Generalized Γ -Cancellativity of Γ -AG-Groupoids

Thiti Gaketem

School of Science, University of Phayao, Phayao, 56000 E-mail address: newtonisaac41@yahoo.com

Abstract-In this paper we study some properties of a Γ -cancellativity on a Γ -AG-groupoid. Finally we study quasi- Γ -cancellativity which is a generalization of a Γ -cancellativity.

Keywords Γ -AG-groupoid, Γ -cancellativity, quasi- Γ -cancellativity

1. Introduction

Definiton 1.1 [1. P.41]. A groupoid (S, \cdot) is called an *AG*-groupoid, if it satisfies left invertive law (ab)c = (cb)a for all $a, b, c \in S$.

Lemma 1.2 [1. P.41]. An AG-groupoid S, is called a *medial law* if it satisfies (ab)(cd) = (ac)(bd) for all $a, b, c, d \in S$.

Definition 1.3 [8. P.110]. An AG-groupoid S, is called a *paramedical* if it satisfies (ab)(cd) = (db)(ca) for all $a, b, c, d \in S$.

Proposition 1.4 [2. P.110]. If S is an AG-groupoid with left identity, then

a(bc) = b(ac) for all $a, b, c, d \in S$.

Definition 1.5. [8, p.268] Let *S* and Γ be any non-empty sets. We call *S* to be Γ -AG-groupoid if there exists a mapping $S \times \Gamma \times S \to S$, written (a, α, b) by $a\alpha b$, such that *S* satisfies the identity $(a\alpha b)\beta c = (c\alpha b)\beta a$ for all $a, b, c \in S$ and $\alpha, \beta \in \Gamma$.

Definition 1.6. [4, p.2]. Let *S* and Γ be any non-empty sets. If there exists a mapping $S \times \Gamma \times S \to S$, written (a, α, b) by $a\alpha b$, *S* is called a Γ -*medial* if it satisfies $(a\alpha b)\beta(c\gamma d) = (a\alpha c)\beta(b\gamma d)$ and called a Γ -*paramedial* if it satisfies $(a\alpha b)\beta(c\gamma d) = (d\alpha b)\beta(c\gamma d)$ for all $a, b, c, d \in S$ and $\alpha, \beta, \gamma \in \Gamma$.

Shan M. was introduced the concepts of cancellativity and quasi-cancellativity of an AGgroupoids as follows.

Definition 1.7. [7. P2188]. An element *a* of a AG-groupoid *S* is called *left cancellative* if ax = ay implies that x = y for all $x, y \in S$. Similarly an element *a* of a AG-groupoid *S* is called *right cancellative* if xa = ya implies that x = y for all $x, y \in S$. An element *a* of an AG-groupoid *S* is called *cancellative* if it is both left and right cancellative.

Definition 1.8 [6. P2066]. An AG-groupoid *S* is a *quasi-cancellative* if for any $x, y \in S$, (1) x = xy and $y^2 = yx$ implies that x = y, (2) x = yx and $y^2 = xy$ implies that x = y.

2. Γ -Cancellativity of Γ -AG-groupoids

In this paper, we introduce the concept of a Γ -cancellativity of Γ -AG-groupoids which is defined analogous to [6.] and investigate its properties.

Definition 2.1. An element *a* of a Γ -AG-groupoid *S* is called *left* Γ -*cancellative* if $a\alpha x = a\alpha y$ implies that x = y for all $x, y \in S$ and $\alpha \in \Gamma$. Similarly an element *a* of a Γ -AG-groupoid *S* is called *right* Γ -*cancellative* if $x\alpha a = y\alpha a$ implies that x = y for all $x, y \in S$ and $\alpha \in \Gamma$. An element *a* of a Γ -AG-groupoid *S* is called Γ -*cancellative* if $x\alpha a = y\alpha a$ implies that x = y for all $x, y \in S$ and $\alpha \in \Gamma$. An

Theorem 2.2. The following statements are equivalent for a Γ -AG-groupoid S:

(1) S is left Γ -cancellative;

(2) *S* is right Γ -cancellative;

(3) *S* is Γ -cancellative.

Proof. (1) \Rightarrow (2) Let *S* be left Γ -cancellative. Let *a* be an arbitrary element of *S* and let $x\alpha a = y\alpha a$. Let $k \in S$ and $\beta \in \Gamma$ for all $x, y \in S$ and $\alpha \in \Gamma$. Then

$$(k\alpha a)\beta x = (x\alpha a)\beta k$$
 by Definition 1.1
= $(y\alpha a)\beta k$
= $(k\alpha a)\beta y$ by Γ -medial.

By left Γ -cancellativity, x = y. Thus *S* is right Γ -cancellative. (2) \Rightarrow (3) Let *S* be right Γ -cancellative. Let *a* be an arbitrary element of *S* and let $a\alpha x = a\alpha y$.

Let $k \in S$ and $\beta \in \Gamma$ for all $x, y \in S$ and $\alpha \in \Gamma$. Then

$$[(x\beta k)\alpha a]\gamma a = (a\alpha a)\gamma(x\beta k)$$
by Definition 1.1
= $(a\alpha x)\gamma(a\beta k)$ by Γ -medial
= $(a\alpha y)\gamma(a\beta k)$
= $(a\alpha a)\gamma(y\beta k)$ by Γ -medial
= $[(y\beta k)\alpha a]\gamma a$ by Definition 1.1.

By right Γ -cancellative, x = y. Thus S is left Γ -cancellative. Hence S is Γ -cancellative. (3) \Rightarrow (1) This is clear.

Theorem 2.3. Every right Γ -cancellative element of a Γ -AG-groupoid S is a left Γ -cancellative.

Proof. Let *S* be a Γ -AG-groupoid and let *a* be an arbitrary right Γ -cancellative element of *S*. Suppose that $a\alpha x = a\alpha y$ for all $a, x, y \in S$ and $\alpha \in \Gamma$. For $\beta, \gamma \in \Gamma$, we have

$$[(x\beta a)\alpha a]\gamma a = (a\alpha a)\gamma(x\beta a)$$
by Definition 1.1
= $(a\alpha x)\gamma(a\beta a)$ by Γ -medial
= $(a\alpha y)\gamma(a\beta a)$
= $(a\alpha a)\gamma(y\beta a)$ by Γ -medial
= $[(y\beta a)\alpha a]\gamma a$ by Definition 1.1.

Thus the right Γ -cancellativity implies that x = y. Hence *a* is left Γ -cancellative. Therefore every right Γ -cancellative element of *S* is left Γ -cancellative.

Definition 2.4. [8. p269] An element $e \in S$ is called a *left identity* of a Γ -AG-groupoid if $e\gamma a = a$ for all $a \in S$ and $\gamma \in \Gamma$.

The following two theorems are analogously to the in [7, p.2190].

Theorem 2.5. Let *S* be a Γ -AG-groupoid with a left identity *e* which is right Γ -cancellative. If $a\alpha b = c\alpha d$, then $b\gamma a = d\gamma c$ for all $a, b, c, d \in S$ and $\alpha, \gamma \in \Gamma$.

Proof. Let $a, b, c, d \in S$ and $\alpha, \gamma \in \Gamma$. Then by Definitions 1.1 and 2.4, we have the following implication

 $a\alpha b = c\alpha d \Longrightarrow (e\gamma a)\alpha b = (e\gamma c)\alpha d \Longrightarrow (b\gamma a)\alpha e = (d\gamma c)\alpha e$.

Since S is right Γ -cancellative, thus $b\gamma a = d\gamma c$. We complete the proof.

Theorem 2.6. Let S be a Γ -AG-groupoid with a left identity e. Then every left Γ -cancellative element is also right Γ -cancellative.

Proof. Let *a* be an arbitrary left Γ -cancellative element of *S* and suppose that $x\alpha a = y\alpha a$ for all $x, y \in S$ and $\alpha \in \Gamma$. Then by Theorem 2.5, we have $a\alpha x = a\alpha y$. Since *S* is left Γ -cancellative, x = y. Thus *a* is right Γ -cancellative. Hence every left Γ -cancellative element of *S* is right Γ -cancellative. \Box

A left invertible property of a Γ -AG-groupoid is defined analogously to AG-groupoid as in [5.p387].

Definition 2.7. Let *S* be a Γ -AG-groupoid with a left identity *e*. An element *a* of *S* is said to be *left invertible* if there exists an element a^{-1} of *S* such that $a^{-1}\alpha a = e$ for all $\alpha \in \Gamma$. In this case a^{-1} is called a *left inverse* of *a*. Dually, an element *a* of *S* is said to be *right invertible* if there exists an element a^{-1} of *S* such that $a\alpha a^{-1} = e$ for all $\alpha \in \Gamma$, a^{-1} is called a *right inverse* of *a*. If an element *a* of *S* is both left and right invertible, then *a is called invertible*.

Next, we prove that cancellativity and invertibility are coincident in a finite Γ -AG-groupoid S with a left identity e.

Theorem 2.8. Let S be a finite Γ -AG-groupoid S with a left identity e, then for all $a \in S$, a is invertible if and only if a is Γ -cancellative.

Proof. (\Rightarrow) Assume that *a* is invertible. Then there exists $a^{-1} \in S$ such that $a^{-1}\alpha a = e = a\alpha a^{-1}$. Suppose that $x\alpha a = y\alpha a$ for all $x, y \in S$ and $\gamma \in \Gamma$. Then

$$x = e\gamma x = (a^{-1}\alpha a)\gamma x = (x\alpha a)\gamma a^{-1} = (y\alpha a)\gamma a^{-1} = (a^{-1}\alpha a)\gamma y = e\gamma y = y$$

Thus *a* is right Γ -cancellative. By Theorem 2.2, *a* is Γ -cancellative. (\Leftarrow) Assume that *a* is Γ -cancellative and let $S = \{s_1, s_2, \dots, s_n\}$. Then for all $\alpha \in \Gamma$, $a\alpha s_1, a\alpha s_2, \dots, a\alpha s_n$ are all distinct. Since *S* is finite, there must exists a positive integer $i \in \{1, 2, \dots, n\}$ such that $a\alpha s_i = e$ but then $s_i \alpha a = e$. By Theorem 2.5, we have $a\alpha s_i = s_i \alpha a = e$ for all $\alpha \in \Gamma$. Hence *a* is invertible.

3. The Quasi- Γ -Cancellativity of a Γ -AG-groupoid

In section, we study definition of a quasi- Γ -cancellativity which is defined analogously as in [6. P2066] and also investigate its properties.

Definition 3.1. A Γ -AG-groupoid *S* is a *quasi*- Γ -*cancellative* if for any $x, y \in S$ and $\gamma \in \Gamma$,

(1) $x = x\gamma y$ and $y = y\gamma x$ implies that x = y,

(2) $x = y\gamma x$ and $y = x\gamma y$ implies that x = y.

Definition 3.2. A Γ -AG-groupoid *S* is said to be a Γ -*idempotent*. If $x\gamma x = x$ for all $x \in S$ and $\gamma \in \Gamma$.

Definition 3.3. A Γ -AG-groupoid *S* is said to be a Γ -AG-band if every element of *S* is a Γ -idempotent.

The following two theorems are analogously as in [6, p.2067-2068].

Theorem 3.4. Every Γ -AG-band is a quasi- Γ -cancellative.

Proof. Let *S* be a Γ -AG-band and let $x, y \in S$ and $\gamma, \beta \in \Gamma$. We shall show that *S* is a quasi- Γ -cancellative consider the following:

(1) Assume that
$$x = x\beta y$$
 and $y = y\beta x$. Then $x = x\gamma y$ and $y = y\gamma x$. Now
 $x = x\beta y$
 $= (x\gamma x)\beta y$ by $x\gamma x = x$
 $= (y\gamma x)\beta x$ by Definition 1.1
 $= y\beta x$ by Definition 3.2
 $= y$ by $y = y\beta x$.
(2) Assume that $x = y\beta x$ and $y = x\beta y$. Then $x = y\gamma x$ and $y = x\gamma y$. Now
 $x = y\beta x$
 $= (y\gamma y)\beta(x\gamma x)$ by Definition 3.2
 $= (x\gamma y)\beta(x\gamma y)$ by Γ -paramedical
 $= (x\gamma x)\beta(y\gamma y)$ by Γ -medial
 $= x\beta y$ by Definition 3.2
 $= y$ by $y = x\beta y$

Theorem 3.5. Let *S* be a Γ -AG-groupoid such that *S* is quasi- Γ -cancellative and $x\gamma x = x$ for all $x \in S$ and $\gamma \in \Gamma$. If *S* is Γ -medial, then the following statements hold:

(1) $x\gamma a = x\gamma b$ if and only if $a\gamma x = b\gamma x$,

(2)
$$(x\gamma y)\beta a = (x\gamma y)\beta b$$
 implies that $a\beta(y\gamma x) = b\beta(y\gamma x)$, for all $x, y, a, b \in S$ and $\gamma, \beta \in \Gamma$.

Proof. (1) (\Rightarrow) Let $x\gamma a = x\gamma b$. Then $(x\gamma a)\beta(x\gamma a) = (x\gamma b)\beta(x\gamma a)$ and $(x\gamma a)\beta(x\gamma a) = (x\gamma b)\beta(x\gamma b)$. So

$$a\beta x = (a\gamma a)\beta x \qquad \text{by Definition 3.2} \\ = (x\gamma a)\beta a \qquad \text{by Definition 1.1} \\ = (x\gamma b)\beta a \qquad \text{by } x\gamma a = x\gamma b \\ = (a\gamma b)\beta x \qquad \text{by Definition 1.1} \\ = (a\gamma b)\beta(x\gamma x) \qquad \text{by Definition 3.2} \\ = (a\gamma x)\beta(b\gamma x) \qquad \text{by } \Gamma \text{-medial.}$$

by Definition 3.2

by Definition 1.1

And

 $b\beta x = (b\gamma b)\beta x$

 $=(x\gamma b)\beta b$

$$= (x\gamma a)\beta b \qquad \text{by } x\gamma a = x\gamma b$$

$$= (b\gamma a)\beta x \qquad \text{by Definition 1.1}$$

$$= (b\gamma a)\beta(x\gamma x) \qquad \text{by Definition 3.2}$$

$$= (b\gamma x)\beta(a\gamma x) \qquad \text{by } \Gamma \text{-medial.}$$
Then $a\beta x = (a\gamma x)\beta(b\gamma x) \text{ and } b\beta x = (b\gamma x)\beta(a\gamma x) \text{. Thus } a\gamma x = b\gamma x \text{.}$

$$(\Leftarrow) \text{ This can be proved similarly.}$$

$$(2.) \text{ Let } x, y, a, b \in S \text{ and } \gamma, \beta \in \Gamma \text{ such that } (x\gamma y)\beta a = (x\gamma y)\beta b \text{. Then } a = b \text{. So we have}$$

$$a\beta(x\gamma y) = (a\gamma a)\beta(x\gamma y) = (a\gamma b)\beta(x\gamma y)$$

$$(x\gamma y)\beta a = (x\gamma y)\beta(a\gamma a) = (x\gamma y)\beta(a\gamma b)$$

$$(y\gamma x)\beta a = (y\gamma x)\beta(a\gamma a) = (y\gamma x)\beta(a\gamma b)$$

$$\Rightarrow a\beta(y\gamma x) = [a\beta(y\gamma x)]\alpha[a\beta(y\gamma x)] = [b\beta(y\gamma x)]\alpha[a\beta(y\gamma x)] \qquad (3.1)$$
Similarly, if $(x\gamma y)\beta a = (x\gamma y)\beta b$, then $a = b$, and so
$$b\beta(x\gamma y) = (b\gamma b)\beta(x\gamma y) = (b\gamma a)\beta(x\gamma y)$$

$$(x\gamma y)\beta b = (x\gamma y)\beta(b\gamma b) = (x\gamma y)\beta(b\gamma a)$$

$$(y\gamma x)\beta b = (y\gamma x)\beta(b\gamma b) = (y\gamma x)\beta(b\gamma a)$$

$$(a\gamma b)\beta(y\gamma x) = (b\gamma b)\beta(y\gamma x) = b\beta(y\gamma x)$$

$$\Rightarrow b\beta(y\gamma x) = [b\beta(y\gamma x)]\alpha[b\beta(y\gamma x)] = [a\beta(y\gamma x)]\alpha[b\beta(y\gamma x)] \qquad (3.2)$$
From (3.1), and (3.2) we have $a\beta(y\gamma x) = b\beta(y\gamma x)$.

Acknowledgements. The authors are very grateful to the anonymous referee for stimulating comments and improving presentation of the paper.

References

- [1] Kazim M.A. and Naseeruddin M.D., "On almost semigroup", *Portugaliae Mathematical*. 36. 41-47. 1997
- [2] Khan M., Faisal, and Amjid V. "On some classes of Abel-Grassmann's groupoids", arXiv:1010.5965v2[math.GR]. 2. pp.1-6. 2010
- [3] Khan M., Ahmad N. and Rehman I. "Characterizations of Γ -AG-groupoid by their Γ -ideal", *arXiv:1012.1923v1* [math.GR].9. 1-8. 2010
- [4] Mushtaq Q. and Khan M. "M-System in LA-semigroups" *Southeast Asian Bulletin of Mathematics*. 33. 321-32. 2009
- [5] Mushtaq Q. and Kamran M. "Finite AG-groupoid with left identity and left zero" *IJMMS*, 27. 387-389. 2010
- [6] Shah M., Ahman I. and Ali A. "On the quasi-Cancellativity of AG-Groupoids" *Inter. J. Contemp. Math. Science.* Vol. 7. 2065-2070. 2012
- [7] Shah M., Shah T. and Ali A. "On the Cancellativity of AG-Groupoids" *International Mathematical Forum*. Vol. 6. 2187-2194. 2011
- [8] Shah T. and Rehman I. "On Γ -ideal and Γ -bi-ideals in Γ -AG-groupoids" *International Journal of Algebra*. 4. 267-276. 2010