there is nothing in the pentagon. If there are some in the pentagon, what is

located at the right-most is the top element of .

May Thu Aung et.al /International Journal of Software Engineering and Computer Systems 4(2) 2018 1-18

9

We generate a finite sequence of states such that it consists of 1000 states based

on the Maude specification of Qlock with Maude, feeding it to SMGA that produces the

graphical animation of the sequence of states. The th state in the sequence is expressed

as . Fig. 2 shows the six states in row from to .

Observing the graphical animation produced by SMGA makes us guess that

there is always at most one process at cs. For example, among the states shown in Fig. 2

there is one process in and , and there is no process in the other four states.

This guessed property is called Prop. 1 (which is actually the mutual exclusion

property). The Maude search command can be used to confirm Prop. 1 as follows:

The search tries to find a state such that there are two processes and whose locations

are and , respectively, and it is not the case that if is , then is not ,

namely that both and are cs. Maude checks all possible combination of two

processes and but not some specific combinations, such as and . No

counterexample is found and then Qlock enjoys Prop. 1 (the mutual exclusion property)

when there are five processes. Note that the model checking result does not guarantee

that Qlock surely enjoys the Prop. 1. For example, the result does not guarantee that

Qock enjoys Prop. 1 when there are 100 processes.

The animation makes us recognize that whenever there is a process at cs, its process ID

is the top of queue. For example, please take a look at and in Fig. 2. The

guessed property is called Prop. 2, which is confirmed by the following search

command:

The search tries to find a state such that there is a process whose location is , the

content of queue is , and it is not the case that if is , then the top of is . No

counterexample is found and then Qlock enjoys Prop. 2 when there are five processes.

Figure 1. Initial state of Qlock.

Guessing, model checking and theorem proving of state machine properties – a case study on qlock

10

Figure 2. Six states in row from s993 to s998.

 The animation also makes us recognize that whenever a process is at rs, it is not

in . For example, please take a look at the five states from s994 to s998. The

guessed property is called Prop. 3, which is confirmed by the following search

command:

The search tries to find a state such that there is a process whose location is , the

content of queue is , and it is not the case that if is , then is not in . No

counterexample is found and then Qlock enjoys Prop. 3 when there are five processes.

 The animation makes us guess some more properties as well, among which are

as follows:

 Prop. 4: Whenever a process is not in queue, it is at rs.

 Prop. 5: Whenever a process is at ws or cs, it is in queue.

 Prop. 6: Whenever a process is in queue, it is at ws or cs.

The three guessed properties are confirmed by the following three search commands:

May Thu Aung et.al /International Journal of Software Engineering and Computer Systems 4(2) 2018 1-18

11

Each search does not find any counterexamples. Therefore, Qlock enjoys Prop. 4, Prop.

5 and Prop. 6 when there are five processes.

Specification of Qlock in CafOBJ

The Maude search command can be used to find counterexamples of invariant

properties but basically does not guarantee that systems, such as Qlock, enjoys invariant

properties in all possible situations. To make it sure that Qlock enjoys the six guessed

properties, CafOBJ could be used. We first specify Qlock in CafeOBJ as an OTS style.

Let be the specification.

 We use the following two observers with which we observe the values that

characterize states of :

where is the sort representing the set of reachable states wrt , is the sort

representing the set of process IDs, is the sort representing the set of labels (,

 and) and is the sort representing the set of process ID queues. We use the

following three actions to specify the transitions of :

A set of equations that specify how changes the values observed by and

is as follows:

 .

 .

 .

Guessing, model checking and theorem proving of state machine properties – a case study on qlock

12

The two sets of equations for the other two actions and can be defined

likewise. An arbitrary initial state is represented as , which is declared as follows

and the values observed by pc and queue in are defined as follows:

 We also specify the six guessed properties in the specification of as

follows:

where is a CafeOBJ variable of and & are CafeOBJ variables of .

Theorem Proving of Guessed Properties

We prove that the guessed and confirmed properties hold for Qlock. Precisely, we prove

that the state predicates for all are invariant properties wrt . The main

proof technique is structural induction on . Let us consider the proof of .

Applying the structural induction to , four cases are generated: one base case

for and three induction cases for , and . Let us consider the induction

case for . What to show in the induction case is , where is a fresh

constant of representing an arbitrary state and & are fresh constants of

representing arbitrary process IDs. The induction case is first split into two cases based

on the condition of : (1) and (2) . For case (2), the

following proof score fragment is written:

The first equation is the induction hypothesis, where is a CafeOBJ variable of

declared on-the-fly. The equation is annotated as , meaning that the equation

is not used as a left-to-right rewrite rule by CafeOBJ. Instead, is used as the

premise of the implication. stands for reduction and simplifies a given term by

May Thu Aung et.al /International Journal of Software Engineering and Computer Systems 4(2) 2018 1-18

13

using all equations except for those annotated as as left-to-right rewrite rules.

Feeding the proof score fragment into CafeOBJ, CafeOBJ returns true as the result,

meaning that the case is discharged.

 To discharge case (1), the case needs to be split into multiple cases. First case

(1) is split into two cases: (1.1) and (1.2) . Case (1.1) also needs to be split

into two cases: (1.1.1) (meaning that is empty) and

(1.1.2) , where is a fresh constant of and is a fresh constant of

 (meaning that queue(s) is not empty). For case (1.1.1), the following proof score

fragment is written:

Feeding this into CafeOBJ, CafeOBJ returns true.

 Case (1.1.2) also needs to be split into two cases: (1.1.2.1) and (1.1.2.2)

 . For case (1.1.2.1), the proof score fragment is as follows:

Feeding this into CafeOBJ, CafeOBJ returns , where is the

exclusive or operator. If is false, then the result becomes true. Observing the

graphical animation of , there is at most one occurrence of each process ID in

queue. Therefore, we can guess the 7
th

 property:

 Prop. 7: For each process ID , let be the queue obtained by deleting from

 and then it is always the case that there is no occurrence of in . If there

is no occurrence of in , then is the same as .

This guessed property can be confirmed by Maude as follows:

where takes a queue and a process ID and returns the one obtained by deleting the

first occurrence of the ID from the queue. The search does not find any

counterexamples. Prop. 7 is specified in CafeOBJ as follows:

Guessing, model checking and theorem proving of state machine properties – a case study on qlock

14

inv7 is used in the proof score fragment for case (1.1.2.1) as follows:

Feeding this into CafeOBJ, CafeOBJ returns true.

 For case (1.1.2.2), the proof fragment is as follows:

Feeding this into CafeOBJ, CafeOBJ returns . For this case, we

cannot use inv7 because we assume . But, we also assume that is the top of

 . Therefore, we can use as a lemma in the proof score fragment as follows:

Feeding this into CafeOBJ, CafeOBJ returns true.

 Case (1.2) can be discharged likewise. It needs to use as a lemma but does

not need to use . The base case can be straightforwardly discharged, and the other

two induction cases can be discharged only by case splitting. The other six including

 can be proved by structural induction on . The proof of uses as a

lemma. The proof of uses as inv1 as a lemma. The proof of uses as a

May Thu Aung et.al /International Journal of Software Engineering and Computer Systems 4(2) 2018 1-18

15

lemma. The proof of uses as a lemma. The proof of uses and

as lemmas. The proof of uses and as lemmas.

 In addition to those lemmas on , to complete the formal proofs, we need

to use the following four lemmas on queues:

where and are CafeOBJ variables of and is a CafeOBJ variable of .

The first equation says that if equals , then is true and otherwise it is

the same as . The second (conditional) equation says that if is not true,

then is false. The third equation says that if is different from ,

then is the same as . The fourth equation says

that if is false, then is false.

CONCLUSION

 We conjecture that graphical animations of state machines help human users

guess or conjecture non-trivial properties of state machines, which could be used to

complete formal proofs of theorems. Although model checking is convenient as well as

useful to confirm guessed properties, it is not enough because state machine may not

have a fixed small number of reachable states. If that is the case, interactive theorem

proving is one possible technique to tackle the situation. The case study reported in the

paper supports our claim to some extent. To support our claim more, we should conduct

some more case studies as mentioned in the last section.

ACKNOWLEDGEMENT

 We are grateful to the editor to handle our paper and to the anonymous

reviewers to carefully read an earlier version of the paper and give us valuable

comments to make it possible for us to properly revise it.

REFERENCES

Aung, M. T., Nguyen, T. T. T. & Ogata, K. (2018). Guessing properties of the Qlock

mutual exclusion protocol based on its graphical animations and confirming the

properties by model checking. 8th International Conference on Software and

Computer Applications, 153-157.

Clavel, M., Duran, F., Eker, S., Lincoln, P., Marti-Oliet, N., Meseguer, J. & Talcott, C.

(2007). All About Maude. Berlin: Springer-Verlag.

Diaconescu, R. & Kokichi, F. (1997). CafeOBJ Report. Singapore: World Scientific.

Goguen, J. A. (1990). Proving and rewriting. 2nd International Conference on

Algebraic and Logic Programming, 1–24.

Goguen, J. A., Winkler, T., Meseguer, J., Futatsugi, K., Jouannaud, J. P. (2000).

Introducing OBJ. Software Engineering with OBJ. Goguen & Malcolm (Ed.).

New York: Springer US.

Guessing, model checking and theorem proving of state machine properties – a case study on qlock

16

Hallerstede, S., Leuschel, M., & Plagge, D. (2013). Validation of formal models by

refinement animation. Science of Computer Programming, 78, 272–292, 2013.

doi:10.1016/j.scico.2011.03.005

Jackson, D. (2012). Software Abstraction (Revised edition). Cambridge:The MIT Press.

Li, M. & Liu, S. (2016). Integrating animation-based inspection into formal design

specification construction for reliable software systems. IEEE Transactions on

Reliability, 65, 88–106. doi:10.1109/TR.2015.2456853

Liang, H., Dong, J. S., Sun, J. & Wong, W. E. (2016). Software monitoring through

formal specification animation. Innovations in Systems and Software Engineering,

5, 231–241. doi:10.1007/s11334-015-0269-z

Mellor-Crummey, J. M. & Scott, M. L. (1991). Algorithms for scalable synchronization

on shared-memory multiprocessors. ACM Transactions on Computer Systems, 9,

21-65. doi: 10.1145/103727.103729

Nagoya, F. & Liu, S.: An Investigation of Integrating a GUI-Aided Approach and a

Specification-Based Testing, 8th International Workshop on SOFL+MSVL, 24-

35

Nguyen, T. T. T. & Ogata, K. (2017a). Graphical Animations of State Machines. 15th

IEEE International Conference on Dependable, Autonomous and Secure

Computing, 604-611.

Nguyen, T. T. T. & Ogata, K. (2017b). Graphically perceiving characteristics of the

MCS lock and model checking them, 8th International Workshop on

SOFL+MSVL, 3-23.

Ogata, K. & Futatsugi, K. (2003). Proof Scores in the OTS/CafeOBJ Method. 6th

International Conference on Formal Methods for Open Object-Based Distributed

Systems, 170-184.

Ogata, K. & Futatsugi, K. (2008). Proof Score Approach to Verification of Liveness

Properties. IEICE TRANSACTIONS on Information and Systems, E91-D, 2804-

2817, 170-184. doi:10.1093/ietisy/e91-d.12.2804

Ogata, K. & Futatsugi, K. (2013). Compositionally Writing Proof Scores of Invariants

in the OTS/CafeOBJ Method. The Journal of Universal Computer Science, 19,

771-804. doi: 10.3217/jucs-019-06-0771

Preining, N., Ogata, K. & Futatsugi, K. (2014). Liveness Properties in CafeOBJ - A

Case Study for Meta-Level Specifications. 24th International Symposium on

Logic-Based Program Synthesis and Transformation, 182-198.

Santiago, S., Talcott, C. L., Escobar, S., Meadows, C. A. & Meseguer, J. (2009). A

Graphical User Interface for Maude-NPA. 9th Spanish Conference on

Programming and Languages, 3-20.

Sun, J., Liu, Y., Dong, J. S., & Pang, J. (2009). PAT: Towards flexible verification

under fairness. 21st International Conference on Computer Aided Verification,

709–714.

Yoshida, H., Ogata, K. & Futatsugi, K. (2015). Formalization and Verification of

Declarative Cloud Orchestration. 24th International Symposium on Logic-Based

Program Synthesis and Transformation, 33-49.

APPENDIX

 A glossary of symbols and terminologies used in the paper is given:

May Thu Aung et.al /International Journal of Software Engineering and Computer Systems 4(2) 2018 1-18

17

 : A membership predicate for queues, where is an element and is a queue;

The queue that consists of the elements , & in this order is expressed as

 , where is the empty queue

 , & : , & , respectively.

CafeOBJ: An algebraic specification language and tool that is used to specify state

machines in equations as OTSs and to formally verify that state machines enjoy

invariant properties by theorem proving.

 : It is used to declare that operators are data constructors.

Command : It indicates the end of use of a module started with .

Equations for state transitions: They are in the form “
 ”, where is the label given to the equation, is an observer and

 is an action; It specifies how the value observed by obs together with a

parameter changes if is applied (or taken) in a state together ; Equations

can have conditions; If so, is used instead of , “ ” is written after the right-

hand side and conditions are written between “ ” and the full stop; Equations are

used as left-to-right rewrite rules to reduce terms unless is given.

Invariant properties wrt : State predicates that hold in all reachable states wrt ,

namely .

 : A state machine; is a set of states; is the set of initial states;

 is a binary relation over ; elements are called state

transitions; may be written as ; is the state machine

formalizing ; is the state machine formalizing Qlock.

Maude: A rewriting-logic based programming and specification language and tool that

is used to specify state machines in terms of rewrite rules and model check that

state machines enjoy linear temporal logic (LTL) properties as well as invariant

properties.

 : A system that only has one value whose initial value is and that changes to

 , and repeatedly in this order.

Observable components: Name-value pairs, such as , where is the

name and is the value.

Observational Transition System (OTS): State machines described such that each value

that characterizes states is observed by applying a function called an observer to

the states (together with some parameters if any), a set of transitions is represented

by a function called an action (or a transition), and how to change each value that

characterizes states by applying an action to the states is specified in terms of

equations.

Command : A CafeOBJ command that takes a module and make it possible to use

the module

Proof scores: Programs written in an algebraic specification language, such as CafeOBJ,

to conduct theorem proving.

Qlock: A mutual exclusion protocol; an abstract version of the Dijkstra Binary

Semaphore.

 : The set of reachable states wrt ; is the set of reachable states wrt ;

 is the set of reachable states wrt .

Command : A CafeOBJ (and Maude) command that takes a term and reduces (or

computes) it by using equations as left-to-right rewrite rules.

Rewrite rules for state transitions: They are in the form
 that says that changes to ,

Guessing, model checking and theorem proving of state machine properties – a case study on qlock

18

where is the label given to the rule; Rewrite rules can have conditions; If so,
is used instead of , “ ” is written after the right-hand side and conditions are

written between “ ” and the full stop.

Search command: A Maude (and CafeOBJ) command that is in the form

“ ” that searches all reachable states

from for at most states that can match and make true.

Soups: Collections that satisfy associative and commutative laws; a soup that consist of

 , and is expressed as ; because it satisfies associative and

commutative laws, , , etc. are exactly the same as ;

SMGA: A state machine graphical animation tool.

