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ABSTRACT 

 

In this paper, a new optimal adaptive controller for the active front steering control of 

a vehicle is proposed. Due to the availability and applicability of proportional-integra-

tor-derivative (PID) controllers, this controller is picked up; but, to overcome its limi-

tations, two optimization and adaptation schemes are employed. The reference transfer 

function between the yaw rate of a typical vehicle and its steering angle is derived. The 

actual dynamics is simulated using CarSim toolbox of MATLAB. Best vehicle handling 

was aimed to be reached for three famous driving manoeuvres by proposing an efficient 

but economic controller. An optimization is done on the PID coefficients for a specific 

road condition using the honey bees' algorithm, and then a two-layer artificial neural 

network is trained using the back propagation learning rule to adjust the controller co-

efficients for any arbitrary road conditions. The uncontrolled, desired, optimized con-

trolled, and optimized plus trained controlled yaw rate of vehicles are drawn for three 

manoeuvers and three road conditions. The integral of squared error between the de-

sired and actual trajectories for different manoeuvers and road conditions are evaluated 

and compared between each other. The performance of the proposed PID controller that 

was optimized by Bees Algorithm and trained by a neural network was proved. It is 

noted that the optimized PID controller is good for all road conditions but not excellent. 

The more we move away from the reference road (in which, the optimization is done), 

the error will be larger. Thus for other conditions, using the artificial neural network 

can help decrease the error significantly. 

 

Keywords: Active front steering control; bees algorithm; artificial neural network; 

vehicle handling. 

 

INTRODUCTION 

 

Vehicle handling and stability have great effects on the comfort and safety of travel. 

Since a vehicle may encounter unpredictable and uncertain parameters such as air and 

road conditions, design of a quick, precise, adaptive, and of course economic controller 

can help the driver to improve the driving in real time. The performance of steering 

system plays a vital role in the handling and the yaw stability control of any road vehicle. 

The vehicle stability may be affected by some expected and unexpected factors includ-

ing the vehicle's structure and parameters, the initial operation of the vehicle, tire steer-
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ing angle, road conditions, side wind force, tire pressure loss or vehicle driving situa-

tions [1].Under these almost unpredictable conditions, the driver may not respond 

within a very short time; therefore, it is necessary to develop secure automatic control 

approaches. There are several methods to control the yaw rate of a vehicle such as direct 

yaw moment control [2], four wheel steering system control [3], active differential brak-

ing [4], semi active steering system [5, 6], and active front steering (AFS) control [6].  

The latter is one of the efficient methods to solve the above mentioned problem that 

is based on stabilizing the yaw rate of a vehicle just by manipulating the wheel steering 

angle. Simply put, it tries to compensate an additional angle to the wheel steering angle 

that improves the vehicle’s manoeuvrability, stability and path tracking [6].This com-

pensation has been done in literature using several types of controllers. The fuzzy logic 

controller was employed to improve the yaw rate evolution for a four-wheel differential 

(4WD) [7]. The performance of fuzzy logic controllers was studied and discussed to 

control the yaw rate and side slip angle of vehicles [8]. Canale, Fagiano [9] designed a 

robust controller to control the yaw rate of vehicles by means of rear active differential 

techniques. The presented controller did not work properly for unpredictable and vary-

ing conditions and showed good performance for some specific ranges and conditions. 

Wu, Zhu [10] constructed a reference model for a vehicle via a neural network using 

back propagation of error as the learning algorithm, and a fuzzy controller optimized 

by genetics algorithm for active steering control. This control arrangement was applied 

to a four-wheel steering system at some distinctive conditions. Integrated yaw moment 

and active front steering control was employed by Wu, Zhao [11] to design a fuzzy logic 

controller for yaw stability improvement of a vehicle. Similar to previous mentioned 

works, their controller was designed for some determined road frictions and conditions. 

Most of the active steering control systems which have been recommended in litera-

ture used complicated and sometimes non-economic controller elements for specific 

dynamic models, and assumed constant road and parameter conditions (see for example 

[12-14]). Due to unpredictable and unexpected parameter changes, a simple applicable 

but efficient controller must be proposed in order to adjust itself with these variations. 

An advisable strategy to design such controllers is to combine both the adaptation and 

optimization for the parameter selection of these controllers.  

In this paper, using the integrated honey bee's optimization algorithm and a two-layer 

artificial neural network estimator, a simple economic PID but efficient controller is 

proposed. In fact, joint use of optimization and adaptation over one of the most practical 

and industrial controller i.e. the PID controller presents a quick, precise, and economic 

scheme for vehicle handling. The procedure is done by first optimizing the coefficients 

of a PID controller via Bees Algorithm for a specific road condition, and then tuning 

the coefficients for any unpredictable conditions using the neural network. Combination 

of these above methods to design an efficient but simply available active steering con-

troller with acceptable performance in different road conditions has been less studied 

in literature. One of the relatively relevant articles in this context is the article written 

by Zhuo-Ming, Yun-Xia [15] who applied the artificial bee's colony algorithm to opti-

mize synaptic weights of an Artificial Neural Network (ANN). 

 

METHODS AND MATERIALS 

 

Vehicle model description 

In this section, both the reference and actual models for our system will be intro-

duced. The reference model produces the reference signal which is used in the control 
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simulation scheme. With respect to Figure 1, the reference model is a 2D reduction of 

a real 3D vehicle whose rear and front axles were replaced by two wheels. In a real 

vehicle, the best condition for minimized slipping and optimal handling occurs when 

the wheels rotate about a point. This introduced model can satisfy this optimal condition 

for desired handling simply. One of the advantages of this model is that the response of 

vehicles under step input of steering is a circle and consequently the yaw rate is a con-

stant value [16, 17]. 

 

 
 

Figure 1. The schematic diagram of the reference model. 

 

With reference to Figure 1, the 2D governing equations of motion become [16, 17]: 

 

( ) cosy x cr cf fm v v F F   
 

(1) 

( ) siny cf fm v F   
 

(2) 

z f cf r crI l F l F  
 

(3) 

 

where m is the total mass of car, vy and vx are velocity at y and x directions respectively, 

Fcr and Fcf are the lateral forces of rear and front wheels, 𝛿𝑓 is the steering angle of 

front wheel, 𝐼𝑧 is the mass moment of inertia and ψ is the car yaw angle. lf and lr are 

the distances between front/rear wheel and the centre of mass point, l is the distance 

between the rear and front wheels, 𝛼𝑓 and 𝛼𝑟 are the lateral slip angles of front and 

rear wheel respectively. 

Assuming the constant cornering stiffness for rear and front tires led someone to re-

write the lateral forces as [16, 17]: 
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(4) 

( )r
cr r r cr r

x

l
F C F C

v


     

 
(5) 

 

where Cf, Cr are the cornering stiffness of the front and rear wheels respectively, and 

β is the sideslip angle of the car. It is assumed that the vehicle travels with a constant 

velocity along the x direction; therefore, by choosing  and d/dt as the state variables, 

one can simply reach to the such following state space equation between f and defined 

state variables: 
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(6) 

 

A simple calculation results in the transfer function between the yaw rate and the 

steer angle of the front wheel as [16, 17]: 

 

1 2

2

1 2 3f

A s A

B s B s B








 
 

(7) 

 

where s is the Laplace operator and the coefficients A1, A2, B1, B2, and B3 are: 
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(8) 

 

With respect to Figure 1, it can be shown that: 

 

f f r f f r

l l

R R
           

 
(9) 

 

Also, by rewriting the Eq. (4) and Eq. (5), we have: 

 
2

cf f
f

f f

F m v

C C R
  

 

(10) 
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2
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r r
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C C R
  

 

(11) 

 

where mf and mr are the equivalent front and rear masses, respectively. It is noted that 

these masses are computed in static situation of the vehicle. Substituting Eq. (10) and 

Eq. (11) to Eq. (9), one can reach to: 
2

f r
f

f r

f r
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f r

u y
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(12) 

 

where 𝑎𝑦, is the lateral acceleration and Ku is known as the under steering coefficient, 

with the such following relation [16, 17]: 

 

  2

f r
u f r

f r

m m R
K

C C v
    

 
(13) 

 

Finally, using Eqs. (10) – (13), one can rearrange the transfer function between the 

yaw rate of vehicle and steering angle Eq. (7) as: 

  

2

f

u

v

l k v


 


 

(14) 

 

Equation (14) prepares the reference signal for our control simulation arrange-

ment while in this paper, a virtual but completely efficient software is used to model the 

actual plant. CarSim, as one of the MATLAB Simulink toolbox is used to model an 

actual vehicle with real and different road conditions and other true situations. In liter-

ature, many works have used this toolbox as a reliable simulator for the vehicle behav-

iour investigation under real and true conditions (see for example, [8]). CarSim has been 

proven as a powerful software package to simulate vehicle response with respect to 

control inputs and used in numerous studies (see for example [18, 19]). 

Table 1 shows the parameter values that are used in both reference and actual 

models in this paper. In this table, 𝑅𝑤 is the nominal radius of the wheel, 𝐼𝑤 is the 

mass moment of inertia of the wheel, h is the height of the centre of gravity of suspended 

vehicle, and 𝑙𝑤 is the width between right and left wheels. 

 

Table 1. The parameters of the vehicle used in our simulations. 

 

0.31 (m) Rw 1.14 (m) lf 1530 (kg) m 

0.9 (kg.m2) Iw 1.64 (m) lr 
4607.5 

(kg.m2) 
Iz 

0.52 (m) H 1.55 (m) lw 72 (km/h) v 
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Controller design pattern 

The conventional PID controllers cannot be used as efficient organizers to reach the 

desired behaviour for such complicated problems. In fact, the controller must work 

properly and instantly for different roads and driving conditions in real time. This brings 

us to the use of an optimized adaptive controller. On the other hand, due to the generality, 

applicability, widespread use, and simplicity of PID controller, these organizers are the 

first candidates for manipulation of common industrial applications. In this research, 

the parameters of a conventional PID controller, i.e. Kp, Kd and Ki must be optimized 

and adjusted during the control process at the same time. Here both the BA (Bees Al-

gorithm) and ANN (Artificial Neural Network) are jointly employed to modify the con-

ventional PID controller and overcome the demanded circumstances.  As can be found 

in literature, the BA is a random search algorithm which is inspired from the honey bee 

colonies’ manner for gathering the flower patches and foraging strategy in nature[20]. 

In harvesting season, honey bees try to obtain the best nectars with minimum energy 

consumption. In this process, first the scout bees begin to search for promising flower 

patches by randomly moving from one patch to another [20]. If the nectar of a patch of 

flowers satisfies the certain fitness threshold, its information including the distance to 

the hive, its relative direction, and its quality are shared with other colony bees via a 

mysterious manoeuver which is known as the ‘Waggle dance” [21]. This information 

helps the colony to find the efficient patches, i.e. those with higher quality nectars and 

lower energy consumption for gathering, harvesting, and transportation [21]. 

An optimization algorithm was first introduced based on this natural procedure by 

[22]. The algorithm has been successfully applied to many optimization problems in 

literature such as design of mechanical components [23], multi-objective optimization 

[24], neural network training t Pham, Soroka [25] , and image analysis [26], etc. The 

general operation flowchart of this algorithm is [27]: 

 

 Initialise population with random solutions. 

 Evaluate fitness of the population. 

 While (stopping criterion not met),  

 Form new population. 

 Select sites for neighbourhood search. 

 Recruit bees for selected sites (more bees for best e-sites) and evaluate fitness. 

 Select the fittest bee from each patch. 

 Assign remaining bees to search randomly and evaluate their fitness. 

 End while.  

 

Note also that the capability of the BA as a powerful tool for optimization problems 

has been proved in many researches (see for example [28-30]). In the simulation and 

with respect to the above flowchart, first a set of initial values for PID coefficients were 

chosen randomly. This set constructed the initial population of n scout bees. After that, 

the integral of the squared error signal as the fitness function was evaluated for each 

bee (initial value of the PID coefficients). The best m numbers of bees were selected 

and the others were removed. The selected bees were divided to two groups of elite (e) 

and ordinary (m-e) bees. After the radius of neighbourhood (ngh) for the patches was 

selected, ne numbers of bees were recruited to check the fitness criterion and find the 

best solution in elite sites, while other ns bees were employed to search remaining se-

lected but ordinary sites. The procedure was repeated for remaining (n-m) scout bees to 
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search the space randomly until a stopping criterion has been reached. In Table 2, some-

one can find the values of parameters used in the algorithm. 

 

Table 2. The values of parameters that are used in our Bees Algorithm. 

 

Description Notation 

(parame-

ter) 

Value 

The initial population of scout bees n 100 

The best numbers of bees m 15 

Number of elite patches e 5 

Number of bees were recruited to check elite sites ne 20 

Number of bees were employed to check ordinary se-

lected sites 

ns 10 

Neighbourhood of the first parameter of PID control-

ler (Kp) 

Ngh1 0.5 

Neighbourhood of the second parameter of PID con-

troller (Ki) 

Ngh2 0.000001 

Neighbourhood of the third parameter of PID control-

ler (Kd) 

Ngh3 0.000001 

The stopping criterion (number of iteration) - 1000 

 

Using the above pointed procedure, an optimized set for the coefficient of PID con-

troller was obtained. Here, to reach a controller that can be applied for different road 

conditions, an estimation and adaptation procedure using the artificial neural networks 

is also employed. As it can be seen in many works, an artificial neural network is an 

imitation of making a decision with respect to previous trained behaviours and data in 

the biological human brain [31-33]. After an ANN has been trained by some defined 

and determined input/output signals, it may decide about a suitable response due to an 

unknown input [34]. The efficiency and correctness of this method has been discussed 

in many applications including control systems. See for example [34-36].  

 

 
Figure 2. The architecture of the network used in our simulation. 

 

Figure 2 shows the architecture of a two-layer feed-forward neural network con-

troller that is used in our simulation. In this model, all the activation functions (f) are 

assumed to be linear while the layer weights are considered to be one. With reference 

to this architecture, the control signal u becomes: 
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      ( )p d i

de
u k e t k k e t dt

dt
    (15) 

 

During the simulation and in each iteration, the error between the output of the plant 

and the output of the desired model is computed via the following relation: 

 

  ( )refe n Y y n 
 

(16) 

 

Now, the cost function is defined as: 

 

 21/ 2( )E e n
 

(17) 

 

To minimize the cost function Eq. (17), the back propagation method is used. 

The method was first introduced by Rojas [37], and then used in neural networks as a 

learning algorithm in [38]. Here, this method is used to update the layer weights itera-

tively to reach an optimal value for the desired cost function. Unfortunately, we do not 

have information about the hidden layers but we can compute how fast the error 

changed as a hidden action was changed. Therefore, to train a network, the error deriv-

ative with respect to hidden action can be used instead of desired action itself. These 

concepts of back propagation algorithm together with the delta learning rule [39, 40] 

are used to compute layer weights for minimizing the cost function E, Eq. (10) in this 

study. Based on above methods, the layer weight variation in each iteration must be 

proportional to the minus gradient of the cost function with respect to that layer weight 

[31] i.e.: 

 

( )
 

( ) ( )

Chain rule

i

i i

E E e n y u
w

w e n y n u w

    
    

    
 

(18) 

  

where wi is the weight of ith layer. A simple calculation leads someone to reach the such 

following relation for layer weigh changing rule: 

 

 i

i

u
w e n

w



 


 

(19) 

 

where  is the coefficient of training. This coefficient must be selected such that both 

the stability of iterations and speed of training will be satisfied. In this study,  = 0.6 

satisfies both conditions; therefore, the updating law of layer weights becomes: 

 

   1 ( ) i i

i

u
w n w n e n

w



  


 

(20) 

 

Similarly, the updating rules for PID parameters become: 

 

     1 ( )p pk n k n e n e n      
 

(21) 
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     1 ( )i ik n k n e n e n dt       (22) 

     
( )

1d d

de n
k n k n e n

dt
      (23) 

 

Briefly, the coefficients of the designed and proposed PID controller are first 

optimized by the Bees Algorithms for a conventional road condition, i.e. when the co-

efficient of friction is equal to 1. After that, using a two-layer artificial neural network, 

the optimized coefficients are tuned for other road conditions. In the following section, 

the efficiency and effectiveness of the controller for three types of road conditions will 

be justified in real time for some famous vehicle manoeuvers. 

 

RESULTS AND DISCUSSION   

 

In this section, the correctness and efficiency of the designed and proposed controller 

is investigated to track three famous manoeuvres i.e. J-turn, fishhook, and change lane. 

Figure 3 illustrates these three famous manoeuvres schematically. The steering angles 

of the front wheel regarding to these manoeuvres with respect to time are drawn in 

Figure 4. With reference to this figure, as a driver decides to change its lane, he/she 

applies a positive/negative steering angle. Once the lane is changed, a counter angle is 

necessary to reorient the vehicle in the new lane. In both J-turn and fishhook manoeu-

vres, a non-zero steering angle is necessary to change the car direction. A single-sided 

steering angle is used for the former while a double-sided one is employed for the latter. 

 

 

 

 

 

(a) 
(b) (c) 

Figure 3. Schematic diagram of a: change-lane, b: J-turn and c: fishhook manoeu-

vres.  

 

The coefficient of friction as an index for the road condition is selected and 

varied from an almost regular road to an icy one. To have a better estimation and judge-

ment, the proposed PID controller in the previous section, before and after application 

of the artificial neural network is employed to manipulate the system. In Figure 5, the 

desired, uncontrolled, and controlled yaw rate of the pointed vehicle for the change lane 

manoeuvres at different road conditions are drawn.  
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Figure 4. The steering angle of the front wheel in each manoeuvre. 

 

  
(a) (b) 

 
(c) 

 

Figure 5. The desired, uncontrolled, and controlled yaw rate of the vehicle for the 

change lane manoeuvre when the road coefficient friction is a: 1, b: 0.6, and c: 0.3. 
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Based on Figure 5, for the almost regular road condition i.e. Figure 5(a), both the 

controllers can follow the desired trajectory. It is completely expectable because the 

Bees Algorithm is used to find optimized controller for this road condition only. There-

fore, in this condition, the coefficients of PID controller are the optimized ones, and the 

augmented neural network has no need to modify them. In other words, the coefficients 

of controller with and without applying the neural network are the same and their per-

formances are alike. Once the road conditions change, the PID optimized only by the 

BA cannot completely track the desired trajectory and the use of an adaptation (such as 

the ANN in this work) is unavoidable. To overcome this problem, some may use a pre-

cise bank of data with large amount of calculations and simulations to interpolate the 

conditions and then reach the desired controller. Instead, we use the logic of trained 

neural networks with definitely fewer determined input/output signals to decide about 

the desired controller at unknown conditions [34]. Figure 5(b) and Figure 5(c) show 

how this proposed adaptive optimized PID controller can completely track the desired 

trajectories for other road conditions. 

 
 

(a) (b) 

 
(c) 

Figure 6. The desired, uncontrolled, and controlled yaw rate of the vehicle for the 

J-turn manoeuvre when the road coefficient friction is a: 1, b: 0.6, and c: 0.3. 

 

The simulation is repeated for the other two manoeuvers, i.e. the J-turn and 

fishhook. Figure 6 and Figure 7 show how the optimized adapted controller that was 

previously designed in previous section can follow the desired yaw rate trajectory for 
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different road conditions. They explain also the effectiveness of the proposed con-

troller in this study in comparison with the one which used the BA only. To better 

quantify the effectiveness, the integral of squared error between the desired and actual 

trajectories for different manoeuvers and road conditions, are evaluated and com-

pared to each other in Table 3. In fact, in Table 3 one can compare the performance 

of the controllers of cases quantitatively and entirely. With respect to this table, no 

differences are seen between the errors for ordinary road i.e. when the coefficient of 

friction equals to 1. As expressed previously, this is because the Bees Algorithm was 

designed and tuned for this road condition. Thus, the adjoint neural network does not 

have any effect on the controller. For other roads, the optimized PID controller is still 

good but not great. The more we move away from the reference road, the error will 

be larger. Thus, for more slippery roads, using the artificial neural network can help 

decrease the error significantly. In other words, the more slippery the road is, more 

adaptation needs to be applied. 

  
(a) (b) 

 
 

(c) 

 

Figure 7. The desired, uncontrolled, and controlled yaw rate of the vehicle for the 

fishhook manoeuvre when the road coefficient friction is a: 1, b: 0.6, and c: 0.3. 
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Table 3. The integral of squared error between the desired and actual trajectory for 

our case studies. 
 

Improvement PID + 

BA 

PID + BA + 

ANN 

Manoeuver/ Control-

ler 

Coefficient of friction = 1 

Nothing 1.4410-6 1.4410-6 Change lane 

Nothing 3.8610-6 3.8610-6 J-turn 

Nothing 2.0010-6 2.0010-6 Fishhook 

    

Coefficient of friction = 0.6 

Reduced by 

524 times 
7.6 10-4   1.46 10-6 Change lane 

Reduced by  

122 times 
4.8 10-4  3.95 10-6 J-turn 

Reduced by  

417 times 
8.510-4 2.04 10-6 Fishhook 

Coefficient of friction = 0.3 

Reduced by  

1463 times 
15.8 10-4   1.08 10-6 Change lane 

Reduced by  

233 times 
5.7  10-4   2.45 10-6 J-turn 

Reduced by  

933 times 
12.6 10-4   1.35 10-6 Fishhook 

 

CONCLUSIONS 

 

In this paper, a PID controller optimized by the honey bees’ algorithm, and trained 

by the artificial neural networks to improve the handling of vehicles in different road 

conditions was proposed. The presented controller can track the vehicle with acceptable 

performance in three famous driving manoeuvers i.e. change lane, J-turn, and fishhook 

in regular, slippery, and almost icy roads. The coefficient of friction is picked up in this 

study as an index to model the road conditions; however, the method can be applied for 

other unpredictable indices. To show the designed controller’s effectiveness to work in 

different road conditions, a comparison between the behaviour of the system in the 

presence and absence of augmented neural network is made. No differences were seen 

between the squared error between the desired and actual trajectories for regular road. 

For slippery roads, the optimized PID controller is still good but not great. The more 

we move away from the regular reference road, the error will be larger. Thus, for more 

slippery roads, using the artificial neural network can help in decreasing the error sig-

nificantly. In presence of artificial neural network, the error reduces from 122 times in 

J-turn manoeuvre in slippery roads to 1463 times in change-lane manoeuvre in almost 

icy road. The results of this work may encourage further theoretical and experimental 

studies in this area. 
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NOMENCLATURE 

 

Cf,   Cornering stiffness of the front wheels 

Cr   Cornering stiffness of the rear wheels 

Fcr    Lateral forces of rear wheels 

Fcf     Lateral forces front wheels 

l     The distance between the rear and front wheels 

m      The total mass of car, 

mf     The equivalent front mass 

mr     The equivalent rear mass  

𝐼𝑧     The mass moment of inertia 

vy      Velocity along y direction 

vx     Velocity along x direction 

𝛿𝑓    The steering angle of front wheel 

ψ     The car yaw angle.  

𝛼𝑓    The lateral slip angle of front wheel 

𝛼𝑟    The lateral slip angle of rear wheel 

β     The sideslip angle of car 

4WD   4-wheel-differential 

AFS   Active front steering 

ANN   Artificial Neural Network 

BA   Bees Algorithm 

NPQL   Nonlinear programming quadratic line search 

PID   Proportional–integral–derivative  

RSM   Response surface model 

 
 

 


