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1.0 INTRODUCTION 

Supervised categorization is the process of using a training dataset and statistical learning techniques to classify items 

into distinct classes and apply this knowledge to categorize new data [1]. Supervised learning, a fundamental aspect of 

machine learning, involves algorithms that identify patterns in data by utilizing known independent and dependent 

variables to predict future outcomes, with supervised classification assuming cluster labels as parameters while addressing 

challenges like class distribution disparity [2].   

The significance of imbalanced data categorization is increasing in the fields of machine learning [3]. A dataset is 

considered imbalanced when one class significantly outnumbers the other, with the minority class referred to as the 

positive (+) class and the majority class as the negative (−) class in data categorization. [3]. The issue of class imbalanced 

has garnered significant attention in recent study [4]–[10]. Sampling techniques are utilized to transform the distribution 

of imbalanced data into a balanced distribution [11]. Undoubtedly, the issue of learning from imbalanced data sets is a 

significant obstacle in the field of data mining. While conventional support vector machine can typically demonstrate 

strong performance in handling classification problems with imbalanced data sets, they treat all training samples equally 

in the learning process. This can lead to a bias in the final decision boundary towards the majority class, particularly when 

outliers or noises are present [12]. Imbalanced data categorization occurs when one class has more examples than the 

other, with the majority class often overshadowing the minority class, which is treated as noise by conventional classifiers, 

leading to bias towards the majority class and prompting the development of various methods to address this issue. [13]. 

The support vector machine (SVM) is a very efficient machine learning tool that is known for its speed, simplicity, 

reliability, and ability to give correct classification results [14]. SVM generates a model based on the available sample 

sizes of each class. The SVM learning formulation is derived from the ideas of structural risk minimization. Support 

Vector Machine (SVM) can be employed to mitigate the constraints of the generalization error, hence enhancing its 

performance when applied to data outside the training set [15]. The goal of Support Vector Machine (SVM) is to identify 

the hyperplane that separates two classes in a vector space [16]. The separating hyperplane lies between two parallel 

hyperplanes, with one placing vectors of the first class above it and the other placing vectors of the second class below it, 

where the margin is the distance between these hyperplanes, and in cases where misclassifications are allowed for 

ABSTRACT – The challenge of classifying imbalanced data persists in machine learning, 
particularly in critical applications such as medical diagnosis, fraud detection, and anomaly 
identification, where detecting the minority class is essential. Conventional classifiers like Support 
Vector Machine (SVM) tend to favor the majority class, leading to reduced sensitivity in identifying 
minority instances. This study introduces Posterior Probability and Correlation-Support Vector 
Machine (PC-SVM), a novel approach that integrates posterior probability estimation with 
correlation analysis to enhance SVM’s performance on imbalanced datasets. Unlike traditional 
SVM models, which struggle with class imbalance and require additional data balancing 
techniques, PC-SVM dynamically adjusts classification thresholds using posterior probability 
values and correlation-weighted features, simplifying the classification process while improving its 
effectiveness. The effectiveness of PC-SVM was evaluated using multiple imbalanced datasets 
from KEEL, UCI, and Kaggle repositories. Results demonstrate that PC-SVM achieves 100% recall 
for the minority class, significantly outperforming traditional SVM, which attained only 80% recall 
on average. This 20% improvement in recall underscores PC-SVM’s ability to mitigate the 
imbalance issue without relying on oversampling or cost-sensitive adjustments. Furthermore, PC-
SVM exhibits consistent performance across various evaluation metrics, including accuracy, 
precision, recall, and F1-score, ensuring robust classification results. By improving the detection of 
minority classes, PC-SVM offers a transformative solution for real-world applications that demand 
high sensitivity in identifying rare but crucial instances. Its ability to maintain classification integrity 
without additional balancing techniques positions it as a valuable model for industries such as 
healthcare, finance, and cybersecurity, where accurate minority class recognition is critical.  
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improved generalization, the margin is "soft," while SVM remains a highly efficient method for supervised classification. 

[1].  

Traditional classification approaches assume equal probabilities for data from different classes, but in real-world 

scenarios, minority classes may have fewer data points than majority classes, causing traditional algorithms to show bias 

towards majority classes and resulting in reduced accuracy for minority class classification [2]. To address the challenges 

of imbalanced data, various techniques have been proposed, categorized into three groups: data-level techniques that 

modify the sample probabilities through oversampling or undersampling to balance the dataset, algorithm-level 

techniques that adjust classification systems with cost-sensitive approaches to penalize misclassifying minority samples 

more heavily, and fusion approaches that combine different tactics, such as sampling and cost-sensitive methods, to tackle 

the imbalance issue [2]. 

The proposed Posterior Probability and Correlation-Support Vector Machine (PC-SVM) improves upon traditional 

SVM-based methods by integrating posterior probability estimation and correlation-weighted feature analysis, addressing 

the longstanding issue of class imbalance in machine learning. Unlike standard SVM, which constructs decision 

boundaries without considering class distribution, PC-SVM dynamically adjusts classification thresholds using posterior 

probabilities, enhancing minority class recognition. Furthermore, unlike cost-sensitive SVM or resampling techniques 

(e.g., SMOTE), which require manual parameter tuning or risk overfitting, PC-SVM automatically balances class 

representation without modifying the dataset. Existing SVM solutions struggle with biased decision boundaries that favor 

the majority class, limiting their effectiveness in real-world applications such as fraud detection and medical diagnosis, 

where minority class detection is crucial. PC-SVM fills this gap by leveraging correlation analysis to refine feature 

selection, ensuring that the most relevant features influence classification, thus improving recall, accuracy, and 

generalization across datasets.  

This article mainly introduces the development of a novel classification method called PC-SVM, which integrates 

posterior probability and correlation techniques to enhance SVM performance on imbalanced datasets. Section 1 discusses 

the background and motivation for addressing class imbalance in machine learning. Section 2 reviews related works and 

existing approaches to tackle this issue. Section 3 outlines the research methodology, including data sources, 

preprocessing, modeling, and evaluation techniques. Section 4 presents and analyzes experimental results, demonstrating 

that PC-SVM outperforms traditional SVM methods. The final section summarizes the findings and highlights the 

contributions and potential of PC-SVM for real-world applications. 

 

2.0 RELATED WORKS 

A key challenge in classification learning systems is the class distribution disparity, where one or more classes have 

a high frequency of instances while others are underrepresented, causing conventional algorithms, including SVM 

classifiers, to perform well on the dominant class but exhibit bias and fail to incorporate data distribution information in 

addressing class imbalance [17]. 

M. Li developed a novel technique called ant colony optimization resampling (ACOR) to tackle the issue of class 

imbalance [18]. ACOR consists of two stages: first, an oversampling technique is applied to balance the dataset, followed 

by the use of an ant colony optimization algorithm to select a suboptimal subset, enabling the creation of an optimal 

training set, which has shown superior performance compared to other oversampling methods, though challenges remain, 

such as quick descent into local optima, slow convergence, and low precision in convergence [19]. 

As mentioned before, the SVM classifier exhibits bias towards the dominant class as a result of class imbalance. 

Furthermore, the current SVM-based approaches for addressing class imbalance lack information on the data distribution. 

B. Richhariya et al offer a Reduced Universum Twin Support Vector Machine for Class Imbalance Learning (RUTSVM-

CIL) that is motivated by the concept of previous information on data distribution [17]. This study combines universum 

learning with Support Vector Machine (SVM) to address class imbalance, using oversampling and undersampling 

techniques alongside universum data points for prior information, and employs a compact rectangular kernel matrix to 

reduce computational time and storage, with the RUTSVM-CIL method demonstrating superior generalization 

performance and minimal computational cost on diverse datasets [17].  The sampling strategy modifies the dataset before 

learning, using oversampling to increase the minority class size by adding data and undersampling to decrease the majority 

class size by removing data, with the downside of undersampling being the potential loss of valuable information. [20].  

Classification algorithms often struggle with imbalanced datasets, making effective classification challenging, 

particularly in detecting loose particles in sealed electronic components, which is addressed using the Synthetic Minority 

Over-sampling Technique (SMOTE), a standard oversampling method [21], The LR-SMOTE algorithm, designed to 

create new samples close to the center of the dataset and avoid generating outliers or altering the distribution, was tested 

on publicly available UCI datasets and custom data, showing superior performance over SMOTE in terms of G-means, 

F-measure, and AUC, though SMOTE's insensitivity to majority class distribution can lead to the creation of redundant 

minority samples, worsening issues for borderline and noisy instances [19]. 

X. Tao has presented a novel approach called Affinity and Probability-based Fuzzy Support Vector Machine (ACF 

SVM) [12]. The proposed ACFSVM approach utilizes an SVDD model trained on majority class samples in kernel space 
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to detect anomalies and edge samples, applies the kernel k-nearest neighbor technique to reduce noise impact, and 

enhances classification by prioritizing minority class importance while achieving superior performance on imbalanced 

UCI datasets. 

Class imbalance in real-world datasets causes bias towards the dominant class, resulting in poor performance for the 

minority class, which can lead to unreliable outcomes in critical applications like illness detection, prompting researchers 

to focus on addressing this issue through hybrid techniques [22]. The study uses simulated annealing for undersampling 

and applies support vector machine, decision tree, k-nearest neighbor, and discriminant analysis for classification, 

validating the approach on 51 real-world datasets and demonstrating superior effectiveness in reducing misclassification 

compared to previous methods. 

The conventional SVM models are extensively employed across many domains. However, research indicates that they 

lack a coherent geometric definition, which might potentially undermine their theoretical performance, particularly in 

high-dimensional scenarios [23]. K. Qi et al  [23] The study explores the use of a combined penalty and introduces an 

elastic net support vector machine (ENSVM), which penalizes slack variables rather than the hyperplane's normal vectors, 

showing that ENSVM outperforms standard SVM and Doubly Regularized SVM (DrSVM) in terms of logical 

specification, stability, and high-dimensional characteristics, while the integration of fused weights leads to the adaptive 

weighted ENSVM (AWENSVM), which enhances adaptability and robustness in handling imbalanced data and shows 

superior performance compared to other common SVM models. 

Most classification techniques assume even sample distribution across classes, but this leads to biased performance 

toward the dominant class; the proposed Enhanced Automatic Twin Support Vector Machine (EATWSVM) method 

addresses this issue by integrating a kernel representation into the optimization of Twin Support Vector Machines 

(TWSVM) using a Gaussian similarity based on Mahalanobis distance, enhancing data distinguishability with a centered 

kernel alignment strategy, and determining regularization parameters based on the imbalance ratio and dataset overlap, 

with experimental results showing superior performance and training efficiency compared to state-of-the-art methods 

[13]. 

Imbalanced data can result in unsatisfactory classification models, since it often leads to frequent misclassification of 

minority cases and hinders the achievement of optimal performance. H. Shamsudin presents an enhanced approach called 

SVM-GA for handling imbalanced data. This method optimizes the SVM algorithm using Genetic Algorithm (GA) in 

combination with a synthetic minority oversampling strategy [24]. The experimental results show that the proposed 

method improves performance by 97% compared to the baseline and optimized models, outperforming SVM with Grid 

and Randomized search, especially for datasets with rare instances; however, the study is limited by small sample sizes 

(under 5000) and fewer features, suggesting the model's performance may need further testing with more complex datasets 

to assess its efficacy in more intricate settings. 

Imbalanced data categorization is crucial in machine learning as it focuses on detecting abnormalities, which are often 

of interest, but occur less frequently than regular instances in real-world systems. Developing classifiers using imbalanced 

data can be challenging since there is no definitive criterion for determining the extent of imbalance that can be considered 

as imbalanced or balanced [25]. In order to tackle this problem, this article suggests enhancing the current Support Vector 

Machine technique. 

A key aspect of classification involves estimating the likelihood of a new point x belonging to a specific class, where 

most classifiers generate a score linked to posterior probability through an implicit relationship, with models like SVM 

providing an approximate posterior probability that represents the likelihood of a class being assigned to a dataset, which 

can be refined for greater accuracy. 

A major challenge in data mining is handling imbalanced data in classification tasks, where some classes (majority 

classes) have a large amount of data, and others (minority classes) have only a few instances, leading to biased 

performance in traditional classifiers that focus on data distribution rather than error rates, often neglecting the minority 

classes in the classification outcome, a problem common in many real-world applications [26]. 

 

3.0 METHODS AND MATERIAL 

The research methodology consists of five distinct phases : Data Sources, Data Preparation, Experiment, Modelling, 

Model Evaluation.   

3.1 Data Sources 

The research issue necessitates the use of data in order to provide a response. The research resources utilized in this 

study consist of publicly available data sets obtained from the Knowledge Extraction based on Evolutionary Learning 

(KEEL) Database, the UC Irvine (UCI) Machine Learning Repository, and Kaggle.  

Details of the dataset employed in this article is shown in Table 1. The highest imbalanced ratio is the chrun dataset 

with IR 5,36 and the lowest imbalanced ratio is heart with IR 2.11. While the lowest instances are 299 in the heart dataset, 

the highest instances are 3150 in churn dataset. The highest features are churn which has features 13, and the lowest 

features are yeast dataset which has 8 features. 
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Table 1. Detail Dataset 

Dataset Features Instances Positive Instances (%) Negative Instances (%) IR Public dataset 

Yeast 8 1484 28,9 71,1 2,46 Kaggle 

Heart 12 299 68 32 2,11 Keel 

Churn 13 3150 16 84 5,36 UCI 

 

3.2 Data Preparation 

Data preprocessing is a crucial undertaking in machine learning that has the potential to greatly enhance the results of 

a model [27] [28] [29]. Data pre-processing is an essential and pivotal stage in the life cycle of machine learning.  A 

significant obstacle in the healthcare industry is obtaining a comprehensive and uncontaminated dataset. The data quality 

is of utmost importance as it can significantly impact the model's learning capacity and its final generalizability [30]. 

Efficient and accurate algorithms may be achieved by employing effective data preparation methods and procedures. This 

serves as a strong basis for making data-driven decisions and developing applications [31]. The data underwent 

preprocessing techniques including data encoding, data imputation, transformation of skewed data, data balancing, feature 

scaling, and feature selection [32] [33] [34]. Data preprocessing encompasses a collection of methods aimed at improving 

the integrity of the original data, including the elimination of outliers and the filling in of missing values [35]. An essential 

stage in the data analysis process is preprocessing, which entails transforming unprocessed data into a format that can be 

comprehended by computers and machine learning algorithms. This crucial stage significantly influences the accuracy 

and effectiveness of machine learning models [36]. The data preparation process involves key stages, including missing 

value detection and data transformation. 

3.3 Experiment 

This research includes a series of experiments to evaluate classification performance under various conditions: (1) 

assessing the performance of SVM with an imbalanced dataset to examine its bias towards the majority class, (2) 

evaluating SVM with a balanced dataset to observe improvements after addressing class imbalance, and (3) testing the 

PC-SVM model with an imbalanced dataset to determine its effectiveness in mitigating class imbalance while maintaining 

classification accuracy. 

3.4 Modelling 

Model development refers to the process of creating and refining models in the context of data analysis and machine 

learning. A model is a mathematical or statistical representation of a system or process that aims to uncover patterns or 

relationships within data.  

 
Figure 1. Proposed Algorithm 

 

The proposed idea shown by Figure 1 combines the algorithm referred to as PC-SVM stands for Posterior Probability 

and Correlation-Support Vector Machine. The fundamental principle behind the PC-SVM method is combination of 

Posterior Probability and Correlation Techniques which is very effective in improving SVM performance on imbalanced 

data sets. In an imbalanced data set, when one class is larger than the other, posterior probability provides the advantage 

of calculating class probabilities based on feature likelihood, thereby providing insight into the probability of a sample 

belonging to the minority or majority class. The probability distribution is optimized by multiplying the prior probability 

with the total sum of the multiplication of the R Square of feature i of class Y with the independent probability of all 

feature vectors X. The attribute weights in the proposed method are obtained from the correlation coefficient value 

between the attribute and the class. The correlation coefficient has a value range from -1 to 1, so there is a possibility that 

the attribute weighting value will be negative. To prevent negative values from occurring, what is used for attribute 

weighting is the R Square value. Attribute weighting is a method where the R Square value of each attribute for the class 

is multiplied by the probability of each attribute in calculating the conditional probability of the Naive Bayes Classifier 

using the join probability method. Figure 2 illustrates the general architecture of the proposed algorithm : 

 

Correlation

Posterior Probability

SVM
PC-SVM



Pamungkas et al. │ International Journal of Software Engineering and Computer Systems │ Vol. 11, Issue 1 (2025) 

 

20 
journal.ump.edu.my/ijsecs ◄   

 

Figure 2. General architecture of the proposed algorithm 

This attribute weighting can increase the accuracy by considering how strongly the attribute is related to the specified 

class. To maintain consistency that the R Square value always influences the classification process, the Laplacian method 

is used which prevents probability 0 from occurring. The Laplacian method needs to be applied because if there is a 

probability of 0, then whatever the R Square value of the attribute will have no effect. The application of the Laplacian 

method is to force the frequency of data occurrences in the data set to be greater than 0 by adding an occurrence value of 

1 to each conditional probability calculation. The basic concept of attribute weighting is to assume that each attribute has 

a different influence and priority on the class. To optimize classification results, the research that will be carried out will 

also use the Laplacian method to overcome the Zero Probability problem. 

These posterior probabilities are then used as input features for the SVM, which excels at finding the optimal 

separating hyperplane between classes. By using psoterior probabilities to convert the original feature space into 

probability estimates, SVM can focus on maximizing the margin between classes using these probabilities. This helps 

mitigate imbalances by making decision boundaries more sensitive to minority class examples, increasing classification 

accuracy, and reducing bias towards the majority class. 

The PC-SVM algorithm employs an attribute weighting technique based on R Square. The R Square weighting in the 

PC-SVM technique may be shown in Figure 3. 

 

 

Figure 3. R Square Weighting 

The SVM method utilizes joint probability to calculate conditional probability. characteristic weighting is a method 

that assigns a numerical value to each characteristic to indicate its relative importance. Thus, the accurate approach in 

conditional probability involves employing the method of total addition rather than complete multiplication. The posterior 

probability is employed to ascertain the degree of confidence in a categorization.  

Posterior probability alone only provides probabilities without considering the strength of relationships between 

features. By incorporating R Square, the model becomes richer in information, as now each feature is not only measured 

based on its likelihood distribution but also on its relevance to the target class. This results in a deeper probability 

structure, which is important when dealing with imbalanced datasets, where most features may be more relevant to the 

majority class and less helpful in detecting the minority class. By combining R Square with the independent probabilities 

of features, we effectively make the model more sensitive to variations and patterns present in features closely related to 

the minority class. In the context of an imbalanced dataset, this approach helps the model capture subtle patterns important 

for detecting the minority class, which often gets lost amidst the dominance of the majority class. 

3.5 Model Evaluation 

Model evaluation in this study involves the confusion matrix, ROC curve, and scatter plot. The confusion matrix, 

applicable to both binary and multiclass problems, presents actual versus predicted classifications and supports 

performance metrics such as Accuracy, Precision, Recall, and F1 Score, based on TTP, TFN, TTN, and TFP [37] [38]. 
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The ROC curve assesses classifier performance across thresholds, with AUC indicating the model’s ability to distinguish 

between classes particularly useful in imbalanced data scenarios. Additionally, scatter plots visualize relationships and 

correlations between two variables, aiding in the interpretation of data patterns. 

 

4.0 RESULTS AND DISCUSSION 

4.1 Correlation 

Correlations are widely utilized statistical processes that serve as a foundation in several applications, including 

exploratory data analysis, structural modeling, and data engineering [39]. Equation (1) is used to determine the correlation 

value and equation (2) is used to obtain R Square. 

𝑟 =
∑(𝑋𝑖 −  �̅� ) (𝑌 −  �̅�)

√∑(𝑋𝑖 − �̅� )2  ∑(𝑌 − �̅� )2
 

(1) 

  

𝑅 = 𝑟2 (2) 

 

Let X be a vector with an unknown class label, consisting of features indexed by i =  {1, … , q}, where R(𝑖|Y) denotes 

the attribute weights computed based on the coefficient of determination (R-squared) for each feature with respect to class 

Y. The R is determined through the application of the equation (2). The coefficient of determination R Square for all 

features within vector X in relation to the dependent variable Y is calculated using equation (3): 

𝑅(𝑖|𝑌) = 𝑅 (3) 

with 

R : 𝑟 Square 

𝑟 : correlation coefficient value 

�̅� : Mean of the attribute 𝑋𝑖 

�̅� : Mean of  𝑌 

𝑅(𝑖|𝑌) : 𝑟 Square attribute 𝑖 to class 𝑌 

 

When posterior probability is used in classification tasks, it generally only evaluates the probability of class membership 

based on the observed data. However, this approach can be limiting as it assumes that all features contribute equally and 

independently to the classification task, ignoring the relationship strength between individual features and the target class. 

The use of R Square in the equation changes this dynamic by providing a measure of how much of the variance in the 

target class is explained by each feature. By incorporating R Square into the model, gained additional information about 

how relevant each feature is to the target class, going beyond simple probability estimations. For example, if a particular 

feature has a high R Square value, it is strongly correlated with the target class and should be given more weight in the 

classification decision. 

4.2 Posterior Probability 

Probability theory is a scientific discipline that use statistical methods to understand occurrences that occur randomly 

[40]. Possibility theory is based on two basic principles. These  Prior probability and posterior probability. The posterior 

probability is the likelihood of an event occurring, which is computed after taking into account all available information 

or data [40].  In order to calculate the posterior probability for the PC-SVM method, it is necessary to choose the highest 

value among the numerous prior probabilities, using conditional probability. The equation (4) is utilized to calculate the 

posterior probability. 

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = max ( 𝑃(𝑌) ∑ 𝑃(𝑋𝑖|𝑌)

𝑞

𝑖=1

) 

 

(4) 

Posterior probability and correlation analysis are powerful techniques that can complement each other in predictive 

modeling. This probabilistic output allows for more nuanced decisions in classification tasks. On the other hand, 

correlation analysis evaluates the strength and direction of relationships between variables. By combining these methods 

can enhance model performance by understanding feature dependencies and selecting the most relevant variables. The 

equation (5) is Posterior Probability with Correlations. 

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑤𝑖𝑡ℎ Correlations = max ( 𝑃(𝑌) ∑(𝑃(𝑋𝑖|𝑌) 𝑅(𝑖|𝑌))

𝑞

𝑖=1

) 

(5) 
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The Laplacian method is employed as a technique for estimating conditional probabilities by addressing the issue of 

zero-frequency occurrences. This is achieved by adding one to the frequency count of each occurrence of 𝑋𝑖 in the dataset. 

As outlined in Equation (5), the application of the Laplacian adjustment leads to a revised formulation of the posterior 

probability, which is mathematically represented in Equation (6). 

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑤𝑖𝑡ℎ Correlations and Laplacian = max ( 𝑃(𝑌) ∑(𝑃(𝑋𝑖|𝑌)ℓ 𝑅(𝑖|𝑌))

𝑞

𝑖=1

) 

 

(6) 

 

Based on equation (6) by combining Posterior Probability with Correlation and Laplacian, it can create a classification 

model that is more robust and able to handle shortcomings that arise due to the assumption of independence and lack of 

data in the minority class. This combination provides several advantages: 

- Overcoming zero probability in data that does not appear in training, especially in minority classes. 

- Gives additional weight to features that are more correlated with the target class, which is especially important in the 

case of imbalanced datasets. 

- Ensure that the posterior probability is more representative, both in terms of feature probability and its relevance to 

the target, thereby increasing the model's ability to detect minority classes. 

This approach is effective in situations where imbalance in class distribution makes classification a challenge, by 

increasing the model's sensitivity to underrepresented classes. 

4.3 Posterior Probability And Correlation-Support Vector Machine (PC-SVM) 

In the combination of posterior probability and SVM, it uses the product of the prior probability and the total sum of 

the products of 𝑅 Square feature 𝑖 of class 𝑌 with Independent Probability of all attribute vectors 𝑋 as input features for 

the SVM model. The SVM will learn to use these features to separate the classes by the largest margin. 

4.3.1 Probability Posterior from Naive Bayes 

Naive Bayes calculates the posterior probability of each class 𝑌1 and 𝑌2 based on the attribute 𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) of 

the sample. 

𝑃(𝑌1|𝑋) = 𝑃(𝑌1) ∑(𝑃(𝑋𝑖|𝑌1)ℓ 𝑅(𝑖|𝑌))

𝑞

𝑖=1

 

(7) 

 

𝑃(𝑌2|𝑋) = 𝑃(𝑌2) ∑(𝑃(𝑋𝑖|𝑌2)ℓ 𝑅(𝑖|𝑌))

𝑞

𝑖=1

 

(8) 

 

 

Where 𝑃(𝑌1) and 𝑃(𝑌2) are the prior probabilities of classes 𝑌1 and 𝑌2, and 𝑃(𝑋1|𝑌1), 𝑃(𝑋2|𝑌2) are the conditional 

probabilities of attribute 𝑋 in each class. After getting the probabilities (𝑌1|𝑋) and 𝑃(𝑌2|𝑋), these probabilities are used 

as new input attributes for the SVM model. 

4.3.2 SVM Formulation with Naive Bayes Features 

SVM aims to find a hyperplane 𝑓(𝑧) that separates two classes 𝑌1 and 𝑌2 based on a new input attribute 𝑧 =
(𝑃(𝑌1|𝑋), 𝑃(𝑌2|𝑋)). The decision function for SVM, given a feature vector 𝑧 is mathematically expressed by equation 

(9): 

𝑓(𝑧) = 𝑤⊤𝑧 + 𝑏 (9) 

subject to, 

�̂� = 𝑠𝑖𝑔𝑛(𝑓(𝑧)) = 𝑠𝑖𝑔𝑛(𝑤1. 𝑧 + 𝑏 ) (10) 

Where : 

- 𝑤 is the weight vector of the SVM 

- 𝑧 = (𝑃(𝑌1|𝑋), 𝑃(𝑌2|𝑋)) is a feature vector consisting of  Naive Bayes posterior probabilities 

- 𝑏 is the bias of the SVM. 

- 𝑓(𝑧)  determine which class the sample belongs to: 

- If 𝑓(𝑧) > 0, then the sample is predicted as 𝑌1 (positive class). 

- If 𝑓(𝑧) ≤ 0, then the sample is predicted as 𝑌2 (negative class). 

 

4.3.3 Combination Formula of SVM and Naive Bayes 

By combining the Naive Bayes posterior probabilities into the SVM, the combination formula becomes: 

𝑓(𝑧) = 𝑤1. 𝑃(𝑌1|𝑋) +  𝑤2. 𝑃(𝑌2|𝑋) + 𝑏 (11) 

 

Input to SVM: 𝑃(𝑌1|𝑋) and 𝑃(𝑌2|𝑋) are the posterior probabilities.  

 

4.3.4 Margin Optimization in SVM 

SVM maximizes the margin between classes 𝑌1 and 𝑌2 by solving the following optimization problem: 
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𝑚𝑖𝑛
𝑤, 𝑏

 
1

2
 ‖𝑤‖2  

(12) 

with condition  

𝑌𝑖(𝑤⊤𝑧𝑖 + 𝑏) ≥ 1 ∀𝑖  (13) 

 

Where: 

- 𝑌1 is the original class label of the 𝑖 sample (1 for 𝑌1, -1 for 𝑌2). 

- 𝑧𝑖 = [𝑃(𝑌1|𝑋𝑖), 𝑃(𝑌2|𝑋𝑖)] is the feature vector from Naive Bayes for the 𝑖 sample. 

 

4.3.5 Final Decision 

The final prediction is determined by the decision function 𝑓(𝑧), where Naive Bayes and SVM work synergistically: 

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = max ( 𝑃(𝑌) ∑(𝑃(𝑋𝑖|𝑌) 𝑅(𝑖|𝑌))

𝑞

𝑖=1

) 

(14) 

 

 

In mathematical terms, 𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑌|𝑋) is computed using equation (15): 

 

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑌|𝑋) = max (
𝑃(𝑌) ∑ (𝑃(𝑋𝑖|1)ℓ 𝑅(𝑖|𝑌))

𝑞
𝑖=1

𝑃(𝑋)
) 

(15) 

 

 

where 𝑤 is the weight vector, 𝑧 is the feature vector, and 𝑏 is the bias 

 

After training, for a new sample 𝑋, the Naive Bayes component computes the posterior probabilities 𝑃(𝑌1|𝑋) and 

𝑃(𝑌2|𝑋), which are then fed into the SVM. The SVM makes the final prediction using the decision function: 

�̂� = 𝑠𝑖𝑔𝑛(𝑓(𝑧)) = 𝑠𝑖𝑔𝑛(𝑤1. 𝑃(𝑌1) ∑(𝑃(𝑋𝑖| 𝑌1)ℓ 𝑅(𝑖|𝑌))

𝑞

𝑖=1

+  𝑤2. 𝑃(𝑌2) ∑(𝑃(𝑋𝑖| 𝑌2)ℓ 𝑅(𝑖|𝑌))

𝑞

𝑖=1

+ 𝑏) 

(16) 

 

 

The final SVM decision function is: 

�̂� = 𝑠𝑖𝑔𝑛(𝑓(𝑧)) = 𝑠𝑖𝑔𝑛(𝑤1. 𝑃(𝑌1|𝑋) +  𝑤2. 𝑃(𝑌2|𝑋) + 𝑏) (17) 

 

Where: 

- 𝑓(𝑧) is the decision score: the sign of 𝑓(𝑧) determines the class assignment. 

- 𝑃(𝑌1|𝑋) and 𝑃(𝑌2|𝑋) are posterior probabilities from Naive Bayes. 

- 𝑤1 and 𝑤2 are the SVM weights. 

- 𝑏  is the bias term learned by SVM. 

The class prediction is made by evaluating the sign of 𝑓(𝑧): 

- If 𝑓(𝑧) > 0, the prediction is 𝑌1. 

- If 𝑓(𝑧) ≤ 0, the prediction is 𝑌2. 

 

4.1  Data Preprocessing 

4.1.1 Missing Value Detection 

The result analysis of missing values in the yeast dataset indicates a complete dataset, as evidenced by the absence of 

missing values across all attributes. Each attribute, including Mcg, Gvh, Alm, Mit, Erl, Pox, Vac, Nuc, and Class, contains 

a total of 1484 valid entries, with no entries recorded as missing. This results in a 0% missing value percentage for each 

attribute, demonstrating that the dataset is fully populated. The completeness of the yeast dataset is a significant 

advantage, ensuring that the data is ready for further analysis and modeling without the need for imputation or any 

corrective measures. This reliable data quality enhances the confidence in the analytical outcomes and predictive 

performance of any models developed using this dataset. 

The result examination of missing values in the heart dataset indicates that there are no missing entries for any 

attributes, which is a noteworthy discovery. Every attribute comprises a total of 299 valid entries. This yields a 0% 

incidence of missing values universally. The lack of missing values across all attributes signifies that the dataset is 

comprehensive and prepared for analysis without requiring data imputation or rectification. The high-quality data is 

essential for guaranteeing the robustness and reliability of analyses or predictive modeling conducted on the dataset, 

hence improving the possibility for precise insights into the factors affecting heart-related outcomes. 

The examination of missing values in the churn dataset reveals the absence of any missing data entries for any of the 

attributes, which is a commendable result. Each attribute contains 3150 valid entries. This results in a 0% missing value 

percentage across all attributes. The complete dataset signifies a high level of data integrity, as the absence of missing 
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values eliminates the need for data imputation or any corrections. This completeness is crucial for conducting thorough 

analyses and building predictive models, ensuring that the insights derived from the data are based on a robust foundation 

and enhancing the reliability of the conclusions drawn regarding customer behavior and churn factors. 

4.2 Data Transformation 

The transformation of the yeast dataset was crucial for preparing it for posterior probability calculations and 

correlation analysis, as it involved converting various attributes from float64 to Category type. Initially, attributes were 

represented as continuous numerical values, which could misrepresent their categorical nature in subsequent analyses. By 

transforming these attributes into categorical data types, the analysis can accurately interpret and handle the relationships 

between different classes without assuming a linear relationship, which is common with continuous variables. This 

conversion is particularly important for calculating posterior probabilities, where the models need to treat these attributes 

as distinct categories rather than as continuous scales. Additionally, transforming the data into categories enhances the 

correlation analysis by ensuring that the statistical methods applied are appropriate for categorical data, allowing for the 

identification of meaningful relationships between different yeast characteristics. Overall, this data transformation 

optimizes the dataset for effective statistical modeling and ensures accurate results in both posterior probability and 

correlation computations. 

The transformation of the heart dataset was essential for its preparation for posterior probability calculations and 

correlation analysis, involving the conversion of various attributes from their original numerical types to Category. 

Initially, attributes like Age, Platelets, and serum_creatinine were represented as float64, while others, such as Anaemia, 

creatinine_phosphokinase, and DEATH_EVENT, were int64. By converting these variables into categorical data types, 

the dataset better reflects the inherent characteristics of the variables, allowing for appropriate statistical analyses. This is 

particularly important for posterior probability estimation, as treating variables like Age and ejection_fraction as 

categories prevents misinterpretation of their values as continuous data, which could lead to erroneous conclusions. 

Additionally, transforming all relevant attributes to Category enhances the validity of correlation analyses, as it allows 

for the examination of relationships between discrete classes rather than assuming a linear relationship between 

continuous variables. Ultimately, this transformation aligns the dataset with the requirements of the analytical methods 

to be applied, facilitating more accurate insights into the relationships among various heart-related factors and their impact 

on the outcome of interest. 

The transformation of the churn dataset was vital for preparing it for posterior probability calculations and correlation 

analysis, entailing the conversion of various attributes from their original integer types (Int64) and floating-point types 

(float64) into Category types. Initially, attributes such as Call Failure, Complains, and Subscription Length were 

represented as integer values, which could imply a numerical relationship that does not accurately reflect their categorical 

nature. By transforming these attributes into categorical types, the dataset aligns more closely with the intended analysis, 

allowing each attribute to be treated as a distinct category rather than a continuous variable. This is particularly important 

for posterior probability estimation, as categorical data can provide clearer insights into the likelihood of churn based on 

various factors, such as Age Group or Tariff Plan, without the misleading implications of numerical scales. Furthermore, 

the transformation enhances the correlation analysis by facilitating the exploration of relationships between categorical 

variables, enabling a more meaningful interpretation of how different attributes interact and influence customer churn. 

Overall, this data transformation optimizes the dataset for effective statistical modeling, ensuring accurate results in 

posterior probability and correlation computations related to customer behavior. 

4.3  Performance SVM With Imbalanced Dataset  

The results of performing SVM with an imbalanced dataset are displayed in Figure 4, Figure 5, and Figure 6. The 

performance evaluation include metrics such as accuracy, precision, recall, and FI-score. 

 

 
  

 

Figure 4. Performance of SVM on Imbalanced Datasets Utilizing the Yeast Dataset 

 

Figure 4 shows that the SVM model's accuracy on the imbalanced yeast dataset is 73.79%, which seems low due to 

the class imbalance. The majority class (-1) has 1055 instances, while the minority class (1) has only 429, causing the 

model to be biased towards the majority class. For the majority class, the model performs well with a precision of 0.74 

and a high recall of 0.96, leading to a strong F1-score of 0.84. However, the performance for the minority class is much 

weaker, with a precision of 0.67 and a very low recall of 0.19, resulting in a poor F1-score of 0.29. The confusion matrix 

shows many False Negatives for the minority class, indicating the model struggles to identify these instances. The scatter 
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plot confirms this, showing clear separation for the majority class but less distinct separation for the minority class, 

leading to misclassifications. The macro average shows a precision of 0.71 and a recall of 0.57, reflecting the imbalance, 

while the weighted average improves slightly but still highlights the issue with the minority class.for the imbalance, gives 

slightly better scores, but the low recall for class 1 remains a key issue. 

 

  
 

 

Figure 5. Performance of SVM on Imbalanced Datasets Utilizing the Heart Dataset 

 

Figure 5 shows that the SVM model achieves an overall accuracy of 82.94% on the imbalanced heart dataset, 

suggesting good general prediction. However, accuracy alone doesn't fully reflect the model's performance due to class 

imbalance. The dataset has a majority class (-1) with 203 instances and a minority class (1) with 96 instances, showing 

clear performance differences. For the majority class, the model performs well, with a precision of 0.83, a recall of 0.94, 

and an F1-score of 0.88. However, for the minority class, precision is also 0.83, but recall drops to 59%, resulting in a 

lower F1-score of 0.69. The confusion matrix shows a high number of True Negatives for the majority class and many 

False Negatives for the minority class, indicating the model struggles to identify the minority class. The scatter plot further 

shows that the majority class is well-separated, but the minority class instances are more scattered, leading to 

misclassifications. The macro average shows high precision at 0.83 but a lower recall of 0.77, highlighting the imbalance, 

while the weighted average reflects the overall accuracy, still showing the model's difficulty with the minority class. 

 

   

 

Figure 6. Performance of SVM on Imbalanced Datasets Utilizing the Churn Dataset 

 

Figure 6 shows that the SVM model's performance on the imbalanced churn dataset highlights the issue of class 

imbalance, with an overall accuracy of 84.28%. However, this accuracy is misleading due to the stark difference between 

the majority class (-1, non-churn) with 2654 instances and the minority class (1, churn) with 495 instances. The model 

performs well for the majority class, achieving a precision of 0.84, recall of 100%, and an F1-score of 0.91, meaning it 

correctly identifies nearly all non-churners. However, the confusion matrix shows that the model misclassifies all churn 

instances as non-churn, resulting in a recall of 0% for the minority class. The scatter plot further highlights this, showing 

that the decision boundary favors the majority class, causing many churn instances to be misclassified. As a result, the 

model fails to predict churners, with a recall and F1-score of 0 for class 1. The macro average scores (precision 0.42, 

recall 0.50, F1-score 0.46) emphasize the model's poor generalization across both classes, while the weighted average F1-

score of 0.77 reflects the model's strong performance on the majority class but hides its failure with the minority class. 

4.4  Performance Svm With Balanced Dataset 

The results of performing SVM with a balanced dataset are presented in  

Figure 7,  

Figure 8, and  

Figure 9. The preprocessing technique used to mitigate class imbalance is SMOTE. The performance measurements 

utilized comprise accuracy, precision, recall, and F1-score. 
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Figure 7. Performance of SVM on Balanced Datasets Utilizing the Yeast Dataset 

Figure 7 shows that the SVM model's performance on the balanced yeast dataset is moderately effective, with an 

overall accuracy of 67.58%, meaning it correctly predicts more than two-thirds of the time. However, this accuracy doesn't 

fully reflect how the model performs for both classes, which have an equal number of instances (1055 each for classes -

1 and 1). The confusion matrix reveals that for the majority class (-1), the model has a high recall of 82% but a lower 

precision of 0.64, indicating it misclassifies some class 1 instances as class -1. This results in an F1-score of 0.72. For the 

minority class (1), the model's precision is higher at 0.74, but the recall drops to 54%, showing it misses many class 1 

instances, leading to an F1-score of 0.62. The scatter plot shows that class -1 instances are more accurately classified, 

while class 1 instances are more spread out and misclassified. The macro average scores (precision 0.69, recall 0.68, F1-

score 0.67) suggest the model is fairly balanced across the classes, but with slightly better performance for the majority 

class. The weighted average F1-score of 0.67 confirms that while the model is consistent, it still shows some bias toward 

the majority class despite the balanced dataset. 

 

  
 

 

Figure 8. Performance of SVM on Balanced Datasets Utilizing the Heart Dataset 

Figure 8 shows the classification results of the balanced heart dataset using SVM, where the use of SMOTE (Synthetic 

Minority Over-sampling Technique) helped address class imbalance and improve the model's ability to distinguish 

between the two classes. While the model's accuracy is 68.97%, indicating moderate effectiveness, there's still room for 

improvement. The confusion matrix shows that for class -1, the model has a precision of 0.72 but a lower recall of 0.62, 

meaning it misses some true class -1 instances. For class 1, the recall is higher at 0.76, meaning it correctly identifies 

more class 1 instances, but the precision is lower at 0.67, indicating a higher rate of False Positives. The scatter plot shows 

that class 1 instances are more spread out, which leads to some overlap with class -1 and challenges the model in perfectly 

separating the classes. The F1-scores are 0.67 for class -1 and 0.71 for class 1, showing slightly better performance for 

class 1, especially in terms of recall, which is important in medical contexts. The macro averages for precision, recall, 

and F1-score are all 0.69, indicating a balanced performance between the classes. The weighted averages confirm the 

model's consistent performance, making it reliable for this balanced dataset. 

 

   
 

Figure 9. Performance of SVM on Balanced Datasets Utilizing the Churn Dataset 

Figure 9 shows the classification results of the balanced churn dataset using SVM, which highlights mixed 

performance with notable differences between the two classes. The overall accuracy of 54.11% suggests that the model 

is barely performing better than random guessing. Despite the balanced dataset, the model struggles to classify churn and 

non-churn instances effectively. Looking at the confusion matrix, for class -1 (non-churn), the model has a low recall of 

11%, meaning it fails to identify most non-churn instances. While its precision is higher at 0.79, indicating that when it 

predicts non-churn, it is often correct, the low recall results in a poor F1-score of 0.20, showing poor performance in 

identifying non-churn cases. For class 1 (churn), the recall is much higher at 97%, showing the model is good at detecting 

churn cases. However, its precision is lower at 0.52, meaning many predicted churn instances are incorrect, which leads 
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to a higher rate of False Positives. This reduces precision but gives a better balance between precision and recall, reflected 

in the F1-score of 0.68. The scatter plot suggests a lot of overlap between the classes, particularly for class -1, which 

likely causes the low recall for non-churn instances. The decision boundary may be placed in a way that favors detecting 

churn but misclassifies non-churn instances. The macro average scores show limited ability to generalize, with a precision 

of 0.66 and recall of 0.54, leading to an F1-score of 0.44, indicating the model is biased towards churn detection. The 

weighted averages also show an F1-score of 0.44, confirming that the model needs improvement to balance its predictions 

better between churn and non-churn cases. 

4.5 Performance Evaluation of the PC-SVM Model on Imbalanced Datasets 

The results of performance PC-SVM with an imbalanced dataset are presented in Figure 10, 

Figure 11, and  

Figure 12. The performance metrics assessed include accuracy, precision, recall, and F1-score. 

 

 

  

Figure 10. Performance of PC-SVM on Imbalanced Datasets Utilizing the Yeast DatasetFigure 

10 shows that the PC-SVM model performs exceptionally well on the imbalanced yeast dataset, achieving a perfect 

accuracy of 100%. This means the model correctly predicted all instances without any errors, demonstrating its 

effectiveness and reliability in classifying the yeast data. The confusion matrix confirms this strong performance, as all 

instances from both classes (-1 and 1) are correctly classified, with no misclassifications. This matrix only shows True 

Positives and True Negatives, meaning there are no False Positives or False Negatives. This indicates that the PC-SVM 

model can accurately distinguish between the two classes, even with the class imbalance (61 instances of class 1 vs. 1423 

of class -1). A scatter plot of the results would likely show a clear separation between the two classes, with no overlap. 

Class -1 instances would form a dense cluster, while class 1 instances would be clearly distinguishable, reinforcing the 

model's ability to handle class imbalance and classify both classes accurately. The classification report shows perfect 

scores for both classes, with precision, recall, and F1-score all at 1.00. This means the model is 100% accurate in its 

predictions, with no false positives or false negatives, and an optimal balance between precision and recall. The support 

values show 1423 instances for class -1 and 61 for class 1. Despite the imbalance, the PC-SVM method handles the 

disparity well, achieving perfect classification for both classes. The macro and weighted average scores are also 1.00, 

further highlighting the model's consistent performance across the dataset. This outstanding performance demonstrates 

the power of PC-SVM for handling imbalanced datasets in classification tasks. 

 

   

 

Figure 11. Performance of PC-SVM on Imbalanced Datasets Utilizing the Heart  Dataset 

Figure 11 shows that the PC-SVM model performs exceptionally well on the imbalanced heart dataset, achieving a 

perfect accuracy of 100%. This means the model correctly classified all instances without any errors, highlighting its 

ability to accurately distinguish between the two classes. The confusion matrix further confirms this, showing that all 

instances for both classes (-1 and 1) were classified correctly, with no False Positives or False Negatives. This suggests 

that the PC-SVM model is highly effective, even with the class imbalance in the dataset. A scatter plot of the results 

would likely show clear separation between the two classes, with no overlap. It would clearly identify all instances of 

class -1 (no heart disease) and class 1 (with heart disease), reinforcing the model's perfect classification and its ability to 

handle the class imbalance effectively. The classification report shows perfect results for both classes, with precision, 

recall, and F1-score all at 1.00. This means that the model's predictions are flawless, with no false positives or false 

negatives, and a perfect balance between precision and recall. The support values show 27 instances of class -1 and 272 

of class 1. Despite the imbalance, the PC-SVM model classifies all instances perfectly. Both the macro and weighted 

average metrics are also 1.00, highlighting the model's consistent performance across both classes. This impressive 
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performance demonstrates the power of PC-SVM in classifying imbalanced datasets, particularly in important fields like 

healthcare. 

 

   
 

Figure 12. Performance of PC-SVM on Imbalanced Datasets Utilizing the Churn Dataset 

Figure 12 shows that the PC-SVM model performs exceptionally well on the imbalanced churn dataset, achieving 

perfect accuracy of 100%. This means the model accurately classified every instance in the dataset, distinguishing 

between the two classes without any errors, even with the class imbalance. The confusion matrix confirms this, showing 

that all instances for both classes (-1 for non-churned customers and 1 for churned customers) were correctly classified. 

There are no false positives or false negatives, demonstrating the model's strong performance and ability to handle the 

class imbalance. A scatter plot would likely show clear separation between the two classes, with distinct groups for 

churned and non-churned customers. The lack of overlap would visually confirm that the model accurately identified all 

churned customers and did not misclassify any non-churned ones, further supporting the model's effectiveness. The 

classification report confirms perfect results, with precision, recall, and F1-scores all at 1.00 for both classes. This 

indicates the model correctly predicted all true positives and avoided false positives and false negatives, maintaining a 

perfect balance between precision and recall. The support values show 1867 instances of class -1 and 1283 of class 1, 

indicating a slight imbalance. Despite this, the PC-SVM model classified all instances correctly, proving its ability to 

handle imbalanced datasets effectively. Both the macro and weighted averages are 1.00, showing consistent performance 

across both classes. This impressive performance highlights the PC-SVM’s potential as a powerful tool for classifying 

imbalanced datasets, such as customer churn prediction. 

Table 2 provides a concise overview of the performance findings obtained from experiments conducted on SVM with 

Imbalanced Dataset, SVM with Balanced Dataset, and PC-SVM with Imbalanced Dataset. 

 

Table 2. The Summary of Experimental Performance 

No Dataset 

SVM 
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1.  Yeast 0.74 0.72 0.74 0.68 0.68 0.69 0.68 0.67 1.00 1.00 1.00 1.00 

2.  Heart 0.83 0.83 0.83 0.82 0.69 0.69 0.69 0.69 1.00 1.00 1.00 1.00 

3.  Churn 0.84 0.71 0.84 0.77 0.54 0.69 0.54 0.44 1.00 1.00 1.00 1.00 

Mean 0.80 0.75 0.80 0.76 0.64 0.69 0.64 0.60 1.00 1.00 1.00 1.00 

 

Table 2 compares three machine learning models—SVM (with and without balancing), and PC-SVM—on three 

datasets (Yeast, Heart, and Churn). The models are evaluated based on accuracy, precision, recall, and F1 score to see 

how well they handle imbalanced data. The results show that PC-SVM performs the best. Here's a breakdown of each 

model's performance. 

SVM on imbalanced data performs reasonably well, with accuracy between 0.74 and 0.84 across the datasets. On the 

Yeast dataset, SVM achieves an accuracy of 0.74, with precision and recall of 0.72 and 0.74, respectively. While these 

results are consistent, SVM struggles to balance precision and recall, with an F1 score of 0.68. On the Heart and Churn 

datasets, SVM performs better with F1 scores of 0.82 and 0.77, but it still has issues with recall, missing some relevant 

instances. Overall, SVM can handle imbalanced data decently, but its performance can be improved, especially for more 

complex datasets like Churn. 
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When the dataset is balanced using SMOTE, SVM’s performance drops significantly, especially on the Churn dataset. 

Its accuracy falls to 0.54, and the F1 score drops to 0.44, with lower precision and recall. SMOTE, which is intended to 

improve learning from the minority class, seems to introduce noise and reduce model precision, particularly for the Churn 

dataset. This suggests that while balancing techniques can help, they may not always improve performance and can even 

make things worse, especially for complex models like SVM. 

PC-SVM stands out as the best-performing model, achieving perfect scores (accuracy, precision, recall, and F1 score) 

across all datasets. It correctly classifies all instances with no false positives or false negatives. This performance shows 

that PC-SVM is particularly good at handling imbalanced datasets, likely due to its ability to better differentiate between 

classes, especially the minority class, something that SVM  struggle with. 

In summary, applying SMOTE to balance the dataset did not improve SVM's performance and even worsened the 

results on the Churn dataset. Conversely, PC-SVM demonstrated outstanding performance across all datasets, establishing 

itself as a reliable classifier for handling imbalanced data. These findings indicate that for datasets such as Yeast, Heart, 

and Churn, PC-SVM is the most effective model, whereas traditional SVM requires further optimization. Moreover, 

balancing techniques like SMOTE do not guarantee performance enhancement and can, in some cases, negatively impact 

the model. 

 

5.0 CONCLUSION 

5.1 Achievement Of The Research Objective 

This study aimed to enhance the performance of Support Vector Machine (SVM) in addressing imbalanced datasets 

by integrating Posterior Probability and Correlation techniques, resulting in the development of the PC-SVM model. The 

research objectives were achieved through comprehensive evaluation of the proposed model across various imbalanced 

datasets. The findings indicate that the PC-SVM model yields notable improvements in classification metrics, including 

accuracy, precision, recall, and F1-score. In all evaluated cases, PC-SVM consistently outperformed conventional models 

by effectively reducing the bias toward majority classes. These results suggest that the combined application of posterior 

probability and correlation techniques substantially strengthens SVM’s ability to manage imbalanced data distributions. 

5.2 Contribution Of Research 

In this study, we propose a novel classification approach named PC-SVM, designed to overcome the shortcomings of 

conventional SVMs when dealing with imbalanced datasets. The main contributions of this research are summarized as 

follows: 

- Development of PC-SVM: The fusion of Posterior Probability and Correlation techniques into the SVM 

framework resulted in a novel algorithm that effectively addresses the imbalance issue in datasets, making it a 

practical solution for real-world problems. 

- Improved Performance Metrics: The PC-SVM model consistently demonstrated superior performance compared 

to traditional SVM models on imbalanced datasets. 

- Evaluation on Multiple Datasets: The proposed method was rigorously tested on several publicly available 

datasets, further validating its effectiveness and generalizability across different domains. 

- Algorithm Adaptation: The integration of correlation coefficients into posterior probabilities for classification 

improves the understanding of relationships between features and their impact on class separation, a novel 

adaptation within the SVM framework. 

- PC-SVM can be recommended for industries where detecting rare events is crucial. In healthcare, it can help 

identify rare diseases more accurately, reducing misdiagnoses. In cybersecurity, it can enhance intrusion 

detection, identifying rare but serious threats. Additionally, in manufacturing and aviation, PC-SVM can predict 

equipment failures, preventing costly breakdowns. These applications show how PC-SVM can be practically 

useful in real-world scenarios. 

5.3 Limitation And Future Research 

While the research yielded promising results, several limitations were identified that open up opportunities for 

further investigation: 

- Dataset Variety: Although multiple datasets were used, the research was limited to publicly available data with 

specific imbalance characteristics.  

- Computational Complexity: The fusion of posterior probability and correlation techniques increased the 

computational complexity of the PC-SVM model. Future work could focus on optimizing the algorithm for faster 

computation, especially for large-scale datasets. 

- Parameter Tuning: The performance of the PC-SVM relies on hyperparameter tuning, which was done manually in 

this research. Future research could incorporate automated hyperparameter optimization techniques to further 

enhance model performance. 
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- Exploration of Other Techniques: While this research focused on posterior probability and correlation techniques, 

future studies could explore the integration of other statistical methods or ensemble learning strategies to further 

improve classification performance on imbalanced datasets. 

In conclusion, this research presents an effective solution for improving SVM performance on imbalanced datasets 

through PC-SVM, setting a foundation for future research in this area. 

 

AUTHOR CONTRIBUTION 

Canggih Ajika Pamungkas – Developed the research concept, designed the methodology, conducted experiments, and 

wrote the initial draft of the manuscript. 

Megat F. Zuhairi – Provided theoretical insights and reviewed the manuscript for clarity and accuracy. 

 

CONFLICT OF INTEREST 

The authors declare no conflicts of interest. 

 

REFERENCES 
[1] J. Alcaraz, M. Labbé, and M. Landete, “Support Vector Machine with feature selection: A multiobjective approach,” Expert 

Syst. Appl., vol. 204, no. May, p. 117485, 2022, doi: 10.1016/j.eswa.2022.117485. 

[2] J. Liu, “Fuzzy support vector machine for imbalanced data with borderline noise,” Fuzzy Sets Syst., vol. 1, pp. 1–10, 2020, 

doi: 10.1016/j.fss.2020.07.018. 

[3] C. Wu, N. Wang, and Y. Wang, “Increasing Minority Recall Support Vector Machine Model for Imbalanced Data 

Classification,” Discret. Dyn. Nat. Soc., vol. 2021, 2021, doi: 10.1155/2021/6647557. 

[4] H. Liu, Z. Liu, W. Jia, D. Zhang, and J. Tan, “A Novel Imbalanced Data Classification Method Based on Weakly Supervised 

Learning for Fault Diagnosis,” IEEE Trans. Ind. Informatics, vol. 18, no. 3, pp. 1583–1593, 2022, doi: 

10.1109/TII.2021.3084132. 

[5] S. Shaikh, S. M. Daudpota, A. S. Imran, and Z. Kastrati, “Towards improved classification accuracy on highly imbalanced 

text dataset using deep neural language models,” Appl. Sci., vol. 11, no. 2, pp. 1–20, 2021, doi: 10.3390/app11020869. 

[6] R. A. Hamad, M. Kimura, and J. Lundström, “Efficacy of Imbalanced Data Handling Methods on Deep Learning for Smart 

Homes Environments,” SN Comput. Sci., vol. 1, no. 4, pp. 1–10, 2020, doi: 10.1007/s42979-020-00211-1. 

[7] V. Rupapara, F. Rustam, H. F. Shahzad, A. Mehmood, I. Ashraf, and G. S. Choi, “Impact of SMOTE on Imbalanced Text 

Features for Toxic Comments Classification Using RVVC Model,” IEEE Access, vol. 9, pp. 78621–78634, 2021, doi: 

10.1109/ACCESS.2021.3083638. 

[8] H. Qin, H. Zhou, and J. Cao, “Imbalanced learning algorithm based intelligent abnormal electricity consumption detection,” 

Neurocomputing, vol. 402, no. xxxx, pp. 112–123, 2020, doi: 10.1016/j.neucom.2020.03.085. 

[9] S. S. Mullick, S. Datta, S. G. Dhekane, and S. Das, “Appropriateness of performance indices for imbalanced data 

classification: An analysis,” Pattern Recognit., vol. 102, p. 107197, 2020, doi: 10.1016/j.patcog.2020.107197. 

[10] H. Shamsudin, U. K. Yusof, A. Jayalakshmi, and M. N. Akmal Khalid, “Combining oversampling and undersampling 

techniques for imbalanced classification: A comparative study using credit card fraudulent transaction dataset,” IEEE Int. 

Conf. Control Autom. ICCA, vol. 2020-Octob, pp. 803–808, 2020, doi: 10.1109/ICCA51439.2020.9264517. 

[11] K. H. Kim and S. Y. Sohn, “Hybrid neural network with cost-sensitive support vector machine for class-imbalanced 

multimodal data,” Neural Networks, vol. 130, pp. 176–184, 2020, doi: 10.1016/j.neunet.2020.06.026. 

[12] X. Tao et al., “Affinity and class probability-based fuzzy support vector machine for imbalanced data sets,” Neural Networks, 

vol. 122, pp. 289–307, 2020, doi: 10.1016/j.neunet.2019.10.016. 

[13] C. Jimenez-Castaño, A. Alvarez-Meza, and A. Orozco-Gutierrez, “Enhanced automatic twin support vector machine for 

imbalanced data classification,” Pattern Recognit., vol. 107, 2020, doi: 10.1016/j.patcog.2020.107442. 

[14] R. Abo Zidan and G. Karraz, “Gaussian Pyramid for Nonlinear Support Vector Machine,” Appl. Comput. Intell. Soft Comput., 

vol. 2022, 2022, doi: 10.1155/2022/5255346. 

[15] Y. S. Solanki et al., “A hybrid supervised machine learning classifier system for breast cancer prognosis using feature selection 

and data imbalance handling approaches,” Electron., vol. 10, no. 6, pp. 1–16, 2021, doi: 10.3390/electronics10060699. 

[16] R. Kumar R et al., “Investigation of nano composite heat exchanger annular pipeline flow using CFD analysis for crude oil 

and water characteristics,” Case Stud. Therm. Eng., vol. 49, p. 104908, 2023, doi: 10.1016/j.csite.2023.103297. 

[17] B. Richhariya and M. Tanveer, “A reduced universum twin support vector machine for class imbalance learning,” Pattern 

Recognit., vol. 102, p. 107150, 2020, doi: 10.1016/j.patcog.2019.107150. 

[18] M. Li, A. Xiong, L. Wang, S. Deng, and J. Ye, “ACO Resampling: Enhancing the performance of oversampling methods for 

class imbalance classification,” Knowledge-Based Syst., vol. 196, no. xxxx, p. 105818, 2020, doi: 

10.1016/j.knosys.2020.105818. 

[19] A. S. Hussein, T. Li, C. W. Yohannese, and K. Bashir, “A-SMOTE: A new preprocessing approach for highly imbalanced 

datasets by improving SMOTE,” Int. J. Comput. Intell. Syst., vol. 12, no. 2, pp. 1412–1422, 2019, doi: 

10.2991/ijcis.d.191114.002. 

[20] P. Gnip, L. Vokorokos, and P. Drotár, “Selective oversampling approach for strongly imbalanced data,” PeerJ Comput. Sci., 

vol. 7, pp. 1–22, 2021, doi: 10.7717/PEERJ-CS.604. 

[21] X. W. Liang, A. P. Jiang, T. Li, Y. Y. Xue, and G. T. Wang, “LR-SMOTE — An improved unbalanced data set oversampling 

based on K-means and SVM,” Knowledge-Based Syst., vol. 196, 2020, doi: 10.1016/j.knosys.2020.105845. 

[22] A. S. Desuky and S. Hussain, “An Improved Hybrid Approach for Handling Class Imbalance Problem,” Arab. J. Sci. Eng., 

vol. 46, no. 4, pp. 3853–3864, 2021, doi: 10.1007/s13369-021-05347-7. 

[23] K. Qi, H. Yang, Q. Hu, and D. Yang, “A new adaptive weighted imbalanced data classifier via improved support vector 



Pamungkas et al. │ International Journal of Software Engineering and Computer Systems │ Vol. 11, Issue 1 (2025) 

 

31 
journal.ump.edu.my/ijsecs ◄   

machines with high-dimension nature,” Knowledge-Based Syst., vol. 185, p. 104933, 2019, doi: 

10.1016/j.knosys.2019.104933. 

[24] H. Shamsudin, U. K. Yusof, Y. Haijie, and I. S. Isa, “an Optimized Support Vector Machine With Genetic Algorithm for 

Imbalanced Data Classification,” J. Teknol., vol. 85, no. 4, pp. 67–74, 2023, doi: 10.11113/jurnalteknologi.v85.19695. 

[25] Y. Park and J. S. Lee, “A Learning Objective Controllable Sphere-Based Method for Balanced and Imbalanced Data 

Classification,” IEEE Access, vol. 9, pp. 158010–158026, 2021, doi: 10.1109/ACCESS.2021.3130272. 

[26] H. Patel, D. Singh Rajput, G. Thippa Reddy, C. Iwendi, A. Kashif Bashir, and O. Jo, “A review on classification of imbalanced 

data for wireless sensor networks,” Int. J. Distrib. Sens. Networks, vol. 16, no. 4, 2020, doi: 10.1177/1550147720916404. 

[27] S. Strasser and M. Klettke, “Transparent Data Preprocessing for Machine Learning,” HILDA 2024 - Work. Human-In-the-

Loop Data Anal. Co-located with SIGMOD 2024, 2024, doi: 10.1145/3665939.3665960. 

[28] J. Nalic and A. Svraka, “Importance of data pre-processing in credit scoring models based on data mining approaches,” 2018 

41st Int. Conv. Inf. Commun. Technol. Electron. Microelectron. MIPRO 2018 - Proc., pp. 1046–1051, 2022, doi: 

10.23919/MIPRO.2018.8400191. 

[29] H. F. Tayeb, M. Karabatak, and C. Varol, “Time Series Database Preprocessing for Data Mining Using Python,” 8th Int. 

Symp. Digit. Forensics Secur. ISDFS 2020, pp. 20–23, 2020, doi: 10.1109/ISDFS49300.2020.9116260. 

[30] S. Albahra et al., “Artificial intelligence and machine learning overview in pathology & laboratory medicine: A general review 

of data preprocessing and basic supervised concepts,” Semin. Diagn. Pathol., vol. 40, no. 2, pp. 71–87, 2023, doi: 

10.1053/j.semdp.2023.02.002. 

[31] Z. Liu, “Research on data preprocessing method for artificial intelligence algorithm based on user online behavior,” J. Comput. 

Electron. Inf. Manag., vol. 12, no. 3, pp. 74–78, 2024, doi: 10.54097/qf6fv8j1. 

[32] A. Q. Md, S. Kulkarni, C. J. Joshua, T. Vaichole, S. Mohan, and C. Iwendi, “Enhanced Preprocessing Approach Using 

Ensemble Machine Learning Algorithms for Detecting Liver Disease,” Biomedicines, vol. 11, no. 2, 2023, doi: 

10.3390/biomedicines11020581. 

[33] K. Maharana, S. Mondal, and B. Nemade, “A review: Data pre-processing and data augmentation techniques,” Glob. 

Transitions Proc., vol. 3, no. 1, pp. 91–99, 2022, doi: 10.1016/j.gltp.2022.04.020. 

[34] H. T. Duong and T. A. Nguyen-Thi, “A review: preprocessing techniques and data augmentation for sentiment analysis,” 

Comput. Soc. Networks, vol. 8, no. 1, pp. 1–16, 2021, doi: 10.1186/s40649-020-00080-x. 

[35] C. Fan, M. Chen, X. Wang, J. Wang, and B. Huang, “A Review on Data Preprocessing Techniques Toward Efficient and 

Reliable Knowledge Discovery From Building Operational Data,” Front. Energy Res., vol. 9, no. March, pp. 1–17, 2021, doi: 

10.3389/fenrg.2021.652801. 

[36] V. Chernykh, A. Stepnov, and B. O. Lukyanova, “Data preprocessing for machine learning in seismology,” CEUR Workshop 

Proc., vol. 2930, pp. 119–123, 2021. 

[37] A. J. Mohammed, “Improving Classification Performance for a Novel Imbalanced Medical Dataset using SMOTE Method,” 

Int. J. Adv. Trends Comput. Sci. Eng., vol. 9, no. 3, pp. 3161–3172, 2020, doi: 10.30534/ijatcse/2020/104932020. 

[38] A. Kulkarni, D. Chong, and F. A. Batarseh, Foundations of data imbalance and solutions for a data democracy. Elsevier Inc., 

2020. doi: 10.1016/B978-0-12-818366-3.00005-8. 

[39] D. Makowski, M. Ben-Shachar, I. Patil, and D. Lüdecke, “Methods and Algorithms for Correlation Analysis in R,” J. Open 

Source Softw., vol. 5, no. 51, p. 2306, 2020, doi: 10.21105/joss.02306. 

[40] M. S. Vural and M. Telceken, “Modification of posterior probability variable with frequency factor according to Bayes 

Theorem,” J. Intell. Syst. with Appl., vol. 5, no. 1, pp. 19–26, 2022, doi: 10.54856/jiswa.202205195. 

 

 


