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Abstract- The outstanding properties of graphene arising from its monoatomic thickness, highly 

conjugated and twin-dimensionality merit attention for plethora of scientific and commercial 

applications. In this present review, the functionalization of surface chemistry of graphene is 

investigated to isolate its advantages over non-engineered materials for sensor research and related 

chemical and electrochemical sensing applications. The review also discuss new perspectives in the 

employment of these nano-engineered materials in chemical sensing and biosensing applications. 

Indexed Terms- Graphene, electrochemistry, chemical sensors, biosensors. 

 

I. INTRODUCTION 

First isolated in 2004 by Novoselov [1], graphene is a two-dimensional (2D) layered material of 

nanocarbon extraction. Graphene has attracted tremendous interest in sensor applications due to its 

outstanding properties. However, the surface characteristics of graphene are unsuitable for certain 

specialized applications. The functionalization of graphene surface chemistry is therefore essential in 

realizing its sensor applications [2-3], and the literature is replete with reports of varying covalent and 

non-covalent procedures affording graphene the surface chemistries for application-specific functions 

[4-7]. The exceptional properties of high theoretical specific surface area (2630 m2g-1), high electrical 

conductivity, electron transfer kinetics, quenching efficiency, high intrinsic mobility, high young’s 

modulus (1.0TPa), good heat conductivity (5000Wm-1K-1) and good optical transmittance (-97.7%) of 

graphene have been utilized for highly diversified applications [8-9]. 

     The process of chemical derivatization can be employed to modulate graphene parameters, such as 

dimensionality, doping, synthetic conditions and quantum of layers, which enables chemical plasticity 

for various sensing applications [10]. Consequently, the preparation of graphene should focus on the 

target analyte, sensing mechanism, detection limit, stability and controllability among others [11]. 

These methods include but not limited to; chemical vapour deposition (CVD), thermal reduction, 

exfoliation, oxidation-reduction (REDOX) and thermal decomposition [12-13]. Each particular 

preparation and synthesis method comes with merits as well as demerits. For instance, mechanical 

cleavage and exfoliation of graphene present moderate defect density and high carrier mobility [14], 

which are considered advantageous for both fundamental research and device applications. However, 

mechanical exfoliation lacks the flexibility required for bulk production of graphene. In this regard, 

REDOX method offers attractive alternative, as the synthesized graphene sheets retain their miniature 

dimensionality while incurring low electrical conductivity and high defect rate. Figure 1 summarizes 

some synthesis and associated methods for graphene preparation. 

     The bulk preparation of graphene is usually accomplished via REDOX chemistry [15] in which 

graphite is transformed into graphene oxide via highly acidic oxidants before being reconverted back 

to graphene with the process facilitated by hydrazine, hydroiodic acid, L-ascorbic acid and sodium 

borohydride [16-17], which act as reductants. Some other reductants such as blistering rugged alkaline 

compounds and polymers have been demonstrated to effectively reduce graphene oxide [18]. Chemical 
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reduction has also been found to effectively reconstruct the electrical conductivity of graphene oxide 

into its graphitic equivalent [19]. In addition, ultra violet-induced photocatalytic reduction [20], thermal 

[21], electrochemical [22] and microwave CVD [23-24] are also attractive for graphene preparation.  

 

Figure 1: Schematic illustration of various synthesis methodologies for graphene 

 

      The exfoliation method comparatively yields defect-free graphene nanosheets when interfaced with 

exceptionally-aligned pyrolytic graphite in organic osmotic, N-methyl-pyrrolidone (NMP) [25] for 

instance, which leads to particularly high carrier mobility [26]. The sonication of organic crystalline of 

graphite yields high-end, large-scale single-layer graphene sheets [27]. Furthermore, extensive research 

is directed towards matrix-stimulated direct exfoliation of graphene from graphite via non-destructive 

π-π stacking interactions between the aromatic molecules and graphite micro platelets [28]. Another 

viable technique for the preparation and fabrication of graphene is the thermal decomposition of silicon 

carbide (SiC) [29]. Sutter et al. [30] show the existence of a reasonably strong chemistry between 

ruthenium (Ru)-based metal substrate and the principal epitaxial graphene layer, which weakened with 

the subsequent layer, indicating poor electronic coupling to the metal, with the resulting graphene sheet 

retaining its intrinsic electronic architecture. High quality graphene with enhanced surface area has also 

been shown to be architectured via low-pressure CVD by feeding carbon in the gas phase, with a metal 

substrate employed to catalyse the growth process [31]. In addition, lone or multiple-layered graphene 

sheet with large surface area-to-volume ratio, enhanced transmittance and high electrical conductivity 

assembled on dissimilar substrates via CVD have been reported [32]. Graphene sheets can also be 

constructed via unzipping of carbon nanotubes with intercalation of lithium (Li) and ammonia (NH3), 

followed subsequently by exfoliation [33]. Similarly, Bao et al. [34] report a lithography-free 

fabrication of high quality graphene via substrate-supported assembly of cascaded free-standing 

graphene devices (see Figure 2). 

1.1 Sensing mechanism of graphene-based sensor 

The superior sensing capability of graphene is intrinsically linked to its electronic structure. Graphene 

has always shown remarkable sensitivity to chemical changes due to its symmetric band structure. Due 

to the ambipolar characteristics of graphene, both OH- and H3O- are anticipated to modulate the channel 

conductance by doping the charge carriers (electrons and holes), with graphene functioning in the 

chemiresistor mode. In this mode, graphene sensing mechanism is viewed from the perspective of the 

roles of the ions adsorbed at the graphene/electrolyte interface. The ionic adsorption is intrinsically 
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capacitive, implying that the H3O- and OH- ions do not transfer any charge across the interface [35]. 

Moreover, the configuration of the electrical double layer at the graphene/electrolyte interface due to 

OH- makes graphene p-doped while that due to H3O- makes graphene n-doped. The change in the charge 

carriers as H3O- and OH- ions orient themselves differently within the Helmholtz plane is detected via 

measuring changes in conductance, in concert with the work of Ang et al. [35]  

Figure 2: (a-c) fabrication of graphene via HF etching. (d) A plot of two-terminal conductance (G) vs 

back gate voltage Vg for an HF-released single-layer graphene device at room temperature (red) and 

4.2K (black). Inset: SEM image of such a device. (e-g) Fabrication of suspended graphene devices over 

a pre-defined channels on the substrate. (h) Plots of G vs Vg for a bi-layer graphene device over a trench 

at room temperature (red) and 4.2K (black). Inset: image of such a device [34]. 

      Despite the attempts in justifying the physics behind the sensing mechanism of graphene, it is 

important to understand that the mechanism in reality might be very convoluted. For one, the sensing 

mechanism of graphene, like many nanoscale materials, is not immune to the effects of the substrate, 

charge carrier mobility, Schokky barrier and gate capacitance [36]. Although, in the chemiresistor 

mode, graphene is a two terminal device acting as a gate-free sensor, there is the possibility of 

incorporating additional gate into the device allowing it to act as a field effect transistor [FET] sensor. 

Recently, the pH sensitivity of graphene-gated pH sensors have been investigated, demonstrating 

enhanced pH sensitivity with nonzero gate voltage. However, the fabrication of gated graphene devices 
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is very elaborate and convoluted procedure, involving CVD and epitaxy-grown graphene samples. 

Comparatively, the planar graphene pH chemiresistor offers a more simplistic design, due in part to its 

two terminal architecture and focused ion beam (FIB), making it the simplest reusable graphene-based 

pH sensor. Figure 3 shows the design and sensing mechanism of solution-gated graphene transistor 

(SSGT), which is suitable for real-time, high-throughput and ultra-sensitive biosensing. As graphene 

research is still in its infancy, the production of novel graphene-based sensors for commercial 

applications is projected. However, the resolution of graphene-based sensors can be greatly enhanced 

via modulating its doping level. Despite immediate challenges, the miniaturized size and the integration 

ability makes the graphene-based sensor more suitable for future micro/nanosystems, and it is 

anticipated that additional research will permit further exploitation of graphene’s properties as a sensing 

material over conventional materials. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3: Schematic of glucose sensor based on graphene SGGT. (b) Potential drop across the two 

electric double layers on graphene channel and gate surfaces. (c) The GOx-catalyzed oxidation of 

glucose and the oxidation of H2O2 cycles on the GOx-CHIT/Nafion/PtNPs/graphene gate electrode of 

SGGT [37]. 

 

II. CHEMISTRY, SYNTHESIS AND FUNCTIONALIZATION OF GRAPHENE 

Generally, the surface architecture of nanostructured materials play an essential role with regard to their 

chemistry with other molecules [38]. The employment of graphene and its derivatives in various sensing 

platforms stems from their outstanding surface properties. For one, the extensive delocalized π-electrons 

arising from the conjugated architecture of the hexagonally arranged honeycomb sp2 hybridized carbon 

atoms, imparts conductivity properties to graphene [39], while accelerating electron transfer kinetics, 

leading to incredibly small response time and strong micromolar sensing range [40-41]. In addition, a 

high detection range can be achieved via binding graphene and its derivatives with other functional 

groups, or alternatively via direct absorption method [42]. The detection range of the system can be 

improved by stepping up the concentration of the probe molecules. The graphene-based materials are 
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found to be strongly enriched with functional groups at the intersection of the edges following the 

application of a smart processing method utilizing heteroatom doping and oxidation techniques 

resulting in molecular level adjustment and fabrication of hybrid sensing platforms [43]. Therefore, the 

modification of surface architecture of graphene materials may be the most fundamental and significant 

step towards redesigning graphene derivatives for varying purposes. The ability of functionalized 

graphene materials to conjugate with various recognition molecules, in addition to incorporating 

additional functional media is paramount for electrochemical bioanalysis [44]. 

      Before the isolation of the molecular allotropes of carbon – fullerenes, carbon nanotubes (CNTs), 

and more recently, 2-D layer graphene, research into carbon was only limited to the fundamental 

materials of graphite and diamond. However, graphene has upstaged other carbonaceous materials in 

winning massive research interest owing to its classic architectural features and exceptional 

performance. As the surface of pristine graphene is unsuitable for sensing purposes, there has been 

increasing interest in investigating various facets, particularly the modification of graphene exterior. 

Therefore, the functionalization and dispersion of graphene sheets are paramount in this aspect. Further 

processing of chemically functionalized graphene can be demonstrated via solvent-facilitated methods, 

such as filtration, spin-coating and layer-by-layer assembly. The problem of assemblage of lone layer 

of graphene during reduction in osmotic phase still remains. However, this can be shot down via 

appropriate chemical functionalization, while retaining graphene’s intrinsic properties. Graphene oxide 

(GO) has been widely employed as a veritable precursor material for the growth and synthesis of 

processable graphene. The modified Hummers technique is very effective in preparing graphene oxide 

from pristine graphite, although a host of other preparation methods exist [45]. The highly oxygenated 

nature of graphene oxide exterior coupled with the presence of carboxyl functional groups has the 

potential to form a complex with van der waals forces, leading to the formation of a range of soluble 

interfaces [46] as depicted in figure 4. Additionally, the existence of supplementary carboxyl and 

carbonyl groups at the intersection of graphene oxide sheets leads to the production of a strongly 

hydrophilic graphene oxide, thus allowing for dispersibility and solubility in water [47]. The literature 

is replete with various proposed models of graphene oxide architecture established on these oxygen 

functionalities [48].  

 

Figure 4: Digitized view of as-synthesized graphite oxide dispersed in water. Also shown are 13 other 

ultrasonicated organic solvents (1 h). Top: dispersion immediately after sonication. Bottom: dispersion 

exactly 3 weeks following sonication [50] 

 

      The reduction of graphene oxide is executed chemically, photochemically or thermally. However, 

the reduction of graphene oxide in the absence of a stabilizer triggers a brisk, but irreversible cascading 
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of graphene sheets, leading to precipitation of graphene particles. Therefore, the surface 

functionalization of graphene oxide is necessary prior to the reduction process, and this can be executed 

covalently or non-covalently, followed by reduction [49]. We now know that the reduction of 

alkylamine-adjusted graphene oxide creates stable dispersions of functionalized graphene sheets in 

biotic solvents. Moreso, the induction of carboxylic or sulfonate ensembles on graphene basal planes 

can foster the formation of water-dispersible graphene sheets [51]. Dispersible graphene can be 

synthesized directly from natural graphite as reported in [52]. Graphene transformed by ionic liquid and 

assembled electrochemically from natural graphite has also been demonstrated [52]. Several other 

methods for high yield assembling of stable un-functionalized graphene are reported elsewhere [53]. 

2.1 Covalent modification 

Here, the covalent functionalization of graphene framework is discussed. The architectural 

transformations can occur at the edge of the graphene sheets or on its exterior. The re-hybridization of 

one or more sp2 carbon atoms of the carbon complex into sp3 layout followed by simultaneous loss of 

electronic conjugation constitutes a fundamental step towards surface functionalization of graphene 

[54]. The covalent alteration of graphene can be accomplished via any of the following methods; 

condensation, nucleophilic substitution, addition and electrophilic addition [55-79]. The varying genre 

of covalent modification of graphene oxide with their associated modifying agents, electrical 

conductivity, dispersibility and dispersion stability in various osmotic is shown in table 1. 

     Covalent interaction is vital for graphene functionalization in sensor application [80]. The process is 

facilitated via covalent bond formation, which can be architectured at the intersection of the edges or 

on the basal planes. This can be accomplished through the chemical interaction of unsaturated π-bonds 

of graphene with any of organic functional moieties, oxygen on graphene oxide [80], and heteroatom 

doping. 

      The implementation of C-C bonds couplings of graphene oxide on cascades of diazonium salts has 

led to the production of free radicals with exceptional affinity for addition reaction, and having 

capability for surface-based vertical immobilization of motley aryl-addends [93]. These engineered 

chemical interactions because the sp2 hybridized carbon atoms to transform to its sp3 hybridized 

equivalent such that the graphene layer assumes quasi-conducting and unconducting regions [110]. In 

addition, certain compounds of dienophile extraction such as azomethine ylide [69], aryne [79] and 

nitrene [111] have been found to form excellent complexes when interfaced with graphene, yielding 

adaptable varieties which are excellent starting point for further transformation and functionalization of 

graphene nano-materials. Before now, several studies have focused on the covalent bond interaction 

between other functional groups and oxygen moieties that is known to emerge from graphene oxide 

[112]. Using the well-established carbodiimide mechanism, the graphene oxide is subsequently 

interfaced with N,N-dicyclohexylcarbodiimide or 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide in 

the presence of N-hydroxysuccinimide to generate a stable organic ester, which transforms to an amide 

bond when reacted with a target molecule containing amine group. To this end, graphene and its 

derivatives present excellent electrochemical sensing platforms when covalently interfaced with poly-

L-lysine [113], DNA [114], beta-aminocyclodextrin [115], and protein [115]. The redesign of 

carboxylates to acyl chlorides constitutes another technique for graphene functionalization [116]. This 

allows the activation of graphene oxide with thionyl chloride (SOCl2) leading to the production of a 

derivative of graphene, acyl chloride which can go into chemical association with amino or hydroxyl 

groups. On its part, heteroatom doping plays crucial role in engineering the electronic properties of 

graphene nano-materials [117]. In this process, graphene realized via heteroatom doping is synthesized 

using trivalent or pentavalent atoms as they share similar architecture with elemental carbon, and are 

able to accept or donate electrons [118]. While the incorporation of a pentavalent atom into graphene 

basal plane leads to the formation of n-type carrier, the integration of a trivalent atom results in a p-type 

material. Using a pentavalent dopant, nitrogen (N) for instance, results in the formation of tripartite 
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bonding layout in the graphitic basal plane, which could be active site for reduction-oxidation action 

[119]. In fact, N-based dopants have been demonstrated to enhance sensitivity and biocompatibility, 

improve binding potential, electron transfer kinetics, and electrical conductivity which are essential 

parameters for sensing applications [120]. 

Table 1: Types of covalent modification of graphene oxide using varying modifying agent, 

dispersibility, electrical conductivity and dispersion stability in varying solvents. 

Modification 

methods 

Modifying agents Dispersium medium Dispersibility 

(mg ml-1) 

Elect. 

Cond. 

(Sm-1) 

Refs. 

Condensation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nuecleohilic 

substitution 

 

 

 

 

 

 

 

 

 

 

Addition 

 

 

 

 

Electronic 

substitution 

Organic diisocyanate 

Adenine, cysteine, 

nicotamide, OVA 

TMEDA 

A-CD, β-CD, γ-CD 

Organic isocyanate 

ODA 

 

β-CD 

TPP-NH2 

PEG-NH2 

PVA 

TPAPAM 

CS 

Alkyl amine/amino acid 

4-aminobenzene 

sulphonic acid 

4,4-diaminodiphenyl ester  

PDA 

Alkylamine 

APTS 

IL-NH2 

PLL 

Dopamine 

Polyglycerol 

Poly(norepinephrine) 

 

Cyclopropanated 

malonate 

POA 

Aryne 

Polyacethylene 

NMP 

 

4-bromo aniline 

ANS 

Sulfanilic acid 

DMF 

H2O 

 

THF 

H2O, ethanol, DMF, DMSO 

DMF, NMF, NMP, PC, THF 

THF, CCl4, 1,2-

dichloroethane 

Water, acetone, DMF 

DMF 

Water 

Water, DMSO 

TFH 

Water 

CHCl3, THF, DCM, toluene 

H2O 

 

Xylene, methanol 

THF 

Water, DMF 

H2O, ethanol, DMF, DMSO 

Water, DMF, DMSO 

Water 

Water 

Water 

H2O, NMP, methanol, 

acetone, DMF, THF 

Tolune, O-DCB, DMF, 

DCM 

THF 

DMF, O-DCB 

Ortho dichlorobenzene 

Ethanol, DMF, NMP, PC, 

THF 

DMF 

H2O 

H2O 

- 

0.1 

 

0.2 

>2.5 

1.0(DMF) 

0.5(THF) 

 

1.0(DMF) 

- 

1.0 

- 

- 

2.0 

- 

0.2 

 

0.1 

0.2 

1.55 

0.5 

0.5 

0.5 

0.05 

3.0 

- 

 

0.5 

 

0.2 

0.4 

0.1 

0.2 – 1.4 

 

0.02 

3.0 

2.0 

- 

- 

 

- 

- 

- 

- 

 

- 

- 

- 

- 

- 

- 

- 

- 

 

- 

- 

- 

- 

- 

- 

- 

- 

- 

 

- 

 

- 

- 

- 

21600 

 

- 

145 

1250 

[81] 

[82] 

 

[83] 

[84] 

[85] 

[86] 

 

[87] 

[88] 

[89] 

[90] 

[91] 

[92] 

[93] 

[94] 

 

[94] 

[95] 

[96] 

[97[ 

[98] 

[99] 

[100] 

[101] 

[102] 

 

[103] 

 

[95] 

[104] 

[105] 

[106] 

 

[107] 

[108] 

[109] 

 

2.2 Noncovalent functionalization 

Noncovalent modification is fundamentally concerned with hydrophobic, electrostatic, π-π stacking and 

van der waals forces, and requires the material adsorption of appropriate molecules on the graphene 

exterior. This is achieved via adsorption of aromatic molecules or surfactants, interaction with 

biomolecules and peptides and deoxyribonucleic acid (DNA), and polymer wrapping. The literature is 

replete with reports of extensive employment of noncovalent functionalization in the surface 
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transformation of the sp2 hybridized CNT ensembles [121]. Research indicates that similar result is 

possible using the same approach, but with the application of varying forms of organic modifiers on the 

graphene substrate [122-124]. Table 2 shows varying genre of noncovalent modification of graphene 

oxide with their associated modifying agents, electrical conductivity, dispersibility, dispersion stability 

in various osmotic. 

Table 2: Types of noncovalent modification of graphene oxide using varying modifying agent, 

dispersibility, electrical conductivity and dispersion stability in varying solvents  

Modifying agents Dispersium medium Dispersibility 

(mg ml-1) 

Elect. Cond. 

(Sm-1) 

Refs 

Poly(propyleneimine 

dendrimers) 

SLS, SCMS, HPC-Pv 

Amino terminated 

polymer 

 

Caronene derivative 

Porphyrin 

SPANI 

PYR-NJS 

PNIPAAM 

SDBS 

PIL 

PSS 

MG 

PSS-g-PPY 

PBA 

PPE-SO3
- 

Water 

 

Water  

1,3-dimethyl-2-imidazolidinone,   γ-

butyrolactone, 1-propanol,        ethanol, 

ethylene, glycol, DMF       

Water 

Water 

Water 

Water 

Water 

Water      

Water 

Water 

Water      

Water 

Water 

Water           

- 

 

(0.6-2.0) 

0.4 

 

 

0.15 

0.02 

>1.0 

- 

- 

1.0 

1.5 

1.0 

0.1 

3.0 

0.1 

0.25 

- 

 

- 

1500 

 

 

- 

370 Ωcm 

30 

- 

- 

80 Ω 

3600 

- 

- 

- 

200 

- 

[125] 

 

[126] 

[127] 

 

 

[128] 

[129] 

[130] 

[124] 

[131] 

[131] 

[132] 

[133] 

[134] 

[135] 

[136] 

[137] 

 

     Noncovalent functionalization is frequently exploited to redesign graphene nanostructures. In this 

process, the autochthonous sp2-conjugated architecture of graphene remains unchanged in contrast to 

covalent modification, with graphene retaining its towering electrical conductivity. This presents 

positive implications in sensor applications where unbroken graphene is critical for optimal 

functionality.  

     The binding of readily dissolvable or dispersible pyrene derivatives to graphene sheets is usually 

exploited in the fabrication of graphene-based sensors [136], and this is a typical instance of π-π 

stacking. In addition, π-π stacking can be exploited to directly attach single stranded DNA (ssDNA) to 

graphene exterior [138]. Similarly, different classes of DNA detectable platforms can result from 

graphene and nucleic acid bases [139]. Amphiphilic compounds are also found to be excellent drivers 

for the dispersion of graphene materials in aqueous solution, with the hydrophobic edge linked to the 

graphene exterior. Here, hydrophilic polymers can be employed to decorate graphene oxide in order to 

circumvent the problem of aggregation in aqueous solution. For instance, polyetherimide [140], 

polyvinyl alcohol [141], polyvinylpyrrolidone [142] and poly(diallyldimethylammonium chloride) 

[143] have been extensively employed as dispersants owing to their exceptional hydrophilic chemistry 

with and without electrostatic interaction. 

2.3 Other decoration methods for graphene 

In recent times, inorganic molecules have been exploited to modify graphene sheets, inducing ancillary 

electrochemical catalysis that may be a recipe for functionalization [144]. Research effort is directed 

towards a mosaic of solution-based metallic nanoparticles and graphene due to their perceived 

potentials for scientific and electrochemical sensing applications. Different methodologies have been 

devised to synthesize graphene metal composites, especially for noble metals. Hassan et al. [145] report 
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the preparation of metal nanoparticle based on microwave, and dispersed on the graphene exterior in 

oleic acid and oleylamine. The combined techniques permit the synchronous reduction of assorted metal 

salts and graphene oxide, with the production of nano-catalyst supported on a massive surface exterior 

of heat-tolerant graphene. Guo et al. [146] demonstrate a facile technique for the synthesis of platinum 

(Pt)-on-palladium (Pd) nanodendrites, and Pt nanoparticles linked in aqueous phase to graphene sheets 

via wet chemistry. The other direct and convenient procedure for fabrication of metal graphene 

nanocomposites in the absence of any additives or capping agents is the clean-reduction of Pt, Pd and 

gold (Au) precursor by graphene oxide [147]. 

     Again, high quality metal graphene hybrids with novel nanoparticle characteristics can be fabricated 

via self-assembly method [148]. This is possible through the synthesis of metallic nanoparticles via a 

methodological approach exploiting the different dimensionalities, configurations and building blocks 

of the nanoparticle. Zhu et al. [149] show the preparation of a hybrid 3-D nanocomposite films via 

assembling in alternation, Pt nanoparticles and ionic liquid modified graphene nanosheets. This method 

utilizes ionic liquid-functionalized graphene based on imidazolium salts, and prepared via covalent 

bonding of 1-(3-aminopropyl)-3-methylimidazolium bromide to graphene nanosheets. The introduction 

of ionic liquid based on imidazolium onto the exterior of graphene nanosheets leads to positive-

polarized graphene dispersible in aqueous solution. The formation of as-functionalized multiple layered 

film is highly unvarying, thanks to methodical and facile self-assembly. In addition, the selection of 

varying sequences in self-assembly can lead to an efficient route for the construction of electrochemical 

nanodevices when the electrochemical activity of graphene films is finely engineered. An inclusive and 

general approach for the decoration and reduction of graphene oxide exploiting ‘fraction V’ or bovine 

serum albumin has been demonstrated by Deng et al. [150]. The metal graphene hybrid is assembled 

by establishing a complex via appropriate interface methodology between the bovine serum albumin 

and thiol & imidazole, noble metals & amine groups. This lone-stage decoration/reduction technique 

aims to prepare nanoparticle materials with tunable surface architecture, configuration, dimensionality 

and composition which are highly beneficial for the functionalization of graphene-based materials. 

      Interestingly, many oxide nanomaterials particularly metallic and quasi-metallic oxide materials 

have received considerable research attention in electrochemistry. These oxides exhibit increased 

current density and reduced overpotential when transformed to conductive graphene materials owing to 

the low electrical conductivity, although their utilization may present fantastic platform for further 

functionalization of graphene materials. Graphene oxide is known to bond very well with iron (III) 

oxide (Fe2O3), manganese (VI) oxide (MnO2) and cobalt (II) oxide/cobalt (III) hydroxide 

(Co(OH)2/Co(OH)3 [151]. Yang et al. [152] assemble graphene oxide decorated with mesoporous silica 

(SiO2) using wet chemistry. In particular, the electrostatic adsorption and self-assembling onto the 

alkaline, highly negatively-polarized graphene oxide exterior is catalysed via cationic surfecants, 

cetyltrimethyl ammonium bromide, for instance. In consequence, the single-layer graphene oxide 

exterior becomes capped with mesoporous silica. The injection of the cationic surfecant aims to resolve 

the problem of aggregation and mismatch between inorganic particles and graphene oxide, as well as 

usher in molecular platform for the development of mesoporous silica and guided nucleation on the 

exterior of graphene oxide sheets. Additionally, Dong et al. [151] demonstrate the synthesis of Co(OH)3 

based nanowires on 3D graphene foam, taking advantage of the familiar hydrothermal mechanism. 

Their study show the formation of a stable, high specific capacitance functionalized graphene at 

operating current density of 10 Ag-1 with capability to detect glucose at a sensitivity of 3.39 mAmM-

1cm-2, in addition to having a small detection limit of approximately 25 nM. However, the towering 

temperature and pressure inherent in the hydrothermal process limits its usefulness in experimental 

research. 
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III. GRAPHENE-BASED ELECTRODE FOR BIOMOLECULE DETECTION 

Electrochemical mechanisms are appealing for detection and sensing of biomolecules owing to their 

easy of assembly and noncomplication. Such mechanisms depend fundamentally on capacitance 

computation, AC conductivity, voltammetry, amperometry, coulometry and potentiometry for 

performance evaluation. Generally, biomolecule detection for most graphene-based electrochemical 

biosensing is executed amperometrically. In this section, we discuss important select graphene-based 

electrodes for small biomolecules. 

3.1 Dopamine 

An important neurotransmitter, dopamine is reputed for its role in regulating the central nervous, 

hormonal, renal and cardiovascular systems [153]. Dopamine detection has generated significant 

attention and intense research interest. Ultra-sensitive and fast electrochemical mechanisms are 

encouraging in the detection of neurotransmission. However, at the conventional solid electrode, 

dopamine and its mutual kind uric acid and ascorbic acid exhibit volumetric feedback overlap leading 

to high detection limit and poor selectivity. This explains the complexity in establishing the nuance 

surrounding the chemistry of dopamine, uric acid and ascorbic acid in a biotic medium. 

     Shang et al. [153] report the synthesis of a dopamine-detectable electrode based on multiple layered 

graphene nanoflakes via uncatalyzed microwave plasma facilitated chemical vapour deposition (CVD). 

The multiple layered graphene nanoflakes were found to be able to resolve and discriminate the 

chemical nexus between dopamine, uric acid and ascorbic acid, with dopamine detected at a limit of 

0.17 µM. The ability of the defects/plane sites occurring tangential to the terminal of the perpendicular 

graphene nanoflakes to nanoconnect, and electrically transport the charge carriers (in this case, 

electrons) to the underneath substrate imparts high-end biosensing capability to the electrode [153]. In 

addition, graphene is reported to exhibit improved sensing capability towards dopamine, with added 

capacity to effectively discriminate dopamine, ascorbic acid and serotonin relative to its precursor 

single-wall carbon nanotubes (SWCNTs) [154] (see fig. 5). This is attributed to the motley edge defects 

on graphene exterior, including the presence of ubiquitous sp2 like planes [154]. In addition, Wang et 

al. [155] report ultra-selective graphene-based dopamine sensor in the (5-200) µM linear range whose 

performance outshone that of multi-wall carbon nanotubes (MWCNTs), this being attributed to π-π 

stacking interaction, good electrical conductivity and large surface area between the surface of graphene 

and dopamine [155]. 

 

 

 

 

 

 

Figure 5: Cyclic voltammograms of (a) graphene (b) SWCNT in 2.5 Mm DA [154] 

 

3.2 Hydrogen peroxide 

Hydrogen peroxide (H2O2) plays significant role in the development of biological sensors and regulation 

of biological processes, being an enzymatic consequence of a substrate of peroxidases and oxidases 

[156]. H2O2 also plays essential role in pharmaceutical, environmental, food, industrial and clinical 

analyses [156]. Therefore, the detection of H2O2 in these samples is paramount, and the controlled 
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reduction of oxidation/reduction overpotentials is the most significant step in this direction. Over the 

years, carbon allotropes, such as CNTs [157] have been employed in the fabrication of sensors, and 

graphene nanomaterial stands out in this aspect [158-159].  

      In a study of the electrochemical behaviour of H2O2 on graphene, Zhou et al. [156] observed an 

astronomical increase in the electron transfer kinetics relative to graphite/glassy carbon and bare glassy 

carbon electrodes (GCEs). The resulting onset potentials for H2O2 oxidized/reduced on graphene/glassy 

carbon, graphite/glassy carbon and glassy carbon electrodes (GCEs)  are; 0.20/0.10 V, 0.80/-0.35 V and 

0.70/-0.25 V respectively, revealing excellent electrocatalytic activity of graphene towards H2O2. In 

addition, the linear correlation of H2O2 at -0.2 V overpotential on graphene/GCE is found to show a 

mismatch of (0.05-1500) µM in contrast to CNTs [156]. The culpability for this mismatch was placed 

on the various active sites for electron transfer to biotic species resulting from high concentration of 

edge-plane like defective sites on graphene [160]. Such electrodes could be good starting materials 

towards the fabrication of ultra-sensitive and selective electrochemical sensors for the detection of H2O2
. 

 

3.3 Nicotinamide adenine dinucleotide 

Nicotinamide adenine dinucleotide, which has two active versions – oxidized form (NAD+) and reduced 

version (NADH) is responsible for the transfer of charge carriers (electrons) from and/or to active 

reaction sites during a reduction/oxidation (REDOX) reaction. These cofactors (NAD+ and NADH) of 

numerous dehydrogenases compounds have received considerable attention for several applications 

connected with NAD+/NADH reliant hydrogenases, including amperometric biosensing, bioelectronics 

devices and fuel cells [161-162]. The anodic signal from the oxidation of NADH faithfully reconstructs 

the NAD+ cofactor which is essentially important in biosensing critical substrates such as glucose, 

lactate and alcohol [163]. The problem of surface fouling and large NADH oxidation potential 

associated with the buildup of reaction products still remained unresolved [163]. However, these 

problems can be addressed by incorporating graphene in such reactions. 

      The electrochemical response of NADH on graphene-modified electrode is shown to remarkably 

improve the electron transfer kinetics compared with glassy carbon and GCE [164], with NADH 

oxidation registering a shift in peak potential from 0.70 V on graphite and glassy carbon to 0.4 V on 

graphene [164] as indicated in figure 6. The presence of high concentration of edge-plane defective 

sites on graphene which creates numerous active sites for electron transfer to biotic species is blamed 

for this shift [160]. Liu et al. [134] report additional increase in the sensing performance of graphene-

based electrodes towards the oxidation of NADH via noncovalent modification of graphene with 

methylene green, leading to increased dispersity. The oxidation of NADH on graphene-methylene green 

is found to occur at -0.14 V potential, a 0.26 V reduction from that observed in pristine graphene [134], 

and CNT-based biosensors [165]. 

     Lin et al. [166] further confirm the enhanced electrochemical activity of functionalized graphene 

towards NADH oxidation in comparison to bare plane pyrolytic graphite electrode, which is replete 

with edge-plane like defective sites. The enhanced electrochemical performance of carbon 

nanomaterials towards small biomolecule oxidation/reduction can also be attributed to the presence of 

massive edge-plane like defective sites which are able to mediate fast electron transfer kinetics to biotic 

species [160]. Other beneficial properties of graphene, other than high density of edge-plane like 

defective sites, appear to be at play as evidenced in the difference between the activity series of modified 

graphene edge plane pyrolytic graphite electrode and bare edge plane pyrolylic graphite electrode. 

While the exact mechanism playing out is not yet well known, the findings of Pumera et al. [162] on 

the dynamics of molecular adsorption of NAD+/NADH and high resolution X-ray photoelectron 

spectroscopy, may present significant lead to this puzzle. It is shown that the molecular adsorption of 

NAD+ cofactor on graphene edges is the outcome of the reaction with oxygen-carrying species, with 

hydrogen-substituted graphene edges susceptible to passivation [162]. Therefore, it is reasonable to 
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conclude that the enhanced activity of graphene may not be unconnected with the presence of oxygen-

carrying groups. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Cyclic voltammograms in 0.1 M pH 6.8 PBS containing 1mM NADH at bare GC (dashed 

line) and graphene /GCE (solid line) [164]. 

 

IV. ELECTROCHEMICAL SENSORS 

Electrochemical sensors possess numerous attractive features which make them suitable for a wide 

range of applications for monitoring and detecting analytes in both liquid and gaseous phases. 

Generally, electrochemical sensors are available as simple, small, mechanically robust, compact, low 

cost and reliable-in-operation devices. 

     The ability of electrochemical sensors to operate under ambient conditions, without the need for 

external perturbations makes them advantageous over their closest competitors. Consequently, the 

power requirements of electrochemical sensors is extremely low, although additional power may be 

required for extrasensory functions such as alarms, data transmission and recording. In this aspect, 

electrochemical sensors are ideally suited to mobile instruments where battery dimension, cost and 

power are of utmost concern. 

     Electrochemical sensors can be broadly categorized into two – potentiometric types which have 

reputation for eliciting a voltage response to an analyte, and amperometric types which allow an 

electrical current response. In both cases, the sensors contain at least two electrodes, sandwiched by a 

solid electrolyte or assembly of ionically conducting liquid. Majority of electrochemical sensors utilize 

aqueous solutions of salts, bases and acids as electrolytes. The pages that follow discuss some select 

graphene-based electrochemical sensors 

 

4.1 Graphene-based electrochemical sensors 

Graphene materials have been utilized as excellent electrodes in electroanalysis owing to its superlative 

electrochemical features [163]. Several graphene and graphene composites-based electrochemical 

sensors for biological and environmental analysis have been developed [156]. As a promising candidate 

in electrochemistry, graphene offers numerous advantages and potential applications relative to CNTs. 

The metallic impurities in CNTs which interfere with, and limit their electrochemistry as reported for 

H2O2 [167], glucose [168], hydrazine [169], halothane [170], short peptides [171], amino acids [172] 

even at levels below 100 ppm [173] are unavailable in graphene. In addition, graphite which is the 

starting material for graphene fabrication is both inexpensive and accessible. There has been an 

exponential increase in the number of published papers on the employment of graphene for 
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electrochemical sensing and biosensing following the appearance of the first article as reported here 

[174]. Graphene has the potential to detect molecules with high REDOX potentials owing to its large 

electrochemical potential window [156]. 

4.1.1 Graphene-based electrochemical DNA biosensors 

Electrochemical sensors are critical for the detection of select DNA sequences and mutated conditions 

associated with human diseases, offering high sensitivity, low cost and selectivity for diagnostic 

interventions [175]. This category of sensors have reputation for allowing device miniaturization for 

micro-volume samples [156]. Direct oxidation-based DNA sensors are the simplest kinds of such 

sensors [156]. 

      Zhou et al. [156] report an electrochemical sensor based on graphene nanomaterial for DNA 

detection. Graphene/glassy carbon is shown to simultaneously detect the four basic free DNA bases, 

adenine, thymine, quinine and cytosine as evidenced by the separate current signals of each of the bases 

on the graphene/ GCE. This is in direct contrast to individual graphene and glassy carbon which lack 

this rare detection capability. This is attributed to the towering electron transfer kinetics for the 

oxidation of the bases on graphene/GCE as well as antifouling properties [156], arising from the high 

concentration of edge-plane like defective sites and oxygen-rich functional species on graphene, with 

active sites that amplify electron exchange between the electrodes and species in solution [160]. 

Similarly, a well-suited graphene/glassy carbon is able to detect, in both single and double stranded 

DNAs (ssDNA and dsDNA) platforms, the four DNA bases which are resistant to oxidation reaction at 

physiological pH, eliminating the need for prehydrolysis phase and accelerating the detection of single-

nucleotide polymorphism locus for miniature oligomers having particular progression at the 

graphene/GCE in the absence of any labelling phenomena or hybridization. This can be attributed to 

the excellent high conductivity, antifouling, lone-sheet, large surface area and towering electron transfer 

kinetics of graphene [156]. 

 

4.1.2 Graphene-based enzyme biosensors 

Graphene could be an outstanding electrode for the detection of glucose oxidase (GOx) given its 

superior performance in direct electrochemistry of GOx and good electrocatalytic activity of H2O2. 

Several glucose biosensors based on graphene nanomaterial have been reported [176]. Shan et al. [176] 

demonstrate the first glucose biosensor based on graphene, and developed via 

graphene/polyethylenimine-functionalized ionic liquid nanocomposite transformed electrode with a 

linear response of (2-14) mM, R= 0.994, high stability with response current of +4.9 % after a duration 

of 7 days, and high reproducibility [176]. Zhou et al. [156] report another glucose biosensor based on 

chemically reduced graphene. This sensor was found to exhibit high sensitivity (20.21 µA mM cm-2), 

low detection limit (2 µM) and wide linear range (0.01-10) mM. The linear range for the amperometric 

detection of glucose spans a wider area than on the other carbon derivative material electrodes, CNTs 

[177] and carbon nanofibers [178] are good examples. The limit of detection (LOD) of glucose at 

graphene/GOx/GCE is found to pale behind that of sensors based on carbon nanomaterials such as CNT 

nanoelectrode [179], exfoliated graphite nanoplatelets [180], carbon nanotube paste [181], carbon 

nanotube fiber [178], and extremely ordered mesoporous carbon [182]. The detection of glucose at the 

graphene/GOx/GCE was found to be very fast, having a response time of (9±1)s. On the stability 

criterion, the electrodes were found to be more stable, being able to fully retain up to 91% of their initial 

activity after a duration of 5 h, which makes them suitable for continuous measurement of glucose level 

in diabetic patients enabling diagnostic and therapeutic interventions. 

4.1.3 Graphene-based electrochemical sensors for heavy metal ions 

Graphene-based electrochemical sensors for continuous monitoring and detection of heavy metal ions 

such as Pb2+ and Cd2+ in environmentally poor settings have been developed. Segura et al. [183] report 
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electrochemical sensors based on Nafion-graphene/glassy carbon electrode (GCE) composite films with 

enhanced sensitivity for metallic ions, with intrinsic ability to diminish interferences arising from the 

synergistic impact of Nafion and graphene nanosheets. In addition, the stripping current wave signal in 

graphene/GCE was found to be greatly enhanced. The stripping current is well discriminated as shown 

in figure 7. The peak current was found to be proportional to the concentration range of (10-70) µgL-1 

and (10-100) µgL-1 with a 3σ detection limits of 0.03 µgL-1 and 0.02 µgL-1 for Pb2+ and Cd2+ 

respectively. Furthermore, the ions exhibited a higher sensitivity when compared with ordered 

mesoporous carbon decorated GCE (184) and Nafion film-modified bismth (Bi) electrode [185), but 

parallel those of CNT decorated Bi film electrode/Nafion (186). This is attributed to the exceptional 

properties of enhanced conductivity, large surface area, nanosize sheet and thickness which confers on 

graphene improved sensitivity, superior target ion adsorption, reduced fouling effect and enhanced 

surface concentration.   

 

Figure 7: Model of stripping voltammograms for various concentration of Pb2+ and Cd2+ on an in situ 

plated Nafion-graphene bismuth film electrode in a solution having 0.1 mol L-1 Bi3+ [183]. 

4.1.4 Graphene-based immunosensors 

Electrochemical immunosensors incorporate simple, portable and low-cost electrochemical 

instrumentation systems with sensitive and specific immunoassay mechanisms, and thus represent a 

promising approach in environmental and clinical analyses [187]. Immunosensors play important role 

in biomarker detection in clinical diagnostics. In this process, antibodies are immobilized onto the 

surface of the immunosensor to capture specific biomarkers [188]. However, the challenge of 

developing simple, cost effective and robust analysis systems still remains. Different types of 

immunosensors such as fluorescence [189], electrochemistry [190], piezoelectricity [191], 

chemiluminescence [192], multichannel microchips [193], and biosensing chips [194] have been 

developed.  

      Many nanomaterials have been employed as signal amplifiers in high-performance protein detection 

platforms [195], including carbon nanotubes [196], Au nanoparticles [197], magnetic nanoparticles 

[198] and quantum dots [199]. The starling properties of high conductivity, large surface area and 

mechanical rigidity make graphene sheets a preferred support material relative to these nanomaterials 

[46]. Hence, graphene enjoys fascinating applications in biosensing and bioelectronics [200]. 
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      The immobilization of antibody fragments on the surface of the sensor substrate without 

diminishing their binding affinities and binding capacities is paramount. In the physical adsorption 

procedure, antibody fragments are stochastically immobilized with the sensor substrate, predominantly 

via hydrophilic and hydrophobic interactions. We also note that the chirality of the antibody (Ab) on 

the surface of the sensor substrate cannot be controlled. Therefore, the binding activity of the Ab is lost 

to the analyte. For the covalent cross-linking technique, the unobstructed amino groups on the Ab can 

be stochastically coupled to several reactive moieties on the surface of the sensor substrate. 

Consequently, the orientation of the immobilized Ab is also stochastic. Thus, there is increasing need 

to develop a methodology to achieve well-oriented immobilization of Ab within a miniscule area 

without diminishing their binding affinity for analytes, particularly for miniaturized diagnostic devices. 

     Chitosan is widely employed as dispersant in preparing graphene sheet-methylene blue (GS-MB) 

nanocomposite in order to achieve well-oriented immobilization of antibody due to its attractive 

properties such as excellent biocompatibility, permeability and non-toxicity, which also makes it a good 

candidate for biomolecule immobilization [201]. When dropped onto the surface of glassy carbon 

electrode, the resultant nanocomposite solution formed a stable film rich in hydroxyls and aminos. The 

platform for the crosslinking of Ab is usually provided by the high surface area of the graphene sheet 

and vast hydroxyls and aminos of chitosin. 

4.2 Graphene-based electrical sensors 

Following the isolation of first lone-layer graphene via mechanical cleavage of graphite [1], pristine 

graphene has enabled the illumination of fundamental properties at condensed matter physics level. 

Single layer graphene is quasi-metallic with excellent properties that are particularly exploitable at 

nanoscale for sensor design and applications. Due to its zero bandgap, graphene exhibits low intrinsic 

noise [202], high carrier mobility [203], ambient temperature hall effect [204], ambipolar field-effect 

characteristics and high carrier density [205]. Sensors based on 1D nanomaterials such as CNTs and 

nanowires represent a new frontier in sensor technology, opening up assortment of opportunities for 

label-free detection, compatibility with lab-on-chip devices and high temporal resolution [206]. Perhaps 

silicon nanowires (SiNWs) are the most researched 1D nanomaterial for nanoelectronic sensing [207]. 

However, their over-reliance on the induced field-effect limits their nanoelectronic applications [208], 

making them only sensitive and selective to electrogenic phenomena or polarized analytes [209]. Over 

the years, graphene has remained a superstar for various sensing and biosensing applications, thanks to 

its superior electrical properties [8]. 

     Graphene is shown to exhibit similar electrical response to varying chemical species as CNTs, as 

evidenced in [210]. Therefore, just like CNTs, graphene-based sensors have won considerable research 

interest for possible detection of various target species in vapour phase [211]. For the first time, 

Novoselov et al. [202] demonstrated a sensor based on graphene with exceptional capability to detect 

nitrogen dioxide (NO2). Based on micromechanical cleavage of graphitic material at the exterior 

interface of oxidized Si wafers, this sensor has been employed to detect NO2 by taking advantage of 

resistance difference of the source-drain. The literature is replete with reports of graphene-based 

electrodes for the detection of NO2 [211]. A good example is the reduced graphene oxide-copper oxide 

nanowire mesocrystals conjugate prepared under hydrothermal conditions via unclassical 

crystallization in the presence of graphene oxide and o-anisidine, which are considered attractive for 

the detection of NO2 [212]. This composite sensor integrates the rich electrical conductivity of reduced 

graphene oxide with the fine interdendritic space, leading to the formation of 3D conducting 

architecture. This scenario is well depicted in Figure 8.   
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Figure 8: SEM images showing time-dependent Cu2O nanowire mesocrystal structure at 200°C. Also 

shown is o-anisidine and graphene oxide-assisted Cu2O crystallization process, and schematic of the 

sensing mechanism of NO2 via reduced graphene oxide Cu2O [212]. 

 

      Graphene-based electrodes have also been utilized in the sensing and detection of ammonia gas 

(NH3) [213]. Lu et al. [214] design a fast, low temperature and repeatable sensor based on reduced 

graphene oxide for the detection of NH3. The reduced graphene oxide field effect transistors (FETs) 

operating in n-type mode were speculated to register improved instantaneous response and fast recovery 

towards NH3 than those operating in the p-type mode when exposed to positive polarized gate voltage, 

this being attributed to the induced effects of the positive gate voltage and the ambipolar transport of 

reduced graphene oxide. In addition, sensors based on graphene have been employed in the detection 

of CO2 [215], H2O(g) [216], H2 [217] and NO [218]. For instance, H2 has been detected using Pb-

functionalized multi-layer graphene nanoribbon (GNR) networks [217]. The structural porosity and 

high specific surface area of these nanonetworks have been identified as the prime factors influencing 

and facilitating their effective functionalization and enhanced sensitivity towards room temperature 

detection of H2
. To this end, a graphene/aluminium oxide (Al2O3) nanocomposites via a supercritical 

CO2 solution of graphene oxide using nonexpensive, one-step and eco-friendly procedure have been 

developed [219]. Table 3 showcases some select graphene-based gas sensors. 

Table 3: Selected graphene-based electrodes for gas sensing 

Analyte Electrode materials Limits of detection Percentage response (%) Refs. 

CO2 

Ethanol 

NO2 

NH3 

NO2 

NO 

NO2 

GS 

Al2O3/RGO 

Ozone-treated graphene    

Ethanol-graphene-based        

S-G or EDA-G      

CVD-grown graphene     

RGO-conjugated Cu2O                                                                                                                      

NA 

1.5 µgml-1    

1.3 ppb 

160 ppb 

3.6 ppm 

2 ppb 

64 ppb                

0.17 /ppm 

NA 

17 

0.71/ppm 

NA 

28 

67.8 

[215] 

[219] 

[220] 

[213] 

[221] 

[218] 

[212] 

 

Here, S-G stands for sulfonated reduced graphene oxide, EDA-G stands for ethylenediamine-modified 

reduced graphene oxide. 

      The exceptional electrical behaviour of graphene elicits high signal-to-noise ratio in detection, with 

its conductance exhibiting exceptional sensitivity towards the localized chemical and electrical 

perturbations as every atom of the graphene film is exposed to the external environment. The Fermi 

level of zero bandgap graphene can be tuned via the application of gate voltage resulting in the 

discrimination of itinerant charge carriers (electrons and holes). A large bandgap is desirable in field 
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effect-induced detection [222]. The opening of graphene bandgap represents a significant step in the 

bandgap engineering of graphene, and can be actualized through the introduction of atomic or molecular 

dopants [223] or reduction of its dimensions to nanoscale [224]. Graphene, unlike 1D nanostructured 

sensing electrodes, exhibits homogeneous exterior for effective and uniform functionalization, and 

enhanced detection range [225]. Graphene has the potential to form a sensing complex by interfacing 

with flat cell membranes [226]. In addition, the biocompatibility of graphene presents excellent 

platform for efficient cell growth and adhesion [227]. 

      One dimensional-based biosensing nanostructured electrodes have been interfaced to living cells to 

detect their dynamic activities [228], which include, adipocytokines [229], circulating breast cancer 

cells [230], bioelectricity [231], and triggered secretion of proinflammatory cytokines [232]. The 

presence of graphene in the nanoelectronic-cell complex increases the dimensionality of the interface 

which presents a number of possible applications at device level. Interestingly, cell membranes can also 

interface with flat graphene as both have similar dimensionality [233]. This is in direct contrast to cells 

interfaced with nanostructures other than graphene and its derivatives, where the intricate interplay is 

found to be slack and nonhomogeneous, making the nanotopographic structure-inspired thin cell 

membrane-induced local curvature alter the cells chemistry [234]. Therefore, it is reasonable to argue 

that any cell activity-induced local chemical and electrical variations in the nanogap between the 

exteriors of graphene and cell membrane would significantly cause its conductance to transform, given 

the robust chemistry existing in the graphene-cell membrane complex. Lieber et al. [235] demonstrate 

the extracellular detection of activity potentials from lone electrogenic cardiomyocytes using graphene 

field effect transistors (GFETs). This work exploited mechanically exfoliated graphene to fabricate 

devices via electron beam lithography. Here, the sensitivity of GFET was found to be superior to that 

of unfunctionalized metallic microelectrodes [236], but was found to parallel those of silicon nanowire 

FETs (SiNWFETs) [237]. The field effect-induced device response arising from the fluctuations of the 

short-lived nanointerface potential across graphene-membrane exterior is attributed to the current flow 

through the membrane ion channels. Although less popular to the field effect of SiNW, GFET showed 

a comparable signal-to-noise ratio [238]. This is attributed to the large area spanning the graphene-cell 

interface. With its large bandgap, graphene nanorods exhibit high sensitivity due to the combined effects 

of enhanced field-effect and exceptional spatial resolution arising from their lateral nanoscale 

dimension, thus enabling the sensing of bioelectricity. 

      Another sensing utilization of graphene due to its superior electrical property is fluorescence 

quenching. Fluorescence quenching is a procedure employed to obtain information on the dynamic 

changes of protein in complex macromolecular systems. The ability of graphene to quench fluorescence 

is highly utilized in the selective detection of biomolecules. The fluorescence quenching of aromatic 

molecules by graphene is linked to photoinduced electron transfer. In addition, graphene-initiated 

fluorescence quenching of porphyrin and photophysical features of graphene-porphyrin complexes have 

been reported [239]. Ramakrishna et al. [240] study fluorescence quenching mechanism in graphene. 

Graphene is shown to be excellent fluorescence quencher relative to other metals. The quenching 

mechanism of graphene was found to depend on nonradiative decay of the fluorophore, and not due to 

charge transfer as previously envisaged. While fluorescence intensity of graphene is distance-

dependent, other contributing factors are substrate doping and roughness, which creates new channels 

for the fluorescence intensity to be decayed. However, the mechanism of these effects is not yet well 

known, creating room for further investigation. 

      Recently, Rodrigo et al. [241] reported an ultra-sensitive tunable plasmonic biosensor for 

chemically specific label-free detection of protein monolayers, which exploits the rich electro-optical 

properties of graphene. It is shown that, in contrast to conventional plasmonic materials such as noble 

metals, the feedback mechanism of infrared (IR) is characterized by long shelf life corporative electron 

oscillations that can be dynamically tuned via electrostatic gating. In addition, the electromagnetic field 

of graphene infrared plasmons is shown to exhibit novel spatial confinement, making them highly 
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suitable for enhanced light-matter and integrated mid-IR photonics, properties with potentials for 

biosensing opportunities. The mid-IR range is essential for biosensing actions as it encompasses the 

molecular vibrations, which is a unique marker of biomolecules such as DNA, proteins and lipids. The 

absorption spectroscopy is powerful enough to provide exquisite biochemical platform for label-free 

detection via the accessing of vibrational fingerprints. The large mismatch between biomolecular 

dimension and mid-IR wavelengths limits the intensity of the vibrational absorption. However, this can 

be overcome by harnessing the robust optical near fields neighbourhood of metallic nanomaterials, 

which sacrifices the spectral bandwidth to reduced dimensionality, and itself limited by deficient field 

confinement of metals in the mid-infrared. 

 

V. CONCLUSION 

As noted, graphene has generated considerable research interest in many fields since its discovery. The 

exceptional physical and chemical properties of graphene arising from its unique architecture present a 

number of interesting sensing applications. In addition to the applications of graphene herein discussed, 

the unusual and exceptional properties of graphene can be utilized in other paradigms such as water and 

food safety, sensitive medical analysis, pollution control among others. However, the challenges of 

improving functionalization and synthesis methods, extensive understanding of the surface architecture 

and graphene engineering, and extending the applications to various paradigms still remain. 

      The fundamental mechanisms of graphene development which include CVD, reduction of graphite 

oxide, mechanical and matrix-assisted exfoliations, unzipping CNTs and thermal decomposition are 

still in their developmental phases. The preparation methods may yield outputs with varying properties 

which can be tailored to specific desirable performance functionalities. There is increasing momentum 

within the scientific community to step up graphene materials and processes, devising novel and 

efficient techniques towards the preparation and synthesis of high quality, defect-free and large size 

graphene. In this aspect, the challenges of demand-based properties and access to large quantum of high 

quality homogeneous graphene have been recognized. Therefore, the near-perfect understanding of the 

underlying chemistry and physics of graphene  surface engineering, as well as the complex interplay of 

chemicals or biomolecules at graphene interface, particularly as nanoscaffold materials in 

biosensing/chemical and catalysis, is essentially important. This improved understanding of graphene 

interaction at the molecular level could well pave way for the design and fabrication of ultra-sensitive 

and selective sensors, and ultimately advance graphene science and engineering. 

     There remains a development gap in the design and fabrication of graphene-based sensors. The 

potential applications of certain graphene materials such as bi-layered graphene or graphene quantum 

dots have not been investigated despite the tremendous amount of work done on graphene nanomaterial. 

Novel techniques for synthesis and fabrication of graphene with exceptional performance metrics are 

continually being invented by scientists. The hybridization or compositing of graphene or its derivatives 

with other organic or inorganic materials could further expand the landscape of graphene applications 

in sensor development. Improved functionalization techniques are being explored and pursued, 

although much work is needed to fully understand and maximize graphene properties in sensor 

development and application. 

     The development of novel techniques for well-modulated processing and synthesis of graphene is 

strongly encouraged. As noted, graphene has been developed with varying strategies. However, the 

current synthesis methods are uneconomical and do not guarantee high graphene yield. The use of 

chemical/thermal reduction of graphene oxide in electrochemical detection applications looks attractive 

in this aspect. Graphene electrodes from chemically/thermally reduced graphene oxide are particularly 

susceptible to re-stacking during processing and synthesis. So far, a number of strategies to counter the 

problem of re-stacking and enhance the dispersion of graphene in the solvent have been adopted. The 

literature is replete with reports of graphene produced via electrochemical reduction of graphene oxide, 
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and the electrochemically reduced graphene oxide is found to exhibit enhanced electrochemical activity 

relative to the graphene reduced by chemical means, which raises the possibility for large scale and 

high yield graphene processing and synthesis. 

      Another area that requires additional investigation for possible improvement is the doping of 

graphene with heteroatoms. The procedure has been shown to greatly improve electrocatalytic activity 

in CNTs, and has been well applied in synthesis of graphene-based nanomaterials and theoretical 

studies, albeit not applicable in electrochemistry. The doping of graphene with nitrogen can be achieved 

at high temperatures which significantly increases the odds of stacking. Therefore, other doping 

strategies should be explored. 

      In conclusion, graphene is an excellent electrode material for electrochemical sensing and 

biosensing applications. While much progress has been made in redesigning the surface engineering of 

graphene which hitherto had led to numerous applications, there is still much room for further 

development particularly at research, material and device levels. 
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