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INTRODUCTION 

The fibroin and sericin components of silkworm cocoons are being studied in depth for wound healing, drug delivery, 

and other purposes [1]. Sericin is mainly amorphous, more water-soluble, and works as a gum binder to retain the 

structural integrity of the cocoon [2]. Since sericin is a hydrophilic (soluble in hot water) protein, it may be removed or 

separated from fibroin using a simplified thermochemical technique known as 'degumming' [3]. Removing sericin from 

silk can be accomplished in a variety of ways. High-temperature, whether or not combined with high pressure by 

autoclaving; acidic, primarily citric acid solution; alkali, using sodium carbonate solution; and urea [4],[ 5]. The separation 

technique affected sericin's solubility, molecular weight, and gelling properties [6]. Sericin has been studied for a variety 

of potential uses due to its remarkable biochemical and biophysical characteristics. The cosmetics and food industries, as 

well as biomedical coating materials for anticoagulants, drug delivery, anticancer treatments, and tissue engineering, are 

examples of these products. Sericin stimulates cell proliferation when used as a component of cell culture in a serum-free 

medium. In addition, when sericin is applied in pure form and/or mixed in matrices, sericin promotes cell adhesion and 

proliferation. Future solutions for these requirements include sericin film, 3D scaffold, nanoparticle, composite, 

conjugated drug, and recombinant sericin [7]. Many studies have been carried out on silk sericin properties. Dong et al. 

[8] investigated the hypoglycemic effects and methodology of sericin protein from silk-processing waste supplemented 

to the regular diet at 0.8% (g %) level fed orally to type 2 diabetic (T2D) mice. Silk sericin hydrolysate, prepared by 

boiling a 0.025 percent calcium hydroxide solution, is the oral protein. The protein reduced fasting blood glucose, and 

fasting plasma insulin, significantly improved oral glucose and insulin tolerance, and promoted anti-oxidative activity. 

Dihan et al. [9] observed the physicochemical and biological characteristics of industrially manufactured silk-based 

products in comparison to regenerated silk fibroin to investigate the possible applications in biological and therapeutic 

domains. When compared to regenerated silk fibroin, the results indicated that sericin might be the most appropriate silk 

material to employ as an effective solution in tissue engineering. Fatahian et al. [10] studied the extraction of sericin from 

silk gum effluent solution as well as the characteristics of extracted sericin. They also investigated the antibacterial effects 

of sericin in bacterial models. The findings of this study revealed that sericin could be separated from gum effluent and 

therefore has antibacterial characteristics. Li et al. [11] revealed the production and use of a carbon nanotube/sericin nerve 

conduit with electrical conductivity and mechanical capabilities favorable for nerve healing. They demonstrated that an 

electric conductive CNT/sericin conduit paired with electrical stimulation has the potential to be a novel approach for 

repairing transected peripheral nerves. 

According to the existing literature, there are only a few studies on the biophysical and mechanical properties of silk 

sericin, as well as its potential in a variety of areas, particularly the medical industry. In addition, one of the major 

limitations of sericin forms in many application fields is their lack of mechanical characteristics. Therefore, the present 

ABSTRACT – Because of its adequate biological and mechanical properties, sericin has been 
considered for different applications. Sericin is found to have anti-tumoral properties against colon 
cancer, mechanical properties, as well as anticoagulant and cryoprotective properties. According 
to these findings, sericin is a significant component of the health industry. Silk sericin exhibits 
biodegradability, non-toxicity, oxidation resistance, UV resistance, and moisturizing characteristics. 
The present review is mainly focused on considering the mechanical and biological characteristics 
of silk sericin, as well as its applications in many industries, especially in the medical industry. In 
addition, one of the most notable limitations of sericin forms in many application fields is their lack 
of mechanical properties. Better crystallinity and a longer molecular chain result in improved 
mechanical properties. Additionally, mechanical properties are influenced by the macromolecular 
structure, notably porosity. The textile silk procedure has the ability to influence the features of 
sericin samples, such as thermal stability and structure. Therefore, the present study reviews the 
past works on the improvement solutions of the mechanical characteristics of sericin.  
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study reviews previous studies on approaches for enhancing the mechanical properties of sericin. This valuable and cost-

effective substance may be utilized in a wide range of industries by recognizing sericin possibilities and enhancing 

solutions. 

MECHANICAL PROPERTIES OF SERICIN 

Mechanical properties 

Sericin contains different amino acids, the most important of which are serine, aspartic acid, and glycine [12]-[15]. 

This protein also contains hydroxy amino acids (serine and threonine), polar amino acids, and non-polar amino acids 

[16],[17]. Sericin is beneficial due to its unique properties including antioxidant, anti-bacterial, Anti-elastase, UV 

protection and absorption and releases moisture easily, blood coagulation, mechanical properties, gel properties, anti-

inflammatory, anti-tyrosinase, Anti-tumor, etc. [18]-[21]. In many applications, one of the major drawbacks of sericin 

forms is their lack of mechanical properties. As a result, various studies have been done to improve sericin's mechanical 

characteristics. On the other hand, past studies have adopted simpler and easier methods to augment mechanical properties 

[22]. Sericin, for example, has additives such as sorbitol [23], graphene oxide [24], glycerin, poloxamer [25], and glycerol. 

Although this is a simple process, it is ineffective since the addition of additives may modify the unique features of sericin, 

making biological applications more complex.  

The combined influence of numerous variables can explain the improvement in sericin's mechanical properties: 1) 

sericin molecular weight, 2) sericin crystallinity, and 3) porosity web, film, sponge, etc. Silk protein's molecular weight 

(MW) has a significant impact on its characteristics. Different extraction methods might result in sericin samples with 

different MWs. The MW of a polymer influences the viscosity of a solution because a longer polymer chain length causes 

a higher degree of molecular entanglement, which raises the viscosity of the solution [26]-[29]. In a silk sericin, a longer 

molecular chain length and greater crystallinity result in superior mechanical characteristics. Furthermore, the 

macromolecular structure, namely its porosity, has an impact on mechanical characteristics (or bulk density). As the 

porosity decreases, the density increases due to the strength and strain of the porous material. 

Jo et al. [30] utilized sericin solutions and films using formic acid, a novel solvent. The impacts of formic acid on the 

structural and mechanical characteristics of sericin solutions and films were investigated and compared to those of water. 

The sericin/formic acid solutions had fewer aggregated sericin molecules than the sericin/water solution, resulting in 

lower turbidity. Furthermore, when compared to water, the gelation of the sericin solution was delayed in formic acid. 

The tensile strength and elongation of sericin films cast from formic acid solution were more than double that of water-

cast sericin films. Park et al. [22] studied the mechanical properties and structure of silk sericin. gel, sponge, and film are 

affected by MW. In their investigation, the swelling ratio decreased as the MW of sericin raised and the porosity of the 

sericin sponge decreased. Their results revealed that changing the MW of sericin might control various characteristics of 

sericin types, possibly improving biomedical and cosmetic applications. Likitamporn and Magaraphan [31] studied the 

thermal and mechanical characteristics of a sericin/PVA/bentonite scaffold experimentally. The thermogravimetric test 

was employed in their investigation to explore the effect of sericin and chemical cross-linking on thermal stability. The 

addition of sericin to scaffolds considerably enhanced both thermal and mechanical properties when compared to 

scaffolds without sericin. By increasing the sericin content, the mechanical and thermal characteristics might be improved 

even more. 

Ultraviolet (UV) protection and thermal stability 

The skin protects against microbes, pollutants, ultraviolet (UV) radiation, and thermal or mechanical factors [32]. 

Chronic UV radiation exposure, on the other hand, increases reactive oxygen species (ROS) formation, which causes 

inflammation, photoaging, erythema, and skin cancer [33],[34]. As a result, UV radiation protection for the skin is critical 

for mitigating UV radiation-induced oxidative damage [35],[36]. Silk sericin is a glycoprotein that aids in cocoon 

production and protects the pupa and fibroin from UV-induced oxidative damage [37]. Sericin was found to be beneficial 

in minimizing skin oxidative stress [38], preventing UVB-induced apoptosis [39], and absorbing UVC radiation [40] in 

a study evaluating the photoprotective capabilities of Bombyx mori. 

According to Kumar et al. [41], silk sericin derived from A. assamensis cocoons protected human keratinocytes and 

female SKH-1 hairless mice against UV radiation-induced oxidative damage. In another investigation, Kumar et al. [42] 

investigated the inhibitory potential of Silk sericin against UVR-induced melanogenesis. In UVA and UVB irradiated 

melanocytes, silk sericin extracted from the cocoons of Philosamia ricini sericin (PRS) and Antheraea assamensis sericin 

(AAS) reduced mushroom tyrosinase activity and downregulated melanin production. In both UVA and UVB irradiated 

cells, AAS pretreatment dramatically reduced tyrosinase expression. As a result, in vitro investigations revealed that AAS 

effectively prevented UVR-induced melanogenesis by scavenging ROS and decreasing intracellular tyrosinase activity. 

The textile silk process has the potential to influence the characteristics of sericin samples, such as their thermal 

stability and structure [43]. Furthermore, the thermal stability of different kinds of sericin varies. In a Thermogravimetric 

analysis, Sahu et al. [44] assessed the mass stability of sericin concerning time and temperature fluctuations. Moreover, 

the temperature stability of sericins derived from mulberry and non-mulberry silkworms was examined. Non-mulberry 

sericins were indicated to be more stable than mulberry sericin. The highest stability was referred to as sericin. Kim et al. 

[45] used several instrumental analyses to investigate the structural and thermal characteristics of sericin extracted by 

sodium carbonate. They concluded that sericin had a wide endothermic peak at approximately 220° C (Figure 1). 
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Figure 1. Circular dichroism (CD) spectra of sericin [45]. 

BIOLOGICAL PROPERTIES OF SERICIN 

Antioxidant and antibacterial properties 

Many studies investigated the antioxidant characteristics of silicon sericin. Nowadays, antioxidants have gained 

increased attention, owing to the findings on the influence of free radicals in the body, which have significant 

consequences if their contents are not neutralized by an appropriate antioxidant system [46],[47]. These pigments contain 

biological effects such as antioxidants and antityrosinase. Sericin antioxidant capabilities may be related to its high serine 

and threonine content, which contain hydroxyl groups that function as chelators for trace elements like copper and iron 

[48]. Dash et al. [39] investigated the antioxidant and photoprotective properties of Antheraea mylitta sericin in irradiated 

human keratinocytes. According to flow cytometry studies, previous treatment with sericin inhibited UVB-induced 

apoptosis. They concluded that sericin is a highly effective antioxidant and antiapoptotic agent. Silk sericin has 

antibacterial properties. Sericin stimulates bacterial cell membrane blebbing, which inhibits bacterial growth and 

reproduction [49]-[51]. When employed as a cover over test tubes containing nutritional broth, a nanofibrous mat 

containing sericin revealed zero microbial penetration [52]. 

Sericin's antibacterial properties were affected by its purity and extraction process. Rocha et al. [53] revealed that pure 

sericin, which is commercially available, is active against S. aureus in a similar way to antibiotics, but has extremely poor 

action against P. aeruginosa and S. aureus. Sericin can be combined with other antibacterial bioactive molecules to 

augment its activity and improve biomaterial characteristics. To further improve the antibacterial and other biological 

features, the biomaterials established from sericin cocoon have been combined with other biopolymers for example; 

chitosan nanofiber or film [54], or chemical agents such as silver nanoparticles [55], zinc oxide nanoparticles, and 

antibiofilm titanium [56]. 

APPLICATION OF MECHANICAL AND BIOLOGICAL PROPERTIES 

Because of its different biological and mechanical properties including antibacterial, antioxidant, anti-tumor activity, 

Ultraviolet resistance, absorbency, thermal stability, and so on, silk sericin may be used in the textile, cosmetics, hygiene, 

and other fields which are reported in previous studies. Table 1 presents some of the applications for silk sericin. 
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Table 1. Sericin application 

Industry Application Reference 

Biomedical, 
pharmaceutic 

• Antitumour Effect in different cancer 
• Metabolic Effects (In Gastrointestinal Tract, In the Circulatory and Immune Systems 

On Lipid Metabolism and Obesity) 
• Tissue Engineering 

• Skin repairment 
• Contact lenses 

• Matrix for implants 
• Vehicle for cell amplification 

• Stabilizer in vaccines 
• Drug delivery 

• Wound healing 

[57]-[62] 

Cosmetic 

Skincare: Skin elasticity, Anti-wrinkle, and Anti-aging influence, UV protection impact 
Nailcare: Prevents cracks, brittleness, and raises the inherent brightness 

Haircare: Conditioner and prevent hair damage 
Gel: Moisturizing property 

Powder: Moisture absorption capacity and anti-dermatitis 

[63]-[69] 

Food 

Combat constipation and obesity 
To enhance the taste and touch of porridge 

Beverage rich in amino acids 
In greasy foods 

Prevents browning reactions in a variety of ingredients 
Antioxidants used in dairy products 
Mineral absorption is accelerated 

Additive as a nutrient 
Antioxidant and suppressant of colon tumors 

[70],[71] 

Textile 

In fabrics to absorb moisture 
Cleaning fabrics 

Improved antibacterial activity 
Fabricated nanofiber 
UV protection textiles 

Medical textiles 

[70]-[73] 

Other 

Treating industrial wastewater with adsorptive pollutants 
Air filter products 

Anti-frosting agent for roads and roofs 
Artificial leather product 

Art pigments 

[73]-[75] 

SERICIN APPLICATION IN MEDICAL INDUSTRY 

Sericin is employed in the pharmaceutical industry for various drug applications, such as solubility improvement, 

diffusion modification, and formulation stabilization [58], [76]-[79]. Sericin is an antioxidant as well as an anticoagulant. 

These qualities inspired the development of a variety of research to incorporate them into the medical field [7]. Sericin's 

antioxidant activity has the potential to provide significant health advantages. Consumption of sericin-containing foods 

helps alleviate constipation, reduces the growth of bowel cancer, and improves mineral absorption, including zinc, iron, 

magnesium, and calcium [80],[81]. In particular, sericin is a biological material with applications in wound dressing [82]-

[84], contact lenses, blood vessels, artificial skin, and other prostheses [13]. Sericin has an antithrombotic effect when 

sulphonated. It is also antibacterial [83], collagen-producing, hydrophilic, and biocompatible. As a result, sericin 

possesses wound healing characteristics and may be utilized as a wound covering material in the form of a sericin powder-

containing film or cream [85],[86]. Verma et al. [88] developed a hydrogel that included sericin/chitosan-capped silver 

nanoparticles. They observed that the treated hydrogel was nonirritant, a potential wound healer, and had an attractive 

appeal for increased patient compliance. Aramwit and Sangcakul [89] investigated the effect of sericin on wound healing 

and wound size reduction by producing two skin wounds on the dorsum of rats. Figure 2 illustrates the time necessary to 

complete wound healing at 50% and 90% in rats. The time required for 90% healing from sericin wounds was significantly 
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less than that required for cream base-treated wounds (11 vs 15 days). They reported that sericin wounds had far fewer 

inflammatory responses and a significantly greater reduction in wound size than the control. 

 

Figure 2. Impact of different cream types on wound healing in rats for two groups [89]. 

SERICIN APPLICATION IN VARIOUS INDUSTRIES 

Recently, the Food and Drug Administration has approved sericin and its variants as GRAS (Generally Recognized 

as Safe) additives. This protein's key feature is its antioxidant effect; as a result, it has been recommended as a functional 

food [90]. Sericin can be employed in the manufacture of fortified meals and nutritional supplements since it aids in the 

fermentation and prevention of modular processes, as well as increasing mineral absorption and antioxidant activity, all 

of which contribute to improved health. Furthermore, sericin's antioxidant and emulsifying properties make it a viable 

element in salad dressing [91]. Sericin characteristics such as biocompatibility, biodegradability, and wettability have 

been used alone or in combination with silk fibroin in the skin, hair, and nail cosmetics. When used in lotions, creams, 

and ointments, sericin improves skin elasticity, anti-wrinkle, and anti-aging effects. Moisturizers have been designed 

specifically for preventing and delaying the drying of the skin's top layer. Because sericin absorbs UV radiation, it might 

be used as sunscreen [92],[93]. Other applications include compounds that absorb sweat and fat secreted by the skin's 

sebaceous glands. Sericin has the potential to change the surface of fibers and textiles. It was employed as a coating 

material for cellulose fibers and wool. The treated fabrics demonstrated reduced free formaldehyde content, electrical 

resistance, skin irritation, allergic responses, improved water retention, water absorption, and enhanced antibacterial 

capacity, with only a small drop in textile tensile strength. Recently, considerable research has been conducted on the 

successful use of sericin for the finishing of textile substrates. This is regarded as a potential solution for silk mills to 

address the issues of sericin recovery and wastewater treatment [91]. 

CONCLUSION 

The main purpose of the present research is to review some of the applications of sericin in different industries and its 

mechanical and biological properties. One of the major drawbacks of sericin forms in many fields is the weak mechanical 

properties. Hence, this paper reviews the current solutions for enhancing the mechanical properties of sericin.  Previous 

studies demonstrated that since sericin is a substance with various mechanical and biological properties including 

hydrophilicity, antioxidant, anti-cancer, blood coagulation, UV protection, biodegradation, and biocompatibility, this 

would make it possible. In order to achieve better their antibacterial and other biological characteristics, the biomaterials 

produced from sericin have been combined with other biopolymers such as chitosan nanofiber or film, or chemical agents 

such as silver nanoparticles, zinc oxide nanoparticles, and antibiofilm titanium. The textile silk method can affect sericin 

sample properties such as thermal stability and structure. Additionally, different types of sericin have varied thermal 

stability. One of the primary disadvantages of sericin forms in many applications is their lack of mechanical 

characteristics. As a result, several studies have been conducted to enhance sericin's mechanical properties. Based on 

previous studies, better crystallinity and a longer molecular chain cause a crucial improvement in mechanical properties. 

Moreover, mechanical properties are influenced by the macromolecular structure, notably porosity. 
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