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Abstract: The data processing fundamental problem affects
all aspects of nervous-system function by the noise of ion
channels. The conducting and non conducting of ion channels
depends on random transitions of channel noise, which affect
the states of several numbers of gates in every single individual
ion channel. This paper, introduce a new ion channel model in
the neuron with noisy input current as approximations of the
HH model. It briefly introduces the ion channe based on
stochastic Hodgkin-Huxley model. The method is able to fully
constrain the HH model and obtain all models capable of
reproducing the data. Therefore, this method overcomes the
limitations of other parameter estimation methods. The
stochastic Markov process method is simply applied to simulate
each gate individually to determine the relationship between
channel noise and the spike frequency. The proposed model
shows the sequence of colored noise experiments described
efficiently compared with microscopic simulations. In addition,
the spiking rate generated from the proposed model very close
to microscopic simulations and doesn’t effect by the membrane
size.

Keywords:  Ion  Channel, Noisy, Hodgkin-Huxley,
Microscopic.

1. INTRODUCTION

The nerve cell theoretical foundation in the building

block of the nervous system was introduced by Hodgkin
and Huxley (1952). It processes information and sends,
receives the ultimate control signal as control functions
such as our breathing, complex memory, and different
body activity (Andersen et al. 2007). Although all neurons
share the same basic structure still the neuron in nervous
system has many different forms depending on its
occupied area and its function. The ideas of the patch-
clamp technique permitted to determine experimental
approaches of the possibility of measuring ion currents
through individual ion channels which development by
Neher and Sakmann (1976). The channel fluctuations can
become critical close the action potential threshold, even if
the numbers of ion channels are large (Schneidman et al.
1998; Rubinstein 1995); in the action potential threshold
that has small numbers of ion channels and that are open,
the timing accuracy was determined. In addition, the
bursting or spiking in the ion channels in the numerical
simulations and theoretical investigations of channel
dynamics caused by the internal noise (DeFelice and Isaac
1992,

Strassberg, and DeFelice 1993; Fox and Lu 1994; Chow
and White 1996; Rowat and Elson 2004). Channel noises
in the patch-clamp experiments are producing large
voltage fluctuations to affect the propagation of action
potentials, and timing, initiation (Diba et al. 2004; Dorval
and White 2005; Jacobson et al. 2005; Kole et al. 2006).
The membrane channel dynamics which have represented
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by Markov models was utilized (Kienker, P. 1989; Rudy,
Y., and Silva, J. 2006).
Many researchers work in this field to produce accurate
enough statistics of spike generation in the stochastic HH
(Mino, Rubinstein, & White, 2002; Zeng & Jung, 2004;
Bruce, 2009; Sengupta, Laughlin, & Niven, 2010). These
studies suggest that Fox and Lu’s stochastic extension to
the HH equations may not be suitable for accurately
simulating channel noise, even in simulations with large
numbers of ion channels. The method that proposed using
more stochastic terms and avoids the expense, complex
matrix operations (Orio & Soudry, 2012). The gating
variables that contain Gaussian white noise in the stochastic
HH equation was proposed (Giiler, 2013). However, a
complete, comprehensive analysis of spike generation in
the stochastic HH this model is needed, that additionally
includes the generation of the database on the estimation.
In this paper, the proposed model directly determines a set
of maximal functions of voltage parameters to fit the
model neuron from the Hodgkin-Huxley equations. The
behaviors of the theoretical relationship between neural
behavior and the parameters that specify a neuronal model
are described in detail. The simulation model doesn't only
depend on the fluctuations in the number of open gates,
but additionally on the existence of several numbers of
gates in individual ion channels.

II. THEORETICAL BA CKGROUND

A. The Gaussian white noise (GWN)

The stochastic Hodgkin-Huxley models responded by a
Gaussian white-noise process with zero mean and unit
variance. (Rowat, P. 2007; Sengupta, B. 2010). The
additive white-noise term can be interpreted as a clear
method for representing the combined effect of numerous
synaptic inputs that neurons in cortex and other networks
receive in vivo; (Abbot, D. P. (2002), distribution, is
additionally recognized as the Gaussian distribution, and
the values that the noise can take on being Gaussian-
distributed. A special case is white Gaussian noise, in
which the values in each pair of times are statistically
independent. In applications, Gaussian noise is most
usually utilized as additional white noise to yield additive
white Gaussian noise.

B. Ionic Mechanisms of Action Potentials

An action potential is bounded by a region bordered on
one extreme by the K' equilibrium potential (-75 mV) and
on the other excessive by the Na' equilibrium potential
(+55 mV). The resting potential is -60 mV. Note that the
resting potential is not equal to the K' equilibrium
potential because, as discussed previously, there is a small
resting Na' permeability that makes the cell slightly more
positive than FEg. In principle, any point along the
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trajectory of action potential can be obtained simply by
varying alpha in the Hodgkin-Huxley equation. If alpha is
very large, the Na+, terms dominate, and according to the
Hodgkin-Huxley equation, the membrane potential will
move towards the Na' equilibrium potential. The peak of
the action potentials' approaches but does not quite reach
Eng, because the membrane retains its permeability to K*
(Wilfred D. S., Thomas L., 2015).

C. The Hodgkin-Huxley equations

Hodgkin and Huxley deduced that the ionic membrane
conductances are variable with time and voltage-
dependent, and gave the form of this voltage-dependence
(Sahil Talwar, Joseph W. Lynch, 2015). By treating a
segment of the axon as a simple electric circuit, Hodgkin
and Huxley arrived at equations describing the electric
activity of the axon. The cell membrane, which separates
the extracellular medium from the cytoplasm of the cell,
acts as a capacitor with capacitance C (Hodgkin and
Huxley used a value, based on laboratory measurement, of
10 _F/cm? for C). The ion current channels offer parallel
pathways by which charge can pass through the cell
membrane. Hodgkin and Huxley use three ionic currents in
their description of the squid giant axon; potassium
current/, sodium current/,,, and a leakage current/,. The
potassium and sodium currents have variable resistances
that represent the voltage gated conductances associated
with the membrane ion channels. The total current 7 is the
sum of the ionic currents and the capacitive current which
represents the rate of accumulation of charge on opposite
sides of the cell membrane. The capacitive current, from

. . . av .
electrical circuit theory, is C o ,where v is the membrane

potential. Hodgkin and Huxley take v = 0 to represent the
neuron's resting potential, and the equations below follow
this convention.

dvip

?‘I' Lion = Toxt (D
Tion =2 1; 2
I;=g,, —E) (3)
I=gmPhi(V —V,,,) “)

The number of independent activation gates was
represented by the integer power p in the equation (4),
which was introduced by Hodgkin and Huxley. In
addition, they measured a time delay in the rise of the
potassium and sodium currents when stepping from
hyperpolarized to depolarize potentials, but when stepping
in the opposite direction, there is no such delay. At the
outset when the axon is depolarized with a delay, there is
the difficulty to increase the conductance of both
potassium and sodium, but when the axon is depolarized
but falls with no appreciable inflection when it is
depolarized. If g, is used as a variable the end of the
record can be fitted with a first-order equation, but a third-
or fourth-order equation is needed to describe the
beginning. A useful simplification is achieved by
supposing that g, , is proportional to the fourth power of a
variable which obeys a first-order equation. In this case the
rise of potassium conductance from zero to a finite value is
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described by 1 —exp (—t))*, while the fall is given by
exp (-4t). The rise in conductance therefore shows a
marked inflection, while the fall is a simple exponential. A
similar assumption using a cube instead of a fourth power

describes the initial rise of sodium conductance (Sudha C.,
2015).

The ionic currents are given by Ohm's law (/= gV'):

lign = Ing + g + 1 4)
Ina = gna Vi — Ena) (6)
Iy = gk (Vi — Ex) (7
I, =g, (Vi — E) ®)

Where E,,, is the reversal potential, and g, is the ionic
membrane conductance.

These conductance’s, in the case of the sodium and
potassium currents, are variable and voltage-dependent,
representing the voltage-gating of the ion channels.
Hodgkin and Huxley deduced from experiment the
following forms for the ionic membrane conductances:

Gk = Gen* ©)
Ina = g_namsh (10)

Where, (n, m, h), are ion channel gate variables dynamics,
g; is a constant with the dimensions of conductance per
cm?2 (mention that n between 0 and 1).

In order to normalize the result, a maximum value of
conductance(g;), is required.

The n, m, and h dynamic are listed below:

i="=a,(1—n) =g (1)

===, (1-m) = B,m (12)

h=%=a,0-h -k (3

Where a, and f, , are rate constant that the changes
happened with voltage changes, but not affected by time,
while the value of dimensions variable n can take place
between 0 and 1, also its stand for of a single gate
probability that is in permissive state.

Hodgkin and Huxley measured constantly a; f5; as
functions of V'in the following:

_ X0 (V)

T Lm (14)
_ 1-x0(V)

pi= = (1s)
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D. Dynamics of the Membrane

The HH model was considered in this study. The analysis
is applicable to each conductance based model with ion
channels governed by linear, voltage dependent kinetics.
The equation below described the membrane potential of
the neuron.

av
C i = =9k Pk (Vm _EK) - gNalpna(Vm - Ena) -
9.V, —E) +1 (16)

V above is the transmembrane voltage, and P is the
dynamic variable in the formula represents the ratio of
open channel from potassium which is the proportional
number of open channels to the complete number of
potassium channel in the membrane; also Yy, is an open
sodium channels ratio, and [ is externally current. All of
the two channel variables g and Yy, in the Hodgkin—
Huxley (HH) equations is taken as their approximated
deterministic value, Yx= n* and Yy,= m’h; while the
potassium channel have four n-gates and sodium channel
have three m-gates and one h-gate. In case the channel is
considered open, all the gates of that channel have to be
open, and the gating variable for potassium is » and for

sodiumis m and 4.

The rate functions that found to be as:

0.01(10-v)
— T 17
exp(lgo V)—l ( )

B, =0.125exp (- %), (18)

.11 (25-v1)
a, (V) = =, (19)
exp( 1o )—1

B V) = dexp (— 1‘/—8), (20)
@, () = 007exp (-3),  (21)

By(V) = m (22)

10

a,V) =

The functions a;, and 5, have dimensions of [1/time] and
govem the rate at which the ion channels transition from
the closed state of the open state (a) and vice versa (f).

I.  THE PROPOSED MODEL

The proposed model in eq. (23), is a new modification of
the Hodgkin-Huxley equations by adding calcium channel
(Ca*?), and GWN with the mean zero (¢ (f)) to the
equations. In addition, it calculates the potassium and
sodium channels when there are more than one n-gate and
m-gate, in the dynamic variable by considering the
membrane potential to have a large number of channels,
and that’s enough to satisfy both g and Pu,. The
differential equations for the activation and inactivation
variables in the proposed model can be solved at any
instant in time, and the values of all the activation and
inactivation variables are known at any instant by
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inspection of the voltage trace. This proposed model
allows for estimation all parameters and functions of
voltage precisely. More specifically, the numbers of the
gating variables, the conductance, and the steady states and
time constant estimated as functions of voltage. The
regular states are using mathematical modifications on
data collected using four voltage clamp protocols. The
equations that describe the proposed model shown as
follows:

CV=- Ik Zi n* (V- Ex )~ gNa=Zi m*h(V - Eng) —
IeaWoa V= Egq) =g, (V— E))+I+S (@) (23)

4. . .
Yx =N is an open potassium channels ratio.

Pne=m>h is an open sodium channels, ratio.

If we have more than one channel the dynamic variable
(i), will be as follows:

= 2ynt
Pya= 2; m> h, i =number o f channels.

Yea, 18 an open calcium channels, ratio depends on the
concentration of Ca*?.

lioncglout .

Trom o T >
[l/JCa] = { [1ongglin Jif Tongg = ImV

0 , otherwise

(24)

If the concentration of the calcium is high the channel will
open otherwise close.

Here [w],[Yy,]), is the ratio of open potassium and
sodium channels, computed across all achievable order of
the membrane getting 4Xxn , 3Xy,m, Xy,h, open n- gates,
as shown below:

[l/JK] =

{ (4X )3 (4Xgn)?(4X gn)*n
o

Jif Xm 21 25)

(4XK)3 (4 XK )2 (4XK)*
, otherwise

[llea] =

{ (3Xyam)?(3X ygm)'m
0]

hif Xyn 21

, otherwise

(26)

(4XNa)2(4Xna)?t

If the membrane size is small then ,=n*and
Pne=mh?, in the limit of infinite membrane size, the
proposed model’s value Y,= [Y,l=n* , and Py,=
[1,,oJ=mh® | applies at any times.

Where, [ygl, [y,], reads as:

Y =n*+0,.q;

— 3
lpna =mh +6Na dNa
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The equations that describe the dynamics of qy are:

Tqx =Pk @7
™ =~ Yk ~Wil ¢, (1= 1) +B,n]gy +
$k(28)

The equations that describe the dynamics of gy, are:
Tqna = Pna (29
™na =~ YNaPna ~ Wl\zla[am a-m)+
Bmm]gna + $na
(30)

In which (D, D,,), is identical to:
a,(1 —n) + B,n,and a,,,(1 —m) + B, m(31)
The standard deviation of i, ¥, willbe as follows:

114(114)_1

o= [ (32)
3 3y-1
Ova = [T hdna (33)

The comp lete model for the dynamic variable (Y ),( Y,q),
is:

4rnd—1
Y =nt+ gy (34)
K
3 3y—1
Yva =mih+ [FF2hgy,  (35)
Na

The gate noise model is:

ﬁ=%=“n(1_")_ﬁnn+ Sk (36)

m= % =a,(1-m) - B, m+ &, (37)
h=%= a,(1 —h) — B, hé, (38)

II.  RESULT AND DISCUSSION

This section consists of the series of experiments that
actually defined efficiency of the noise by comparing the
proposed model with the microscopic simulations. In
addition, a simple stochastic method has been used as the
microscopic simulation scheme (Zeng, 2004). The
simulation model in equations (34, 35) numerically was
developed by using C++ programing language and
MATLAB. The input current was time independent, which
was modified based on the program to handle time
dependent current and the noise variance in this simulation
were a periodic sin wave under noise variance, as shown
below:

1(6)=Ipase<() (39

Where, I,,,. indicates the current situation, and the GWN
with mean zero is (£ (¢)). A series of experiments has been
used to examine the effectiveness of the noise in the
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proposed model in a comparative manner with the
Microscopic simulation, as mentioned above.

The experiments applying by using parameter values of the
membrane with including Gaussian white noise in the
proposed model and in the Hodgkin-Huxley equations as
described in formula (39). Hence, it can be seen that the
performance of the proposed model was quite similar to
the microscopic simulations. Thus, whatever figures have
been driven out as a result, there is a difference between
the spike frequency of the HH equations and the proposed
model, which is actually containing the spikes from
microscopic simulation. In addition, the difference
between spike frequencies becomes smaller when the
noise variance increases.

The Gaussian white noise terms with zero means which
used in the numerical experiments shown below:

(& & )y = Y Tela, 1 —n) + B,nl6(t — ) (40)

(fNa (t)fNa(t')) = VNa TNa [am(l — m) +

pmmdt—Lt, 41)
(& &) = %(14+;+ﬁ"n§(t —t) “2)
(£na &, ) = —“m(l‘"l‘j”m’" st—t) 43)

(E©F, (@) = LI B s by (4a)

XNa

The phenomenological methods through numerical
experiments estimate the values of the parameters. Both
these wvalues can calculate an approximation by

phenomenological means, as given in table 1.

Table 1: Constant parameters of the models

V=10 V=150 Te=400

Yna=10 w2, =200 Tya=200

The parameter’s value of the membrane which used in Eq.
(23) shows in the table 2. Where Xk, Xna, Xca corresponds
for potassium and sodium and calcium complete numbers
of channels, and multiplied the Xx by 4n for potassium to
get 4Xgn and also for sodium, calcium resulting 3 Xy,m,
Xyah to get open channels with the total number. In
addition, the Markov process has been put into the gate’s
dynamics. The probability of the time ¢ and time f+A¢ is
exponential (—a,Ar), which means the n-gate is closed or
becomes open, and the probability of time ¢, and time ¢ +
At is exponential (—=f,A¢) which means the n-gate is open,
and the all of the parameters «, , f5, are the rate of voltage
get at the opening and closing of n-gates. Furthermore, the
same process is applied for the m-gate and h-gate.

Table 2: Parameter values of the membrane

Ionic current Reflection The conductance
potential (mV) (mS/cm?)

Sodium Eyg =-115 x1 =120

Potassium Ex =12 X2 =36

Leakage E; =-10.613 x3 =03

Calcium E.,=136 x4 =40
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Figure 1, the membrane size for potassium is 300, for
sodium is 1000 and I,,,, = 4, threshold=0. 005. The
averages are computed in 30 seconds time window. The
comparison between the three curves used different noise
variance, it can be seen that the proposed model was quite
close to the microscopic simulations and the spike
frequency increase and will be more accurate when the
noise variance increasing (Hodgkin, & Huxley, 1952). The
numbers of the sodium channel calculated as follows:

No of sodium channel =No. of potassium channel/3*10.

- & - Microscopic

e Proposed Model A
—d&— HH Model

Spike frequency (Hz)

Noise variance ((uA*2)/cm*4)

Fig 1: Mean s piking rates against the noise variance.

Figure 2, shows the membrane size for potassium is 300,
for sodium is 1000, and [, = 4, threshold=0. 008. The
simu lation time window is 30 seconds. This Figure shows
how the speed of spike frequency as the noise
variance increases for both the proposed model and HH
model. In addition, different noise variance used to show
the comparison between the three curves, it can be seen
also that the proposed model was quite close to the
microscopic simulations.

=@ = Microscopic
105 ,,}"( Y
s Proposed Model e
100 f
—L— HH Model ¢g
%

Spike frequency (Hz)

0 ¥ 3 6 8 10 11 125
Noise variance ((uA*2)/cm™4)

Fig 2: Shows the relationship between noise variance
and the s pike fre quency.

Figure 3, shows the membrane size for potassium is 300,
for sodium is 1000, for calcium is 150, and I,,,, = 8. The
averages are computed in 30 seconds time window. The
comparison between the three curves used different noise
variance in the simulations. In addition, the difference
between spike frequencies becomes smaller after the noise
variance increases.
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=8 = Microscopic (,«,.Ag
130 | === Proposed Model

—d&— HH Model

Spike frequency (Hz)
s

Noise variance ((#A*2)/cm”4)

Fig 3: Present the mean s piking rates against the noise
variance.

Figure 4, shows how the speed of spike frequency as the
noise variance increases for both the proposed model and
HH model. The membrane size for potassiumis 1710, for
sodium is 5700, and [, = 7.25, threshold=0. 005. The
simulation time window is 30 seconds. In addition,
different noise variance used to show the comparison
between the three curves, and the proposed model was
quite close to the microscopic simulations when increasing
the noise variance.

®
&

= & = Microscopic @===
o4 i E

¥ Proposed Model ¥ M‘,M"
93 £ d

—d— HH Model Al U
92

=

Spike frequency (Hz)
S
8

10 1 12 14 1% 17 18
Noise variance ((pA*2)/cm*4)

Fig 4: Provides the relationship between noise variance
and the s pike frequency.

In Figure 5, the membrane size for potassium is 1710, for
sodium is 5700, for calcium is 1520, and I, = 9. The
averages are computed in 30 seconds time window,
different noise variance used to show the comparison
between the three curves. The proposed model was quite
close to the microscopic simulations. In addition, after the
noise variance increases, the difference between spike
frequencies becomes smaller (Hodgkin, & Huxley, 1952).
In the table, 3 different parameter’s value of the membrane
used in Figure 5.

Table 3: Different parameter values of the me mbr ane

Ionic current | Reflection The
potential conductance
(mV) (mS/cm?)
Sodium Ey, =110 xl =130
Potassium Ey =-15 X2 =40
Leakage E, =105 3 =02
Calcium E;, =126 x4 =36
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=& = Microscopic
98 | *+34 Proposed Model >
—&— HH Model ‘9__-—9 X

Spike frequency (Hz)

9 10 1 12 14 1% 17 18
Noise variance ((uA"2)/cm"4)

Fig 5: Mean s piking rates against the noise variance.

Figure 6, shows the membrane size for potassiumis 3525,
and for sodiumis 11750, I, = 11, threshold=0. 005. The
averages are computed in 30 seconds time window, and
different noise variance used in the simulations to show
the comparison between the three curves. The proposed
model was affected by noise variance more than the HH
model.

= &~ Microscopic

150 | =3¢ Proposed Model y'i B

P
”
—A— HH Model /

2 2

Spike frequency (Hz)
B
5

Jy

2
s,
X,

@
2

o 15 35 425 5 675 7.53 8
Noise variance ((UA"2)/cm™4)

Fig 6: Is the mean spiking rates against the noise
variance.

In Figure 7, the membrane size for potassium is 5676, for
calcium is 3525, for sodium is 18920, and I,,,, = 10.50,
threshold=0. 005. The simulation time window is 30
seconds. In addition, different noise variance used to show
the comparison between the three curves (Hodgkin, &
Huxley, 1952).

= & = Microscopic 2
140 dSA
3 Proposed Model s ¥
135 &
—&— HH Model ey

B B 2

Spike frequency (Hz)

Noise variance ((uA*2)/cm"4)

Figure 7: Shows the relationship between noise
variance and the s pike frequency.

Figure 8, shows how the speed of spike frequency as the
noise variance increases for both the proposed model and
HH model. The membrane patch composed of 10002 of
potassium channels and 33340 of sodium channels, and
Ipase = 15, threshold=0. 005. The averages are computed
in 30 seconds time window, and different noise variance
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with large membrane size used to show the comparison
between the three curves. It is seen that the spike
frequency increase and will be more accurate when the
noise variance increasing, and the proposed model were
affected by noise variances more than the HH model.

=8 = Microscopic

A
130 | ... Proposed Model
—&— HH Model

Spike frequency (Hz)

4
Noise variance ((pA*2)/cm"4)

Figure 8: Provides the relationship between noise
variance and the s pike frequency.

1.  CONCLUSION

The Hodgkin-Huxley type models accept a set of
parameters as input and generate voltage data describing
the behavior of the neuron. Proposed model solving the
Hodgkin-Huxley equations for a set of input parameters
refers to integrating the equations in order to obtain the
resulting simulated Gaussian noise and the voltage
(potassium, sodium, calcium) channels. In addition, the
channel noise neuron model was studied well under the
influence of varying input signal, and it has been
discovered that to be the main cause in the unusual
increases in the cell excitability, and in spontaneous firing
membrane size should be small enough. Moreover, it was
discovered that the proposed model keeps on advancing
the spontaneous firing even if membrane size is larger,
wherever the gate of noise is insufficient for activating the
cell. According to the experimental results, the spiking
rate generated fromthe model is extremely close to the one
fromthe actual simulation, doesn’t effect by the membrane
size. In difference, the rate generated through an increase
in noise variance, the stochastic HH equation was almost
similar as compared to the spikes from the model, and it
will be more accurate. Experimental results also highlight
the mean spiking rates against noise, Which was
introduced by a different membrane size, Ij,,., and noise
variance, in which three curves represent the competition
between the microscopic simulation with the proposed
model and stochastic HH equation, Which showed that the
proposed model has worked quite similar to the
microscopic simulations. Overall, the motivation for this
work is to clarify a proposed model, deliberative, and
rigorous methodology for parameter estimation for the
Hodgkin-Huxley models that overcomes all the limitations
of current parameter estimation methodologies. An
important outcome of this methodology is that the
proposed model allows researchers to study hypotheses
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that could not have been studied using any other parameter
estimation method.
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