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Abstract- Soft tissues in general display two phases of deformation, linear during small deformation 

and nonlinear during large deformation. Researchers have been facing difficulty to model the soft tissue 

deformation mainly due to the two phases of deformation. Simplification often the solution in which 

either linear or nonlinear part is considered. On top of that, the nonlinearity of the deformation cannot 

be simply described by polynomial or exponential functions which have increased the complexity of 

the simulation process. This study explores an alternative simulation approach from the standpoint of 

Mass Spring Method (MSM). The proposed MSM model is developed using conical spring 

methodology which allows the MSM model to have different stiffnesses at different displacements 

during deformation. The stiffness variation creates flexibility in the MSM model to simulate any linear 

and nonlinear behaviors. This paper also analyzed the influence of several conical spring parameters on 

overall deformation. The experimental findings demonstrate that the proposed model produces 

deformations that are consistent with real and phantom soft tissue deformations. After the parameters 

are optimized, the average relative error is less than 5%.  
 

Indexed Terms- Soft tissue deformation, nonlinear MSM, conical spring methodology 
 

 

 

I. INTRODUCTION 
 

The most common methods for modeling soft tissue deformation are the Finite Element Method (FEM) 

and the Mass-Spring Method (MSM). The first approach is based on continuum mechanics, which 

governs elastic behavior in a continuous medium made up of linked volumes. FEM-based 

implementations are difficult. Although it depicts precise and realistic performance, FEM models are 

extremely detailed, intricate, and computationally demanding. The second approach, on the other hand, 

considers elastic behavior on a discrete basis. It divides a model into separate mass points linked 

together by springs. Traditional MSM models, in general, are controlled by significantly simpler 

mathematics than the FEM model. As a result, it provides simplicity and real-time interaction. 

Numerous works have been published in the literature that aim on improving the MSM model in 

terms of modeling nonlinear deformation. Cooper and Maddock [5] presented one of the early nonlinear 

MSM models. They used a quadratic function to characterize the nonlinear behavior of soft tissues. The 

displacement function of a nonlinear spring was developed using the quadratic function. The method's 

primary disadvantages were that it was only applicable to two-dimensional objects and that no 

validation data was provided. Teschner et al. [6] went on to characterize the nonlinear behavior of their 

MSM model by varying the stiffness of the spring. Teschner et al. employed a quadratic function on the 

spring stiffness rather than a quadratic function on the displacement function, as Copper and Maddock 

did. They provided three stiffness functions for the user to choose from: linear, small nonlinear, and 

large nonlinear. Their methodology, however, is only viable for stiffness coefficients that converge to 

linear during small deformation. Furthermore, Luo and Xiao [7] used Duffing's equation to characterize 

the nonlinearity. It is a second-order nonlinear differential equation. Their investigation was successful 

in simulating nonlinearity, but no validation procedure was reported. Cui et al. [8] used the Duffing's 
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equation as well, however, the approach for evaluating global and local deformation differed between 

these two studies. 

San-Vicente et al. [9] reported the following method. The nonlinear response was accomplished in 

the study by combining linear springs in a cubical configuration. San-Vicente et al. employed three 

spring configurations: edge spring, diagonal spring, and internal diagonal spring. All springs in each 

configuration have a unique stiffness constant used to regulate the model's nonlinearity. Following that, 

Shah et al. [10] refined the earlier study by employing two rather than three configurations. Only the 

edge and diagonal spring configurations were employed by Shah et al. In addition, for stability, a cubic 

spring constant was incorporated into the internal force equation. Although both techniques were 

effective in replicating nonlinearity, the optimization process is still essential and time-consuming, 

especially when trying to determine the best settings for numerous distinct springs.  

Another approach employed in the MSM model that can produce a nonlinear response is the load 

propagation method. This approach was employed in various tests by Choi et al. [11,12]. They 

developed a deformable model based on sequential force propagation. The number of springs engaged 

in deformation increased in proportion to the depth of the displacement. As a result, the resistance force 

was increased, resulting in a nonlinear reaction. Although the methodology may mimic nonlinearity, 

the nonlinearity of the model is not smooth and appears to be a mixture of two linear functions. 

The piecewise technique is another way for modeling nonlinearity. The deformation behavior is 

broken down into sections, each with its formulation. Basafa et al. [13], for example, divided 

deformation behavior into two sections. The first section is linear and is controlled by a linear function, 

whereas the second section is nonlinear and is controlled by a nonlinear function. There are, on the other 

hand, piecewise approaches that employ just linear functions to imitate nonlinearity. This method, 

however, requires the use of more than two linear functions to provide a smooth nonlinear response. It 

is evidence by contrasting the work of Keeve et al. [14] and Garcia et al. [15]. Keeve et al. utilized two 

linear functions to illustrate nonlinear behavior, but Garcia et al. employed more than two linear 

functions. While more linear functions provide higher accuracy, it requires more processing time. 

This research investigates an MSM modeling approach based on conical spring methodology. The 

conical spring's load and displacement relationship is established by discretizing the spring into several 

elementary parts. Each elementary part has a unique radius towards the spring's normal axis due to the 

conical shape. As a result, each elementary part has a distinct load and displacement relationship, which 

induces stiffness variation. The conical spring has the advantage of allowing stiffness variation to be 

controlled by adjusting the conical parameters. The parameters influence the rate of stiffness variation. 

Nonlinearity is reduced in a conical spring with a low rate of stiffness variation. In the meanwhile, 

increasing the rate of stiffness variation can lead to higher nonlinearity. This research builds on previous 

work [Omar] by focusing on the conical spring settings that control the rate of stiffness variation to 

replicate any deformation behavior. 

 

II. METHODOLOGY 
 

2.1 Fundamental of cylindrical spring stiffness.  

The fundamental determination of the cylindrical spring force is used in conical spring methodology. 

Wahl [16] discretized a cylindrical spring into multiple elementary parts to compute deflection, and the 

resulting axial deflection 𝛿 when the cylindrical spring is subjected to a load can be determined using 

the following equation  

𝑃 =  
𝐺 𝑑4

64 𝑟3𝑛𝑎
 𝛿                (1) 
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𝒏𝒂 total number of coils 

𝒏𝒇 number of active coils (continuous variable from 0.0 to 𝑛𝑎) 

𝒅 diameter of the wire 

𝑫𝟐 diameter of the largest coil 

𝑫𝟏 diameter of the smallest coil 

𝑳𝒐 initial height of the spring 

𝜹 total axial deflection of the spring 

𝑮 shear modulus of the spring 

 

Figure 1: Parameterisation of conical spring. 

 

𝑳𝒐 



M. N. Omar and Y. Zhong/International Journal of Engineering Technology and Sciences 7:2 (2020) 24 – 41  

27 

 

where 𝑃 denotes normal load, 𝑟 denotes mean radius of the spring coil, 𝑑 denotes diameter of the spring 

wire, 𝑛𝑎  denotes number of coils and 𝐺  denotes shear modulus. Regarding Hooke’s law, spring 

stiffness 𝐾 can be obtained from equation (1) as  

𝐾 =  
𝐺 𝑑4

64 𝑟3𝑛𝑎
                                                                                                                                                          (2) 

When all parameters of the cylindrical spring are constant, the relationship between load and axial 

deflection is linear, and the spring stiffness is constant, according to equation (2). Meanwhile, by 

varying the radius of the spring, different spring stiffness values can be obtained. 

2.2 Types of conical spring  

According to Paredes and Rodriguez [17], a conical spring is characterized using six design parameters, 

as shown in Figure. 1. This research solely looks at the derivation of a conical spring with a constant 

pitch value. The pitch value represents the distance between the coils of the conical spring. The pitch 

value is not specified throughout this study, but it is represented by the initial length and the total number 

of coils in the conical spring. 

Conical springs are classified into two types based on their height when fully compressed Ls. The 

height can be determined using the following equation 

𝐿𝑠 = {𝑚𝑎𝑥[0, (𝑛𝑎𝑑)2 − (𝑟2 − 𝑟1)2]}1/2                                                                                                         (3) 

The spring coils for the first type of conical spring, known as non-telescopic, are piled on top of one 

another. As a result, the height at fully compressed represents the total of all coil heights. Meanwhile, 

the height at the completely compressed condition for the second type of conical spring, denoted as 

telescopic, on the other hand, is equal to zero since all coils are compressed to the ground (see Figure. 

1). Analytically, the following relationships can be used to distinguish the type of conical spring 

( 𝑟2 − 𝑟1) < 𝑛𝑎𝑑          Type I                                                                                                                (4) 

( 𝑟2 − 𝑟1) ≥ 𝑛𝑎𝑑          Type II                                                                                                               (5) 

where 𝑟1 and 𝑟2 are the radiuses of the smallest and the largest coil respectively.  

2.3 Formulation of conical spring   

The radius of the active coil 𝑟(𝑛) of a conical spring with a constant pitch size may be calculated using 

𝑟(𝑛) =  [𝑟1 + (𝑟2 − 𝑟1)
𝑛

𝑛𝑎
]                                                                                                                                      (6) 

where 𝑛 is the number of active coils in the spring coil sequence, which is a continuous variable ranging 

from 0.0 to the total number of coils 𝑛𝑎. 

The elementary deflection 𝛿𝑒 can be determined for a given radius 𝑟(𝑛) that corresponds to the position 

of the current active coil as 

𝛿𝑒 (𝑛) =  
64 𝑃 𝑟3

𝐺𝑑4 
 𝑑𝑛                                                                                                                                                       (7) 

Furthermore, as seen in Figure. 1, the maximum elementary deflection 𝛿𝑒 𝑚𝑎𝑥 for any number of active 

coils 𝑛 can be evaluated using 

𝛿𝑒 𝑚𝑎𝑥 =  
𝐿𝑜−𝐿𝑠

 𝑛𝑎
 𝑑𝑛                                                                                                                                                 (8) 
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where 𝐿𝑜 denotes initial height of the spring.  

The total spring deflection can be calculated as the sum of the elementary coil deflection 𝛿𝑒 (before 

fully compressed) and the fully compressed coil deflection 𝛿𝑒 𝑚𝑎𝑥 noted as 

𝛿 = 𝛿𝑒 + 𝛿𝑒 𝑚𝑎𝑥                                                                                                                                                   (9) 

𝛿 = ∫ 𝛿𝑒 (𝑛)
𝑛

0
+ ∫ 𝛿𝑒 𝑚𝑎𝑥

𝑛𝑎

𝑛
                                                                                                                      (10) 

By solving the integration, the total spring deflection at any axial load value can be obtained by 

𝛿(𝑃) =
2𝑃(𝐷1)4𝑛𝑎

𝐺𝑑4(𝐷2−𝐷1)
[[1 + (

𝐷2

𝐷1
− 1)

𝑛

𝑛𝑎
]

4
− 1] + (𝐿𝑜 − 𝐿𝑠)(1 −

𝑛

𝑛𝑎
)                                                             (11) 

Eliminating the term 𝑛 with the diameter of the smallest and biggest coils as derived in equation (6), 

the inverse equation for equation (11) of load 𝑃 in terms of deflection 𝛿 can be calculated using the 

following equation 

𝑃(𝛿) =  (
𝐴1

2
)

3

2
[ 1 − (1 − 2 [1 − (1 +

𝐴2

𝐴1
2)

1

2
])

1

2

 ]

3

                                                                               (12) 

where 𝐴1 to 𝐴7 are given as 

𝐴1 = 𝐴3 −
𝐴2

3𝐴3
                                                                                                                                        (13) 

𝐴2 = −
𝐴6

𝐴5
                                                                                                                                               (14) 

𝐴3 = [
𝐴4

16
+ [(

𝐴4

16
)

2
+ (

𝐴2

3
)

3
]

1

2

 ]

1

3

                                                                                                                (15) 

𝐴4 = [
(𝐴7+𝛿)

𝐴5
]

2
                                                                                                                                         (16) 

𝐴5 = −
2𝐷1

4𝑛𝑎

𝐺𝑑4(𝐷2−𝐷1)
                                                                                                                                    (17) 

𝐴6 = −
3

8(𝐷2−𝐷1)
[

𝐺𝑑4 (𝐿𝑜−𝐿𝑠)

𝑛𝑎
]

1

3
                                                                                                                 (18) 

𝐴7 = (𝐿𝑜 − 𝐿𝑠)
𝐷2

 (𝐷2−𝐷1)
                                                                                                                          (19) 

The terms 𝐴2, 𝐴5, 𝐴6 and 𝐴7 can be precomputed from the conical spring parameters, while the total 

deflection 𝛿 equals the displacement of the conical spring.  

2.4 Model development   

A cubical object is discretised into 𝜂 mass points 𝒖𝑖 with mass 𝑚𝑖 , 𝑖 = 1, … , 𝜂. The mass points are 

connected to each other via conical spring in the shape of hexahedral element (see Figure. 2 and Figure. 

3). When a mass point moves as a result of an external force, the enforced displacement is transmitted 
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to neighbouring mass points via the springs. The model deforms as a result of this. The model state at 

time 𝑡 is determined by the position 𝒖𝑖 and velocity �̇�𝑖 of every mass point. 

The dynamic equilibrium of the MSM model is described using Newton's second law of motion. 

The induced external load is balanced by internal forces, which include the damping force, which is 

responsible for producing resistance due to mass velocity, and the spring force, which describes the 

resistance experienced by the spring. The dynamic equilibrium of each affected mass point can be 

expressed as 

𝑚𝑖𝒂𝑖 + 𝑭𝑑𝑖 + 𝑭𝑘𝑖 = 𝑭𝑒𝑥𝑡_𝑖                                                                                                                        (20) 

where 𝑚𝑖 denotes mass at point 𝑖, 𝒂𝑖 denotes the acceleration at point 𝑖, 𝑭𝑑𝑖 denotes the damping force 

at point 𝑖, 𝑭𝑘𝑖 denotes the spring force at point 𝑖, and 𝑭𝑒𝑥𝑡_𝑖 denotes the external force applied on point 

𝑖. 

Equation (20) can be expressed in terms of displacement as 

𝑚𝑖𝒖𝑖̈ + 𝑑𝑖𝑗�̇�𝑖 + 𝑭𝑘𝑖(𝒖𝑖) = 𝑭𝑒𝑥𝑡_𝑖                                                                                                                (21) 

where 𝑑𝑖𝑗  denotes damping constant between points 𝑖  and j .  The terms 𝒖𝑖 , �̇�𝑖  and 𝒖𝑖̈  denote the 

displacement, velocity and acceleration of point 𝑖  respectively. The spring force at point 𝑖 , is 

represented by the conical spring force 𝑭(𝒖𝑖), as described in equation (12). 

 

Figure 2: Conical spring model structure. 

 

 

Figure 3: Connection illustration for the hexahedral element. 
 

 

In this work, an enhanced explicit Euler integration is employed to solve equation (21) as presented by 

Huangfu [18]. The enhanced explicit Euler integration is denoted as 
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𝒖𝑖 ̇
𝑡+1 =  𝒖𝑖̇

𝑡 + ∆𝑡 ∙
𝑭𝑖

𝑡

𝑚𝑖
                                                                                                                                          (22) 

𝒖𝑖
𝑡+1 =  𝒖𝑖

𝑡 + ∆𝑡 ∙ 𝒖𝑖 ̇
𝑡+1

                                                                                                                         (23) 

where 𝑡 is the current time, 𝑡 + 1  is the next time step and ∆𝑡 is the time step.  

 

III. RESULTS AND DISCUSSION 
 

3.1 Stiffness variation in conical spring  

Figure. 4 illustrates the projection view of a conical spring with two coils, which depicts the radius 

variation. According to equation (2), a bigger radius produces a lower stiffness; thus, when a load is 

applied to a conical spring, the biggest coil with the lowest stiffness will deflect first. Following that, 

the deflection will continue indefinitely until all of the coils are fully compressed. Because the radius 

of the active element reduces, the conical spring becomes stiffer with large deformation, resulting in 

nonlinear deformation. As shown in Figure. 5, different diameter ratios (𝐷1/𝐷2) result in different 

degrees of radius variance. A lower diameter ratio results in a greater degree of radius variation. As a 

result, the stiffness variation in the conical spring will be higher, resulting in increased nonlinearity. 

 

Figure 4: Projection view of the conical spring structure. 

 

Figure 5: The projection view of conical spring at different ratio of the smallest and the largest coil (D1/D2). a) 

Large ratio, b) Medium ratio, and c) Small ratio. 
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3.2 Conical spring deflection behaviors 

This section illustrates how a conical spring may produce several types of deformation. Throughout this 

experiment, the total number of coils  𝑛𝑎  and wire diameter 𝑑 were held constant at 3.0 and 1.0 mm, 

respectively. The displacement range is set to 90 mm, which corresponds to the maximum elementary 

deflection 𝛿𝑒 𝑚𝑎𝑥, and the number of coils used is controlled by the parameter 𝑛. Thus, the new initial 

height of the spring 𝐿𝑜  can be calculated using equation (24). 

𝐿𝑜 =
𝛿𝑒 𝑚𝑎𝑥 𝑛𝑎

𝑛
+ 𝐿𝑠                                                                                                                                   (24) 

The quantity of coil employed within a displacement range might result in a variety of deformation 

patterns. As demonstrated in Figure. 6, the nonlinearity of a conical spring increases as the number of 

coils involved within that displacement range grows. The reason for this is that the stiffness variation 

induced is greater. On the other hand, reducing the stiffness variation by limiting the number of coils 

involved within that displacement range yields a low nonlinearity. As shown in Figure. 6, when 𝑛 = 0.5, 

the load-displacement curve is very close to a linear behavior. 

 

Figure 6: Deformation behaviour of conical spring at different number of coils involved within a given 

displacement value. 

Furthermore, by varying the shear modulus G and wire diameter d in equation (7), the magnitude of 

spring deflection may be adjusted for a given load P. The two numbers indicate the spring's strength, 

and they remain constant while the spring deforms. Because the wire diameter d is fixed in this study, 
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the spring strength may be adjusted using the shear modulus value G. When seen in Figure. 7, as G 

increases, the deflection at a given load P decreases, but the deformation behavior stays the same. 

 

Figure 7: Deformation behaviour of conical spring at different values of shear modulus G. 

The results in Figure. 6 and Figure. 7 show that a conical spring may induce various forms of 

deformation over a wide range of displacements. It is accomplished by modifying the conical spring 

settings to regulate the stiffness variation. This one-of-a-kind characteristic allows conical springs to 

represent any sort of deformation behavior. 

3.3 Deformation behaviors 

The ability of the conical spring model to mimic different types of deformation is demonstrated by 

comparing deformation behavior during compression to that obtained from the literature. Two data sets 

were obtained directly from Ahmadian et al. [19]. The study examined a variety of soft tissues and 

determined that there are two main categories of soft tissue deformations that may be distinguished 

based on the magnitude of the toe region. The toe-region refers to the nonlinear area of soft tissue 

deformation. The first group includes soft tissues with low nonlinearity in the toe area, such as the 

human breast and canine kidney. The second group, on the other hand, exhibits more nonlinearity along 

the toe-region. The findings, as shown in Figure. 8, demonstrate that the conical spring model can 

replicate multiple types of deformation behavior recorded in the literature. By calibrating the conical 

spring parameters, which describe the model's flexibility, the different kinds of deformation are 

duplicated. According to Table 1, the conical spring model's average relative error with respect to the 

reference data is less than 5% in both cases. 
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Figure 8: Deformation behaviour of conical spring model in comparison with the reference data of   

a) Type 1 and b) Type II [19]. 

 

Table 1: The relative error of the proposed method in comparison with reference data. 

Type of deformation Reference Average Relative Error (%) 

Type I Figure. 8(a) 1.89 

Type II Figure. 8(b) 3.75 
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Figure 9: The viscoelastic properties of the conical spring model. a) Hysteresis, b) Creep, and c) Force 

relaxation. 

The existing conical spring model has some limitations, despite its efficacy in simulating different types 

of deformations. First, the parameters of the conical spring were calibrated using the trial-and-error 

approach. Although important information was collected from Figure. 6 and Figure. 7, the parameters 

still do not have a direct relation to soft tissue properties hence the optimization process may be 

challenging and time consuming for complex data sets. 

3.4 Viscoelastic behavior 

If a model exhibits one of these characteristics, such as hysteresis, creep, or force relaxation, it is 

considered viscoelastic. According to the hysteresis curve (see Figure. 9(a)), the loading path, 

represented by the solid line, and the unloading path, indicated by the dotted line, take two separate 

trajectories. The difference between the pathways represents energy lost throughout the operation, and 

it is similar to the hysteresis phenomena found in actual tissues [1]. Creeping is the tendency of materials 

to deform permanently under the presence of continuous pressures, whereas force relaxation is the 

inclination of materials to show decreases in force when subjected to a steady displacement. At a 

constant load, the conical spring model continues to deform at a low deformation rate, as seen in Figure. 

9(b). The observation is comparable to that reported by Mun et al. [20], which demonstrates the creep 

feature of soft tissues. Meanwhile, Figure. 9(c) depicts the conical spring model's force relaxation 

behavior. The response force has a noticeable delay as a result of force relaxation. During an abrupt 

deformation, the reaction force was seen to have an instantaneous response before progressively 

declining. The observation is similar to the one reported by Basafa et al. [13].  
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According to the findings of the viscoelastic studies, the conical spring model can replicate the 

common viscoelastic behaviors of soft tissues. The studies, however, were carried out just to investigate 

the mechanical properties of the model, with no attempt to imitate any specific viscoelastic material. It 

is sufficient to modify the damping value as proposed by Sala et al. [21] to achieve different viscoelastic 

properties. 

3.5 Anisotropic deformation 

The anisotropic property can be incorporated in the conical spring model by allocating different conical 

spring parameters to distinct spring lattices. Figure. 10 depicts the usage of two different springs 

(marked by different colors) with the parameters provided in Table 2. When the model is subjected to 

an external load, it can be seen that the lattices with lower stiffness deform more. The results show that 

the deformation is direction-dependent, implying that the proposed model can replicate anisotropic 

characteristics. 

Table 2: Details of the conical spring parameters used for the red and white lattices. 

Parameter Red lattice White lattice 

D1 2 2 

D2 8 8 

Lo 90 90 

G 50 50 

d 0.5 1.5 

𝑛𝑎 3 3 

Type Telescopic Telescopic 

Estimated Stiffness 0.00064 0.05149 

 

 

Figure 10: The images of the conical spring model during deformation with anisotropic characteristic is 

applied. Different lattice colors indicate different spring properties.  
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Figure 11: The compression test on the soft tissue phantom (Ecoflex 00-30) using the commercial INSTRON 

compression machine.  

3.6 Comparison to experimental data 

The deformation behavior of the conical spring model was evaluated with experimental data for further 

validation. A soft tissue phantom was created using a unique silicone blend of Ecoflex 00-30. According 

to Spark et al. [22], the Ecoflex 00-30 characteristics are substantially close to those of actual soft tissue, 

thus it is extensively used as a soft tissue phantom [23]. The specifications of the soft tissue phantom 

are shown in Table 3.  

Table 3: Material specifications of the Silicon Ecoflex 00-30. 

Ecoflex® 

00-30 

Mixed 

Viscosity 

Specific 

Gravity 

Specific 

Volume 

Pot Life Cure Time 

 3000 cps 1.07 26.0 45 min 4 hours 

 

Shore Hardness Tensile 

Strength 

100% Modulus Elongation at 

Break % 

Die B Tear 

Strength 

Shrinkage 

(in./in.) 

00-30 200 psi 10 psi 900% 38 pli <.001 in./in. 

 

As illustrated in Figure. 11, the soft tissue phantom was compressed using a commercial INSTRON 

compression machine. The soft tissue phantom was put on the specimen plate, and compressive stress 

of 500 mm/min was applied (see Figure. 11). For accuracy, the compression test was performed on 

several specimens. Figure. 12 depicts the test findings, which show that the soft tissue phantom exhibits 

similar deformation behavior to the first type of soft tissues reported by Ahmadian et al. [19]. 
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Figure 12: The compression test results on the soft tissue phantom for six specimens taken with the INSTRON 

compression machine. 

 

Figure 13: Deformation behaviour of the conical spring model in comparison to the experimental data obtained 

from the compression test on the soft tissue phantom of Specimen 5.  

The deformation behavior of the conical spring model was compared to the deformation behavior of 

Specimen 5 of the soft tissue phantom. Further calibration was performed on the conical spring 

parameters to match the deformation behavior of the soft tissue phantom. The calibration process was 

terminated when the deformation of the conical spring model agreed with the experimental data within 

10% of relative error. As demonstrated in Figure. 13, the conical spring model can simulate the soft 

tissue phantom's deformation behavior. Although the calibration technique is dependent on trial and 

error, identical behavior was attained with a relative error of less than 10%. More precise calibration 

approaches, such as genetic algorithms and simulated annealing, can reduce the percentage of relative 

inaccuracy even more. 
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3.7 Comparison to traditional MSM 

The deformation behavior and computing time of the conical spring model were compared to those of 

the traditional MSM model. With 320 nodes, a basic cubical model was created. The traditional MSM 

model was developed in the same manner as the conical spring model, with the exception that the spring 

force has been replaced with the linear Hooke's law equation. The conical spring model, as shown in 

Figure. 14, improves on the classic MSM model by allowing for nonlinear deformation. 

                

 

Figure 14: Deformation behaviour of traditional MSM and the conical spring model. a) Deformation image of 

traditional MSM model, b) Deformation image of conical spring model, and c) Load-displacement relationship 

of traditional MSM and conical spring model.  

However, in terms of computing time, the conical spring model took longer than the traditional 

approach. The computational time was determined by monitoring the simulation's update time, and the 

difference is around 7 ms, as shown in Table 4. Although both models were created in the same method, 

they differ in terms of the mathematical handling of the spring force computation. Because the basic 

linear Hooke's law equation was employed, the traditional MSM model has an advantage. However, it 

is confined to linear deformation, which does not represent the general behavior of soft tissues. 

Nevertheless, even though the spring force for the conical spring model is more complicated, a more 

accurate simulation can be generated. As a result, the 7 ms difference might be deemed minor in 

comparison to the capacity to achieve greater precision. 
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Table 4: Update time of the conical spring model and traditional MSM. 

MSMs Number of nodes Update time (s) 

Conical spring model 320 0.090 

Traditional MSM  320 0.083 

 

3.8 Interactive feedback 

The SOFA framework software was used to assess the interactive capability of the conical spring model 

employed in human organs. SOFA is an open-source framework that allows independently developed 

algorithms to communicate within the context of a shared simulation [24]. This tool allows for real-

time interaction with the model numbers that are accessible. Changes were made to the header and 

inline files to implement the conical spring methodology in the SOFA framework. Using the conical 

spring equation, the files relevant to the Spring-Force were explicitly altered. Figure. 15 shows the 

deformations of the modified liver model, which has 507 nodes. The results demonstrate that the conical 

spring model can be operated at a real-time interactive phase, which is essential for haptic feedback. 

 

Figure 15: Implementation of the proposed method in SOFA open source. Image of the original liver model 

followed by deformed model.  

 

IV. CONCLUSIONS 
 

The goal of this research is to develop a new framework for simulating soft tissue deformation. Instead 

of oversimplifying soft tissue deformation as nonlinear or linear, this work indicates that the 

deformation behavior is determined by a combination of linear and nonlinear deformation phases. It 

was achieved using the conical spring methodology in which the unique conical structure generates 

stiffness variation within the conical spring model. The stiffness variation can be regulated using the 

conical parameters to match any deformation behavior. The results show that the conical spring model 

has the flexibility in modeling different types of soft tissue deformation with high precision, thus 

eliminates the slight computational time disadvantage when compared to the traditional MSM model. 

Additionally, the conical spring model is easily adaptable to show the general viscoelastic and 

anisotropic mechanical properties of soft tissues. 
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